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Nonlinear Poisson-Boltzmann theory of a Wigner-Seitz model for swollen clays
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Swollen stacks of finite-size disclike Laponite clay platelets are investigated within a Wigner-Seitz cell
model. Each cell is a cylinder containing a coaxial platelet at its center, together with an overall charge-neutral
distribution of microscopic co and counterions, within aprimitive modeldescription. The nonlinear Poisson-
Boltzmann~PB! equation for the electrostatic potential profile is solved numerically within a highly efficient
Green’s function formulation. Previous predictions of linearized Poisson-Boltzmann~LPB! theory are con-
firmed at a qualitative level, but large quantitative differences between PB and LPB theories are found at
physically relevant values of the charge carried by the platelets. A hybrid theory treating edge effect at the
linearized level yields good potential profiles. The force between two coaxial platelets, calculated within PB
theory, is an order of magnitude smaller than predicted by LPB theory.

PACS number~s!: 82.70.Gg, 02.60.Nm, 68.10.2m
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I. INTRODUCTION

Electrostatic interactions between suspended mesosc
particles or polyions play a key role in determining the s
bility, mesostructure, and phase behavior of colloidal disp
sions and polyelectrolytes. Polyions in aqueous dispers
may be rigid or flexible, and range in shape from spherica
rodlike or lamellar. Widely studied examples of polyions i
clude polystyrene balls, elongated TMV~tobacco mosaic vi-
rus! particles, stiff polyelectrolyte chains such as DNA, fle
ible membranes, and silicate clay platelets. The hig
charged polyions strongly attract or repel microscopic co
terions and coions~microions!, leading to the formation of
electric double layers characterized by highly inhomo
neous charge distributions around the polyions. Theoret
investigations of the structure of such double layers, and
their mutual effective interactions, have been mostly
stricted to the simplest polyion topologies, including un
formly charged infinite planes or spheres. Starting with
pioneering work of Gouy@1# and Chapman@2#, on infinite
planar double layers, theoretical calculations are almost
variably based on the mean-field Poisson-Boltzmann~PB!
approximation, which neglects excluded volume and C
lomb correlations between the microions, although some
cent attempts have been made to include such correla
within a density functional~DFT! formulation, which may
also account for discrete solvent effects@3#. The nonlinear
PB equation for the local electrostatic potential may
solved analytically for a single planar double layer, and t
interacting double layers in the salt-free case~i.e., in the
absence of coions! @1,2,4#; in the presence of salt, the one
dimensional problem of interacting charged planes is ea
solved numerically@5#. However, PB theory becomes in
creasingly difficult to handle for more complicated geo
etries, and must generally be linearized to become tracta
A well-known application of linearized Poisson-Boltzman
~LPB! theory is the calculation of the effective interactio
PRE 611063-651X/2000/61~2!/1634~14!/$15.00
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between colloidal spheres carrying a uniform surface cha
leading to the screened Coulomb potential of Derjagu
Landau, Verwey, and Overbeek@6,7# ~DLVO!. LPB theory
is, however, strictly speaking valid only provided the loc
potential energy felt by the microions is everywhere sm
compared to the thermal energykBT. This condition is rarely
met in the immediate vicinity of the highly charged polyion
where the Coulomb energy becomes large compared tokBT,
so that nonlinearities become crucial and full PB theo
should be used to determine the concentration profiles of
microions. The deficiencies of LPB theory are frequen
patched upby introducing the rather vague concept ofcoun-
terion condensation, leading to a Helmholtz-Stern layer o
counterions highly bound to the polyions@8#, and henceforth
to an effective valenceZeff of the latter, significantly reduced
in magnitude compared to the nominal valenceZ. It should
be stressed thatcounterion condensationis a well-defined
concept only within the cylindrical geometry of an infinite
uniformly charged thin rod@9,10#. In all other geometries
effective valencesZeff can only be defined within some phe
nomenological convention@11,12#. In the case of spherica
charge-stabilized colloids some recent direct measurem
of the effective pair potential between polyions in the bulk
a suspension point to the validity of the functional form a
range of the DLVO potential, providedZeff is considered to
be an adjustable parameter, varying within a physically r
sonable range@13#.

This paper deals with electric double layers in lamel
stacks of uniformly charged finite platelets, considered a
model for swollen clays. Due to the finite size of the pla
lets, edge effects come into play so that the problem cea
to be one dimensional, as would be the case for stack
infinite planes. For simplicity, the clay platelets are assum
to be disc shaped and coaxial, while they are equally spa
within an infinite stack. Fairly monodisperse disc-shap
platelets are synthetized as Laponite@14#, a model clay
which has received much recent experimental and theore
1634 ©2000 The American Physical Society
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attention. In particular a Wigner-Seitz~WS! model for such
stacks has been thoroughly investigated within LPB the
@15,16#. Under most physical circumstances, the conditio
of validity of LPB theory are far from being met in swolle
clays, and consequently the much more difficult problem
nonlinear PB theory for stacks of coaxial charged discs
being addressed in this paper.

The key innovation of the present work is that the solut
of the nonlinear partial differential equation for given boun
ary conditions is not sought within a standard finite diffe
ence scheme@17#, but rather by expressing the solution
terms of the appropriate Green’s function. The latter is
tained analytically for the present cylindrical geometry,
the form of a Bessel-Dini series, and the resulting nonlin
integral equation is solved numerically by a very stable
erative procedure.

The remainder of the paper is organized as follows. T
Wigner-Seitz model, appropriate for stacks of coax
charged discs, is defined in Sec. II. The basic assumpt
and equations of PB theory are laid out in Sec. III, and
Green’s function methodology for solving the nonlinear P
equation with cylindrical WS boundary conditions is pr
sented in Sec. IV. A hybrid PB–Debye-Hu¨ckel theory,
whereby edge effects are treated to linear order in the de
tion of the potential from its counterpart for infinite plan
geometry, is formulated in Sec. V. Numerical results for p
tential and concentration profiles, and for the resulting
motic properties, are presented in Sec. VI. The force ac
between two finite, coaxial platelets is calculated in Sec. V
while conclusions are drawn in Sec. VIII. A preliminary a
count of parts of this work was published elsewhere@18#.

II. WIGNER-SEITZ MODEL FOR SWOLLEN CLAYS

Consider a stack of coaxial, infinitely thin, disc-shap
clay platelets, with an average spacingH52h. Each platelet
has a radiusr 0, and carries a uniform charge densitys5
2Ze/pr 0

2, whereZe is the total charge on a platelet. Fo
Laponite,r 0'150 Å andZ'1000@14#. Stacks are assume
to fill space in a columnar arrangement, with the normals
the platelets all pointing in the same direction. Each plate
is then placed, on average, at the center of a Wigner-S
cell, of volumev5V/N, whereV is the total volume of the
sample andN the total number of platelets. In a hexagon
columnar array, the topology of the WS cell would be
prism of heightH and hexagonal basis parallel to the platel
The WS model thus describes a regular three-dimensi
array of platelets with perfectly aligned axes, and is th
appropriate to describe moderately swollen stacked cl
but would not be appropriate for dilute dispersions of c
particles. In view of the circular shape of the platelet it
reasonable to replace the WS prism by a cylinder of ident
volume and height. In fact it was shown explicitly in Re
@15# that, at least within LPB theory, the results are ve
insensitive to the precise shape of the WS cell. Compare
previous studies of stacked clay platelets, assumed to b
finite planes@5#, the present study takes into account edge~or
finite platelet size! effects.

The WS model for a swollen clay which will be examine
in this paper reduces hence to a single charged circular p
let placed at the center of a coaxial cylinder, together w
y
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N1 and N2 monovalent counterions and coions. Over
charge neutrality requires that

N15N21Z. ~1!

The molecular nature of the solvent~water! inside the cell
will be ignored, i.e., the solvent is treated as a continuum
dielectric constante ~primitive model of electrolytes!. The
heightH and radiusR.r 0 of the cylinder must be such tha
pR2H5v, where the volumev is determined by the macro
scopic concentration of clay platelets. The latter does
determine the aspect ratioH/R, which will be determined by
the condition that it minimizes the total free energy of t
microion distribution within the cell. The task is now to de
termine the total electrostatic potentialw(r ) throughout the
cell, and to derive from it the concentration profilesr1(r )
and r2(r ) of counterions and coions, and the resulting o
motic properties, including the free energy, for a given v
ume v and aspect ratioH/R. In keeping with the physica
meaning of the WS cell as representing the cage formed
the neighboring platelets, the component of the electric fi
E normal to the surfaceS of the cylinder will be assumed to
vanish at each point of that surface, i.e., the following Ne
mann boundary condition will be imposed throughout:

@n~r !•“# rPSw~r !50, ~2!

wheren(r ) is the normal to the surfaceS at r . The task thus
defined will be carried out within PB theory in the followin
sections.

III. POISSON-BOLTZMANN THEORY

The electrostatic potential throughout the WS cell satis
Poisson’s equation

¹2w~r !52
4p

e
rc~r !, ~3!

whererc(r ) is the total charge density, which includes th
contribution of the plateletqP(r ) and that of the~monova-
lent! microions

rc~r !5qP~r !1e@r1~r !2r2~r !#. ~4!

In the mean-field approximation, the positions of microio
are uncorrelated, so that their local concentrations are sim
related to the local potential by the following Boltzman
distributions

r6~r !5r0
6e7bew(r ), ~5!

whereb[1/kBT. It is worth remembering that Eq.~5! is just
a statement of the Euler-Lagrange equation resulting fr
the minimization of the following free-energy functional
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F@r1~r !,r2~r !#5Fideal1FCoulomb,

Fideal5 (
a51,2

kBTE
v
ra~r !$ ln@La

3ra~r !#21%dr ,

FCoulomb5
1

2Ev
rc~r !w~r !dr , ~6!

keeping in mind thatrc(r ) andw(r ) are linearly related by
Poisson’s equation.

The prefactorsr0
6 in Eq. ~5! have no physical significanc

when considered separately. However, their productr0
1r0

2 is
uniquely determined by the imposed physical conditions
a canonical description,N1 andN2 are fixed by the macro
scopic concentrationsn1[N1 /v andn2[N2 /v of counte-
rions and coions; the latter coincides with the concentra
nS of added salt, i.e.,n25nS . The electroneutrality condi
tion ~1! then fixesn1 , and the prefactorsr0

6 are determined
by the normalization constraints

n65
1

vEv
r6~r !dr . ~7!

Alternatively, if the suspension is in osmotic equilibriu
with an ionic solution of concentrationnS8 acting as a reser
voir, a semigrand-canonical description is in order. In t
case the chemical potential of coions and counterions m
be identical in the suspension and in the reservoir, leadin
the condition@5#

r0
1r0

25~nS8!2. ~8!

A key quantity describing the solution is then the Donn
ratio ns /nS8 of salt concentrations in the cell and in the re
ervoir. Substitution of Eq.~5! into Eqs.~4! and ~3! leads to
the closed nonlinear partial differential equation for the p
tential w(r )

¹2w~r !52
4p

e
„qP~r !1e@r0

1e2bew(r )2r0
2ebew(r )#….

~9!

This PB equation must be solved subject to the Neum
boundary condition~2! on the surface of the WS cylinde
The linearized version of Eq.~9!, where the Boltzmann fac
tors are expanded to first order inw ~LPB theory! was solved
analytically in Refs.@15,16#, under the same boundary co
ditions. The nonlinear problem is reformulated in terms
the appropriate Green’s function in the next section.

IV. GREEN’S FUNCTION METHODOLOGY

The infinite dilution PB problem of an isolated platel
immersed with counterions in an electrolyte solution h
been solved numerically using a finite difference sche
@17#. However, this method is not well adapted to the case
a charged platelet confined to a WS cell. Here a semiana
method is proposed, whereby the PB equation is transfor
into a nonlinear integral equation, which can be solved ite
tively. This approach requires the knowledge of a Gree
function G(r ,r 8) such that its ‘‘convolution’’ product with
n
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the charge densityrc(r ), defined by Eqs.~5! and ~4!,
namely,

2
4p

e
~G* rc!~r ![2

4p

e E
v
G~r ,r 8!rc~r 8!dr 8 ~10!

satisfies Poisson’s equation~3! and the Neumann boundar
condition ~2!; (G* rc) coincides then with the required po
tential w(r ). Note that the integral in Eq.~10! is not, strictly
speaking, a convolution sinceG is not a function of the rela-
tive positionr2r 8 only.

By definition, the Green’s function is a solution of th
following linear Poisson’s equation:

¹ r
2G~r ,r 8!5d~r2r 8!. ~11!

Integrating both sides of Eq.~11!, and using Gauss’ theorem

E
v
¹ r

2G~r ,r 8!dr5E
S
n~r !•“ rG~r ,r 8!dS

5E
v
d~r2r 8!dr51, ~12!

it becomes clear that the Green’s function satisfying~11!
cannot obey the same boundary condition~2! as the poten-
tial, but rather

@n~r !•“# rPSG~r ,r 8!5
1

S~S!
, ~13!

whereS(S) is the total area of the WS cell. The bounda
condition ~13! precludes the possibility of expandingG in a
Bessel-Dini series@19#, similar to that used for the solution
of the LPB problem in the same cylindrical geomet
@15,16#. The difficulty may be overcome by adopting one
three possible routes.

~a! Eq. ~11! is solved subject to the boundary condition

@n~r !•“# rPS~G* rc!~r !50. ~14!

An explicit example is given in Appendix A.
~b! A modified Green’s functionGB is sought, which sat-

isfies the following Poisson’s equation:

¹ r
2GB~r ,r 8!5d~r2r 8!1B~r !, ~15!

whereB(r ) is an arbitrary neutralizing background char
distribution, such that

E
v
B dr521. ~16!

GB(r ,r 8) can now be required to satisfy the same bound
condition ~2! as the potential. It is easily verified that
24p(GB* rc)/e indeed satisfies Eq.~3!, together with the
appropriate Neumann boundary condition~2!, since
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¹2F2
4p

e
~GB* rc!G52

4p

e E
v
¹ r

2GB~r ,r 8!rc~r 8!dr 8

52
4p

e
rc~r !2

4p

e
B~r !E

v
rc~r 8!dr 8

52
4p

e
rc~r !, ~17!

where overall charge neutrality of the WS cell has been us
similarly

@n~r !•“# rPS~GB* rc!~r !

5E
v
$@n~r !•“# rPSGB~r ,r 8!%rc~r 8!dr 850, ~18!

in view of the boundary condition imposed onGB.
~c! The bare Laplace operator in Eq.~11! is replaced by a

dressedor screenedoperator, and the solutionGk of

~¹ r
22k2!G~r ,r 8!5d~r2r 8! ~19!

can then be made to satisfy the Neumann boundary cond
~2! for any nonzero value of the inverse lengthk. The solu-
tion of this linear problem may be obtained analytica
along the same lines as those leading to the potential wi
LPB theory@15,16#, as sketched in Appendix A. Subtractin
k2w(r ) from both sides of the nonlinear PB equation~9!, it
is then straightforward to check that the solution to th
equation, subject to the proper boundary condition~2!, satis-
fies the nonlinear integral equation

w~r !52
4p

e E
v
Gk~r ,r 8!S qP~r 8!1e@r0

1e2bew(r8)

2r0
2ebew(r8)#1k2

e

4p
w~r 8! Ddr 8. ~20!

Since Gk(r ,r 8) is known analytically, Eq.~20! may be
solved numerically by an iterative procedure, starting fro
an initial guess forw(r ).

Details for the analytic solutions of Eqs.~11!, ~15!, and
~19!, subject to the appropriate boundary conditions,
given in Appendix A. In practice the iterative procedure w
implemented numerically using route~c!. Using the results
from Appendix A, the required Green’s function may b
written in the form of the following Bessel-Dini series:

Gk~r ,r 8!5 (
n>1

C n
6~f,r 8!J0S yn

r

RD coshFh7z

Ln
G , ~21!

wherer5(r ,f,z) ~cylindrical coordinates!, the signs1 and
2 correspond to the situationsz.z8 andz,z8, respectively,
yn is thenth root ofJ1(y)50, J0 andJ1 are the zeroth and
first order cylindrical Bessel functions, andLn

225(yn
2

1k2R2)/R2. The coefficientsC n
6(f,r 8) are given by
d;

on

in

t

e
s

C n
6~f,r 8!522Ln

d~f2f8!

R2sinh@2h/Ln#

J0~ynr 8/R!

J0
2~yn!

coshFh6z8

Ln
G .

~22!

For an infinitely thin platelet of radiusr 0, the charge density
qP(r ), which provide the source term in Poisson’s equati
may be simply expressed as

qP~r !5sQ~r 02r !d~z!, ~23!

whereQ is the Heaviside function. The corresponding co
tribution to w(r ) in Eq. ~20! may then be evaluated analyt
cally

E
v
dr 8Gk~r ,r 8!qP~r 8!

52s
r 0

R (
n>1

`

Ln

J1~ynr 0 /R!

ynsinh@h/Ln#

J0~ynr /R!

J0
2~yn!

coshFh7z

Ln
G .
~24!

The nonlinear integral equation~20! was then solved for
w(r ) using an iterative Picard method with underrelaxati
@20#. At a particular iteration stepi, the result from the pre-
vious iteration,w i 21(r ), and the analytic result~24! are used
as input to compute the right-hand side~RHS! of Eq. ~20!.
The resulting potentialw(r ) is then used to produce the inpu
for the next iteration step by mixing it withw i 21(r ) accord-
ing to

w i~r !5aw i 21~r !1~12a!w~r !, ~25!

where 0,a,1; typically a'0.9. The iterative cycle is re
peated until the relative differenceuw i2w i 21u/uw i u at the
center of the cylindrical WS cell~which coincides with the
center of the disc! becomes smaller than a preset value, ch
sen to be 1025 in practice.

The arbitrary inverse lengthk is chosen in the range
@kD/10,10kD#, where kD[@8pnS8e

2/(ekB)T#1/2 is the in-
verse Debye length in the reservoir, in the case of calcu
tions carried out in the semigrand-canonical ensemble.
prefactorsr0

1 andr0
2 in Eq. ~5! are fixed during the calcu

lation at values obeying the constraint~8!. Note that the elec-
troneutrality condition~1! is not obeyed until the iteration
have converged to the actual solutionw(r ), thus providing
an additional global convergence test. If the calculations
carried out in the canonical ensemble,nS5n2 is fixed, and
kD[@8pnSe2/(ekBT)#1/2. The concentration of counterion
is fixed by the electroneutrality condition~1! and the prefac-
torsr0

1 andr0
2 are determined by Eq.~7! at each step of the

iteration, so that electroneutrality holds throughout the c
vergence process.

The converged solutionw(r ) must be independent of th
particular choice of the auxiliary variablek. Cylindrical
symmetry impliesw(r )5w(r ,z), which is calculated on a
two-dimensional gridnr3nz spanning half the cylinder. In
practicenr5240 grid points were used to cover the interv
@0,R#, which provides sufficient resolution for the represe
tation of the Bessel functions, andnz5100 points for the
interval @0,h#. 60 terms were retained in the Bessel-Dini s
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ries ~21!. Starting from the initial guessw(r )[0, conver-
gence is generally achieved in about 50 to 200 iterations.
number of iterations needed to achieve a relative accurac
1025 can be drastically reduced if the electrostatic poten
obtained from the hybrid theory, introduced in the next s
tion, is used as input.

V. A HYBRID POISSON-BOLTZMANN –DEBYE-HÜCKEL
THEORY

The hybrid Poisson-Boltzmann–Debye-Hu¨ckel ~PB–DH!
theory was developed for the problem of a clay platelet i
cylindrical WS cell as a first attempt to go beyond LPB@15#.
Within this symmetry the potentialw(r )5w(r ,z) can be ex-
panded in a Bessel-Dini series@19#

bew~z,r !5 (
n51

`

An~z!J0S ynr

R D , ~26!

which factorizes the dependence of the potential on the
tancez along the axis of the cylinder, and the radial distan
r[(x21y2)1/2. The hybrid PB-DH approach is an attempt
treat edge effects in a perturbative way, while keeping
nonlinear PB description in the limit of infinite platelets.

Substituting~26! into Eq. ~5!, the leading termA1(z) in
the expansion is exponentiated, but the exponential is lin
ized with respect to the remainder of the series (n>2)

r65r0
6e7A1(z)F17 (

n52

`

An~z!J0S yn

r

RD G . ~27!

The first term in this expansion,n51, corresponds to the
solution of the PB equation for an infinite charged plane i
WS slab of height 2h, with an effective surface charges8
5s(r 0 /R)2. The terms of ordern>2 may be considered a
providing an estimate of the correction to the infinite charg
plane limit (r 0→R) due to the finite size of the platele
@15#.

The concentrations of co and counterions are determ
by

n65r0
6

1

2hE2h

1h

e7A1(z)dz. ~28!

It is therefore impossible to imposer0
15n1 and r0

25n2

simultaneously. As a consequence, in the presence of a
salt, calculations are preferably performed in the semigr
canonical ensemble, at fixed reservoir salt concentrat
This can be achieved with the choice

r0
15r0

25nS8 . ~29!

For zÞ0 the semilinearized Poisson-Boltzmann equat
becomes

¹2w~r !52
4pe

e H r0
1e2A1(z)2r0

2eA1(z)2~r0
1e2A1(z)

1r0
2eA1(z)! (

n>2

`

An~z!J0S yn

r

RD J . ~30!
e
of
l
-

a

s-
e

e

r-

a

d

d

ed
d
n.

n

The boundary condition associated with the presence of
uniformly charged platelet atz50, r ,r 0 is

S ]w~z,r !

]z D
z501

52
2ps

e
Q~r 02r !. ~31!

The electric field normal to the top and bottom of the cyli
der vanishes, i.e.,

S ]w~z,r !

]z D
z56h

50. ~32!

Using Eq.~29! in Eq. ~30! and then projecting on the basis o
the zeroth order Bessel functionsJ0 leads to the following
set of differential equations:

d2A1~z!

dz2
58p l BnS8sinhA1~z!,

d2An~z!

dz2
2S yn

R D 2

An~z!58p l BnS8An~z!sinhA1~z!, n>2

~33!

with the boundary conditions atz50

S dA1~z!

dz D
z501

52
1

b S r 0

R D 2

,

S dAn~z!

dz D
z501

52
2

b S r 0

R D 1

ynJn
2~yn!

J1S ynr 0

R D , n>2

~34!

and atz56h

S dAn~z!

dz D
z56h

50, n>1, ~35!

wherel B5be2/e is the Bjerrum length andb5e/2ps l B the
Gouy length.

This set of differential equations can be solved analy
cally in the salt-free case, for a WS cylindrical cell of infini
height @15# (h→`, R finite!. A numerical solution must be
sought otherwise. The first equation in Eq.~33! is identical to
the nonlinear PB equation for the ion distribution in a on
dimensional cell model where each platelet is assumed to
an infinite uniformly charged plane confined with i
monovalent co and counterions to a slab. In order to so
this equation we follow the prescription given in Appendix
of Ref. @5#. A first order differential equation can be obtaine
after integrating once, using the boundary condition atz5h

dA1~z!

dz
52A16p l BnS8@coshA1~z!2coshA1~h!#. ~36!

The equation above is solved numerically using a fourth
der Runge-Kutta algorithm. Different guesses forA1(h) lead
to different solutionsA1(z). An underestimated initial gues
for A1(h) is increased until a solutionA1(z) that verifies the
boundary condition atz50 is found.
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The second equation in Eq.~33! can also be solved by
first reducing it to a first order differential equation and th
using an appropriate numerical algorithm for its integratio
Defining a function

L~z![8p l BnS8sinhA1~z!2S yn

R D 2

, ~37!

one obtains

d2An~z!

dz2
2L~z!An~z!50, ~38!

which is astiff differential equation ifL(z) is large. This can
be reduced to a first order differential equation by applyin
Ricatti transform

h~z!5
1

An~z!

dAn~z!

dz
, ~39!

which leads to

dh~z!

dz
5L~z!2h~z!2. ~40!

The differential equation above is again solved using a fou
order Runge-Kutta algorithm, and forced to satisfy t
boundary condition atz5h rewritten as

h~h!50. ~41!

Integration of Eq.~39! leads to

An~z!5C expF E
0

z

h~z8!dz8G . ~42!

The integral above can be evaluated numerically while
integration constantC is determined by the boundary cond
tion at z50

C5
1

h~0! S dAn~z!

dz D
z50

. ~43!

The Bessel-Dini coefficientsAn(z) in the expansion~26!
of the electrostatic potential can be computed numeric
using the procedure just described. This involves solving
many independent differential equations as terms kept in
expansion, i.e., one for each coefficient. The computatio
cost is considerably reduced compared to the solution of
nonlinear PB equation using the iterative scheme prescr
in the previous section.

VI. RESULTS

A. Potential and density profiles

Figures 1~a!–1~c! compare the dimensionless electrosta
potential F(z,r )[bew(z,r ) as obtained within LPB
@15,16#, PB-DH and PB. The PB-DH potential was com
puted by first solving Eq.~33! for the coefficientsAn(z) and
then using these in the Bessel-Dini expansion~26! for the
electrostatic potential. Only the projections (z50,r ) and
(z,r 50) are shown. The results are for an aqueous solu
.
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FIG. 1. Dimensionless electrostatic potentialF(z,r )
[bew(z,r ) at z50 versusr, and atr 50 versusz. The profiles
were obtained in LPB~dotted line!, in PB-DH ~dashed line!, and in
the full nonlinear PB theories~solid line!. ~See text for details.! The
surface charge on the clay discs is~a! Z55, ~b! Z5100, and~c!
Z51000. The concentrations of added salt and the Donnan ra
nS /nS8 for these results are indicated in Table I.
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of clay disks of radius r 05150 Å at temperatureT
5300 K. The aspect ratio of the cylindrical WS cell
h/r 051.25 and the concentration of clayn55
31023M (1M51 mol dm23). Although in the presen
model the clay platelets are assumed to be infinitely thin
packing fraction can be defined by assigning a finite thi
nessd to the platelets;d can be chosen to be 1nm, as app
priate for Laponite@14#.

The PB and PB-DH results in Fig. 1 are semi-grand
nonical calculations fornS85531023M andZ55, 100, and
1000. The Donnan ratiosnS /nS8 in Table I compare well,
indicating that the concentration of added salt in the WS
is approximately the same in PB and PB-DH, for a fixedZ.
Unlike other thermodynamic quantities~see next section!,
this macroscopic property is well estimated within t
PB-DH theory.

The LPB results of Fig. 1 have been produced for
same salt concentrationsnS in the cell as those obtaine
within the semigrand canonical PB theory~see Table I!.
OncenS is known, the Donnan ratio reads within LPB@21#

nS /nS85~11Zn/nS!21/2. ~44!

The corresponding data are collected in Table I. The Don
ratio in LPB is smaller than in PB and the difference i
creases withZ. For a given salt concentration in the rese
voir, LPB theory underestimates the concentration of ad
salt in the WS cell.

Turn next to the comparison of the electrostatic potent
in Fig. 1. Although at very low surface charge (Z55) all
theories produce an identical electrostatic potential, as s
as Z is as large as 100, it becomes obvious that the line
ization of the Boltzmann factors is no longer an accepta
approximation. However, at such high surface charge de
ties, the PB-DH still provides a very good approximation f
w(z,r ). At physically relevant charge densities, e.g.,Z
51000, the LPB approximation gives rise to an electrosta
potential substantially different from that obtained within P
or PB-DH. The PB-DH theory still yields a good approxim
tion for the potential except near the surface of the plate
for r *r 0. This illustrates the breakdown of linearization
account for finite size corrections.

TABLE I. Values of the Donnan ratiosns /ns8 obtained within
LPB, PB-DH, or PB theory for an aqueous solution of clay conc
tration n5531025M . The temperature is 300 K and the radius
the discsr 05150 Å. The reservoir salt concentration in PB a
PB-DH is ns85531023M . The concentrations of added salt in th
WS cell are also indicated.

Z55 Z5100 Z51000
nS /nS8

LPB 0.975 0.648 0.233
PB-DH 0.976 0.720 0.564
PB 0.976 0.725 0.574

nS/1023M

LPB and PB 4.878 3.623 2.870
PB-DH 4.881 3.602 2.820
a
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Up to a rescaling factor, the shapes of PB and LPB
tentials are similar~Fig. 1!. For a given charge density on th
platelets~fixed Z), one can then define an effective char
Z* from a maximum likelihood criterion betweenwPB(Z)
andwLPB(Z* ): for Z51000 and the parameters of Fig. 1, th
corresponding effective charge isZ* 5375 ~see Fig. 2!. As
expected,Z* ,Z, which means that the counterions reco
dense within a thin layer around the particle until the elec
potential near the surface is lowered to a value of a fewkBT.
Figure 2 shows that the resulting agreement is only qua
tive and that the renormalized LPB potential can neither
count for the edge effects nor for the behavior along thz
axis. However, in the vicinity of the WS surface and far fro
the platelet where the variations of the potential are we
PB theory can be linearized and the potential retains an L
form, provided the bare charge is replaced by an effec
chargeZ* . In the simpler spherical geometry, given the no
linear PB electric potential, Alexanderet al. @11# proposed to
determine the effective parameters for the linearized the
by matching to the far-field limit of the PB solution: th
resulting LPB potential, matching the PB potential up to
third derivative, is then an effective potential for the colloi
colloid interactions. The phase diagram associated with
latter effective interactions was later shown to be in go
agreement with experiments for charged spherical collo
@22#. In the case of nonspherical colloids in anisotropic ce
the condensation of microions may well be nonuniform
that the effective particle may have a different charge dis
bution than the original one. Preliminary results confirm th
scenario for clay platelets: the effective chargeZ* depends
on the point chosen on the WS surface to match the LPB
PB potentials, except of course whenZ is low enough. The
concept of charge renormalization thus seems to be in
equate for clay particles due to the non uniformity of micr
ions condensation.

B. Osmotic properties and quadrupole moment

Once the potentialw(r ) and the concentration profile
r1(r ) andr2(r ) have been determined within PB, PB-DH

-

FIG. 2. Comparison between the nonlinear PB potential foZ
51000~as in Fig. 1! and the linearized LPB potential, now with a
effective renormalized chargeZ* 5375.
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FIG. 3. Results obtained within the PB and PB-DH theories for an aqueous solution of clay discs of chargeZ5100 and radiusr 0

5150 Å. The clay concentration isn5531025M andT5300 K. s: PB results,1: results from PB-DH theory and3: from PB-DH
with reexponentiation. In~a! the osmotic pressureP is represented by dashed lines and the disjoining pressurePd by solid lines.~b! shows
the grand potential while~c! shows the quadrupole moment. The quadrupole obtained within PB-DH with reexponentiation is not con
different results are obtained from Eqs.~51! ~solid line! and ~52! ~dashed line!.
b

nt

-

S
s-

by
or LPB theories, a number of osmotic properties may
calculated, as discussed in detail in Refs.@15,16#. The Helm-
holtz free energy is obtained by substituting the profiles i
the functional~6!, with the result

bF5b~UP2UC!1~N11N2!@ ln~nS8l
3!21#, ~45!

wherel is an irrelevant length scale, andUP andUC are the
following two contributions to the internal energyU5UP
1UC :

UP5
1

2Ev
qP~r !w~r !dr ,

UC5
e

2Ev
@r1~r !2r2~r !#w~r !dr . ~46!
e

o

Expression~45! is valid within the semi-grand canonical en
semble ~which was used throughout!, with the choice of
r0

15r0
25nS8 . The resulting grand potential is

bV5bF22N2ln~nS8l
3!. ~47!

For a given clay concentration, and hence for a given W
volume v, V and all osmotic properties depend on the a
pect ratioh/R ~or equivalentlyh/r 0). The equilibrium topol-
ogy of the columnar stacking of platelets, as represented
the WS cell model, is that which minimizesV as a function
of h/r 0, for given values ofv, nS8 , T, and e. For conve-
nience, the results shown in the figures are shifted byV0

[Z ln(nS8l
3), i.e.,

b~V2V0!5b~UP2UC!1N21N1. ~48!
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The osmotic pressureP can be derived from the pressu
tensor@15,16#

P5
1

b (
k51,2

rkS1
e

8p
~“w!2S, ~49!

where(•••)S denotes an average over the total surfaceS of
the WS cell. The osmotic pressure in the reservoir isP0

[2kBTnS8 . For a cylindrical WS cell a disjoining pressur
can be defined by

Pd5
1

b (
k51,2

rkS81
e

8p
u“wu2S8, ~50!

whereS8,S is the surface of the bottom and top of the W
cell. The swelling arises from the osmotic pressure exe
by the microions and a normal spacing between the plate
~equal to the height of the cylindrical cell! is obtained when
an axial pressurePd is applied.

Thea priori lowest order nonvanishing multipole mome
of the charge distribution in the WS cell is thezzcomponent
of the traceless quadrupole tensor

Qzz
tot5

1

2Ev
dr @rc~r !#~2z22x22y2!. ~51!

Upon integration by parts, this may be reexpressed as a
face integral

Qzz
tot5

e

4p

1

2 R
S
w~r !“~2z22x22y2!•dS, ~52!

where Poisson’s equation has been used. Numerical accu
of the solutionw(r ) to the PB equation can be checked
comparing the quadrupole as obtained from the two eq
tions ~51! and ~52!. In the plots,Qzz

tot is normalized by the
quadrupole moment of the disc

Qzz
disc5

1

2Ev
qP~r !~2z22x22y2!dr

5
Zer0

2

4
. ~53!

Figures 3~a!–3~c! show results for the osmotic and di
joining pressures, grand potential, and quadrupole mom
as functions of the aspect ratioh/r 0, for Z5100. Results
from PB and PB-DH are compared. Within the latter theo
the concentration profiles may be calculated from Eq.~27!,
once the coefficientsAn have been obtained; alternativel
the profiles may be calculated by reexponentiating the po
tial determined from Eq.~26!, according to Eq.~5!. Figure
3~a! shows that the osmotic pressureP goes through a mini-
mum at a well-defined aspect ratio. Within PB theory, t
disjoining pressurePd coincides with the osmotic pressure
that minimum. The reexponentiated version of PB-D
theory leads to results in reasonable agreement with the
data, whereas straight PB-DH theory yields an unphys
osmotic pressure which is lower than the reservoir press
P0; note that although the corresponding disjoining press
agrees well with the PB data, it intersects the osmotic p
d
ts
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sure curve away from the minimum in the latter, and a
much higher aspect ratio. Figure 3~b! shows that the PB re
sults for the grand potentialV go through a flat minimum a
the same aspect ratio as the osmotic pressure. The minim
is shifted to considerably higher aspect ratios within PB-D
theory and its reexponentiated form, and does not coinc
with the corresponding minima in the osmotic pressu
curves. The PB quadrupole moments calculated from E
~51! and ~52! coincide and go through zero at the value
h/r 0 corresponding to the osmotic pressure and grand po
tial minima of Figs. 3~a!, 3~b!. The PB-DH results are fairly
close to their PB counterparts but go through zero at an
pect ratio which is significantly lower than the location of th
minimum of the corresponding grand potential. The reex
nentiated PB-DH results, on the other hand, as calcula
from Eqs.~51! and ~52! are inconsistent.

Calculations at the very low platelet chargeZ55 lead to
undistinguishable results between the PB and reexpone
ated PB-DH theories, as one might expect from the nea
identical potential profiles in Fig. 1. However, at the phy
cally relevant chargeZ51000, the discrepancies between t
two theories become very large, as illustrated in Fig. 4.

The scenario emerging from PB theory is reminiscent
the predictions of LPB theory. In the framework of the latt
the Helmholtz free energy goes through a minimum at
same value of the aspect ratioh/r 0 for which the disjoining
and osmotic pressures are equal. The quadrupole momeQ
vanishes at this sameh/r 0. The same behavior follows from
the present PB results in the semigrand canonical ensem
showing thatQzz

tot50 and P5Pd at the aspect ratio tha
minimizes the grand potential~see Figs. 3 and 4!. This illus-
trates the robustness of the equivalence between a therm
namic minimization, an electrostatic criterion (Qzz

tot50), a
mechanical equilibrium condition (P5Pd), and the minimi-
zation of an osmotic constraint:P is minimum at the aspec
ratio whereP5Pd @see Figs. 3~a! and 4~a!. This also holds
within LPB#. The equilibrium separation between two plat
lets is determined by the minimization of the grand poten
~or Helmholtz free energy!.

Being an approximate theory for the electrostatic pot
tial, the PB-DH is inconsistent atZ*100. However, in spite
of all the deficiencies which the PB-DH theory exhibits wh
trying to compute macroscopic quantities from the elect
static potential, this approximation does manage to giv
good first approximation forw(r ) which compares well with
that obtained by solving the PB equation.

VII. FORCE ACTING BETWEEN TWO PARALLEL
PLATELETS

The Green’s function methodology of Sec. III may b
extended to calculate the potential and density profi
around two coaxial platelets placed symmetrically inside
WS cell, within PB theory. If the two uniformly charge
parallel discs are placed atz56z0 from the center of a WS
cell as shown in Fig. 5, the PB equation is still given by E
~9!, with the source termqP(r ) now including a contribution
from both platelets

qP~r !5sQ~r 02r !@d~z1z0!1d~z2z0!#. ~54!
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The boundary conditions~2! still applies and the integral Eq
~20! for the local potentialw(r ) remains unchanged, with th
contribution~24! from the source term now following from
Eqs.~21! and ~54!, with the result

E
v
dr 8Gk~r ,r 8!qP~r 8!

522s
r 0

R (
n>1

`

Ln

J1~ynr 0 /R!

ynsinh@h/Ln#

J0~ynr /R!

J0
2~yn!

Y~z!, ~55!

where the functionY(z) is given by

FIG. 4. Results obtained within the PB and PB-DH theory w
reexponentiation for an aqueous solution of clay discs of chargZ
51000 and radiusr 05150 Å. The clay concentration isn55
31025M andT5300 K. s: PB results and3: from PB-DH with
reexponentiation. In~a! the solid lines are disjoining pressures a
the dashed lines are osmotic pressures.~b! shows the quadrupole
moment. Different results for the quadrupole are obtained wit
PB-DH with reexponentiation, from Eqs.~51! ~solid line! and ~52!
~dashed line!.
Y~z!5H cosh@z0 /Ln#cosh@~h2z!/Ln#, z0,z

cosh@z/Ln#cosh@~h2z0!/Ln#, 2z0,z,z0

cosh@z0 /Ln#cosh@~h1z!/Ln#, z,2z0 .
~56!

An example of a PB potential profile under conditions a
propriate for Laponite is shown in Fig. 6.

Oncew(r ) and the resulting concentration profilesra(r )
are known, the local stress tensor may be evaluated at
point of the WS cell

PJ ~r !5p~r ! II2
«

4p
“w ^“w, ~57!

p~r !5kBT (
a51,2

ra~r !1
«

8p
u“w~r !u2, ~58!

where II denotes the unit tensor. The force acting on plate
i P(1,2) follows by integrating the stress tensor~57! over
both sidesSP,i

1 andSP,i
2 , of the platelet

Fi52E
SP,i

1 ;SP,i
2

PJ•dSi . ~59!

In the case under consideration, of two identical coax
discs, the forceF152F2 is along the unit vectorẑ of the
cylinder axis. The electric fieldE52“w in the vicinity of
platelet i may be decomposed into continuous and disc
tinuous parts

E5Ei
(d)1Ei

(c)56
2p

«
sni1Ei

(c) . ~60!

n

FIG. 5. Side view of the Wigner-Seitz cylinder associated w
the two-platelet problem.
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The forceFi may then also be expressed as

Fi5sE
SP,i

Ei
(c)d2S ~ i 51,2!, ~61!

where the integration runs over the surface of plateleti. The
numerical evaluation of the force from Eq.~61! poses tech-
nical difficulties associated with the removal of the discon
nuity suffered by the electric field across the platelet wh
requires some care~see Appendix B!.

Returning to the definition~59!, the surface integral may
be transformed using the mechanical equilibrium conditio

“•PJ ~r !50 ~62!

into the following integral over the surfaceS, enclosing the
upper half of the WS cell~see Fig. 5!:

F152F252E
S
PJ•dS. ~63!

Becausen•“w50 on the outer surfaceS of the WS cell,
and ]w(r )/]z50 by symmetry on the cross section of th
cylinder atz50, the term“w ^“w gives a vanishing con
tribution to the forceF1, which reduces to

F152E
S
p~r !dS. ~64!

This may be further simplified by noting thatẑ•n50 on the
lateral surface of the cylinder~parallel to the axis!, so that
finally

FIG. 6. Dimensionless electrostatic potentialF(z,r )
[bew(z,r ) at z50 versusr and at r 50 versusz. The profiles
were obtained by solving the PB equation for an aqueous solu
of two Laponite discs (Z51000, r 05150 Å) at a temperatureT
5300 K. The distance between the two discs isd50.24r 0, the
height of the cylindrical WS cell ish51.5r 0, and the aspect ratio
h/R50.423. The concentration of monovalent added salt in the
cell is nS54.6431023M .
-
h

F1
z5E

z50
p~r !dS2E

z5h
p~r !dS. ~65!

The numerical consistency between results based on
~65! and on Eq.~61! ~see Appendix B! has been carefully
checked. Explicit calculations were carried out in the limit
vanishing clay concentration (n→0). This was achieved by
choosing a WS cylindrical cell large enough for the loc
electric field to vanish before the outer surface of the cel
reached. For platelets with the physical characteristics
Laponite (r 05150 Å andZ51000), and salt concentration
nS*1023M , this condition is met with a cell volumev54
3108 Å 3 ~corresponding to a clay concentrationn58.3
31026M ) and an aspect ratioh/r 051.5. A test that the WS
cell was chosen sufficiently large is provided by checki
that the calculated concentrationnS of salt in the cell coin-
cides with the preset reservoir concentrationnS8 , as expected
for vanishing clay concentration. The forces calculat
within PB theory are plotted versus the distance betw
platelets in Fig. 7, and compared to the analytical predict
of LPB theory@16#

Fz~d!5~pr 0!2
4ps2

e
E

0

`

J1
2~x!

1

x
expF2

d

r 0

Ax21kD
2 r 0

2G .

~66!

For Z55 the PB and LPB results coincide, but in the phy
cally relevant caseZ51000 shown in Fig. 7, LPB theory
overestimates the force by an order of magnitude. This fi
ing is consistent with the overestimation of the absol
value of the potential around a platelet by LPB theory,
illustrated in Fig. 1~c!. Note that unlike its LPB counterpar
the PB force does not decay exponentially with the dista
between platelets.

n

S

FIG. 7. The force between two parallel platelets of Laponite
a function of the distance separating their coaxial centersF0

54p2r 0
2s2/e). The solid lines are results obtained from nonline

PB and the dashed lines from LPB.s: for nS

50.00078M , h: nS50.0046M , andn: for nS50.0095M .
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VIII. CONCLUSION

Swollen stacks of monodisperse clay platelets are con
niently modelled within a Wigner-Seitz cell representatio
Relevant electrostatic and thermodynamic properties are
rived from the inhomogeneous counterion and coion conc
tration profiles related to the local electrostatic potential
Poisson’s equation. Adopting theprimitive model point of
view for the solvent and neglecting spatial correlations
tween macroions leads to the closed PB equation for
potentialw(r ) which is solved subject to Neumann bounda
conditions on the confining surface of the WS cell. While t
linearized LPB version of the theory yields to analytic tre
ment @15,16#, the present paper is concerned with the n
merical solution of the full nonlinear PB problem and of
hybrid PB-DH version of the theory. Rather than solving t
two-dimensional nonlinear partial differential PB equati
on a grid, it was found that a more adequate and sta
method is to reduce the problem to a nonlinear integral eq
tion for w(r ), involving an electrostatic Green’s function sa
isfying appropriate boundary conditions. Three equival
routes are proposed, each involving a Green’s funct
which may be calculated explicitly in terms of a Bessel-D
series, similar to that used for the solution of the LPB pro
lem.

While the present results generally confirm the qualitat
trends predicted by the LPB analysis@15,16#, there are con-
siderable quantitative differences at physically relevant s
face charge densities of the Laponite platelets. The m
findings may be summarized as follows.

~a! LPB theory overestimates the magnitude of the lo
potential by typically a factor of 2 for a platelet of 103e.

~b! Rescaling of the platelet charge to a lower effect
value to force good agreement of the PB and LPB potent
at the center of the platelet fails because the shapes o
potential profiles differ significantly, particularly near edge

~c! The scenario of the variation of various properti
with the WS aspect ratio, for a fixed value of the cell vo
ume, derived from nonlinear PB theory confirms the LP
predictions: the grand potential~or the Helmholtz free en-
ergy! goes through a minimum at a well-defined aspect ra
h/r 0; at this same aspect ratio, the osmotic pressure is als
its minimum, where it coincides with the monotonically d
creasing disjoining pressure, while the quadrupole mom
of the charge distribution within the WS cell vanishes. Th
the same equilibrium aspect ratio is selected by thermo
namic, mechanical, osmotic, and electrostatic criteria.

~d! The hybrid PB-DH theory, which is linearized wit
respect to edge effects yields rather accurate potential
files, but rather poor thermodynamic properties; the agr
ment with full PB theory is improved upon reexponentiati
of the Bessel-Dini series for the local potential.

~e! The same Green’s function methodology allows
accurate calculation of the force between the two coa
platelets. The force calculated within PB theory is an or
of magnitude smaller than the LPB prediction, and decrea
with the distance between the platelets in a nonexpone
fashion, up to distances of the order of the radiusr 0 of the
platelets.

In future work it is planned to include microion correla
tions and discrete solvent~hydration! effects, by generalizing
e-
.
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the PB functional~6!, along the lines proposed by Bibe
et al. @3#. Generalization of the present methodology to fle
ible charged membranes would also be helpful in describ
charged soap films or smectite clay particles of lateral
mensions larger than those of Laponite.

ACKNOWLEDGMENTS

E.T. thanks J.O. Fossum, G. Manificat, T. Nicolai, and
van Wijland for interesting discussions. R.J.F.L. de C. h
carried out work at the ENS de Lyon as part of a proje
financed by the European Commission through the Train
and Mobility of Researchers~TMR! programme. He is now
at UCL, funded by NERC. The present collaboration w
facilitated by a grant from the British-French Alliance Pr
gramme.

APPENDIX A

For the three routes outlined in Sec. IV,G (GB in caseb
or Gk in casec) is expanded in a Bessel-Dini series

G~r ,r 8!5 (
n>1

Gn~f,z,r 8!J0S yn

r

RD . ~A1!

Note that the coefficients of any expansion

f ~r !5 (
n>1

f nJ0S yn

r

RD ~A2!

can be obtained from the inversion relation

f n5
2

R2J0
2~yn!

E
0

R

r f ~r !J0S yn

r

RDdr, ~A3!

so that the Dirac distribution inside the WS cell can be c
in the form

d~r2r 8![
1

r
d~r 2r 8!d~f2f8!d~z2z8!

5 (
n>1

2

R2J0
2~yn!

J0S yn

r

RD J0S yn

r 8

R D
3d~f2f8!d~z2z8!. ~A4!

Consider specifically route~c!. Subsitution of Eqs.~A4! and
~A1! into Eq. ~19! yields

d2Gn

dz2
2

Ln
2

R2
Gn5

2J0~ynr 8/R!

R2J0
2~yn!

d~f2f8!d~z2z8!,

~A5!

whereLn
225yn

2/R21k2. With the boundary condition

dGn

dz U
z56h

50, ~A6!

the solution reads



o

n

s

ec-
tly

of

u-
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Gn~f,z,r 8!5C n
6coshS h7z

Ln
D , ~A7!

where the superscripts1 and 2 refer to the situationsz
.z8 andz,z8, respectively. The coefficientsC n

6 are conve-
niently obtained by writingGn in the form

Gn~f,z,r 8!5gn
1~z,f!Q~z2z8!1gn

2~z,f!Q~z82z!.
~A8!

Invoking the identity

f ~z!
d

dz
d~z2z8!52 f 8~z!d~z2z8!1 f ~z8!

d

dz
d~z2z8!

~A9!

the continuity conditions obeyed byGn at z5z8 follow as

gn
1~z8!5gn

2~z8!,

d

dz
gn

1~z8!2
d

dz
gn

2~z8!5
2

R2J0
2~yn!

J0S yn

r 8

R D d~f2f8!,

~A10!

leading back to Eq.~22!
An example of Green’s function associated with meth

~a! can be obtained by imposing

dGn

dz U
z56h

50 for n>2 ~A11!

while the non-Neumann character ofG reflects itself in the
boundary condition obeyed byG1, that follows from the
resolution of Eq.~A5! with k50. One finds

G1~z,f,r 8!5
1

R2
d~f2f8!uz2z8u, ~A12!

whereas the remaining termsGn ,n>2 are the same as i
Eqs.~21! and ~22!, with k50.

Finally, method~b! can be illustrated along similar line
with the following choice of the background:

B52
1

hR2
d~f2f8!. ~A13!

The above density is such that the expansion~21!, with re-
lation ~22! andk50, is unchanged forn>2 while the first
term is now slightly modified with respect to Eq.~A12!,
namely,
a

ys

a-
d

G1~z,f,r 8!5F 1

R2
uz2z8u2

1

2hR2
~z21z82!Gd~f2f8!.

~A14!

APPENDIX B

From Eq.~61!, the force acting on platelet 1 sitting atz
51z0 can be written

F1
z522psE

0

r 0
dr r F S ]w~z,r !

]z D
z5z0

6
2p

e
sG , ~B1!

where 2 is for z5z0
1 and 1 is for z5z0

2 . This equation
allows the immediate computation of the force from the el
trostatic potential. However, it should not be used direc
since the numerical differentiation of the potential forz
5z0 and 0,r ,r 0 @where]w(r )/]z is discontinuous# is in-
accurate.

Instead, apply Gauss’ theorem to Eq.~B1! to obtain

Fz5s
Q1

e
22psE

r 0

R

dr r S ]w~z,r !

]z D
z5z0

2
Zes

2e

52s
Q2

e
22psE

r 0

R

dr r S ]w~z,r !

]z D
z5z0

1
Zes

2e
, ~B2!

whereQ1 is the total charge~excluding the platelet! in the
WS cell volume limited byz0,z,h and Q2 is the total
charge in the volume of the WS cell limited by 0,z,z0

Q152pE
z0

1

h

dzE
0

R

dr rrc~r !, ~B3!

Q252pE
0

z0
2

dzE
0

R

dr rrc~r !. ~B4!

Due to the imposed electroneutralityQ1 andQ2 verify

Q11Q25eZ. ~B5!

Equation~B2! requires the computation of the derivative
the electrostatic potential atz5z0 and r 0,r ,R, where
]w(r )/]z is continuous. The differentiation can be acc
rately performed by fittingw(z,r ) to a polynomial inz, at
fixed r.
.
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