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We consider a dilute gas of hard spheres in dimensiondù2 that upon collision either annihilate with
probability p or undergo an elastic scattering with probability 1−p. For such a system neither mass, momen-
tum, nor kinetic energy is a conserved quantity. We establish the hydrodynamic equations from the Boltzmann
equation description. Within the Chapman-Enskog scheme, we determine the transport coefficients up to
Navier-Stokes order, and give the closed set of equations for the hydrodynamic fields chosen for the above
coarse-grained description(density, momentum, and kinetic temperature). Linear stability analysis is per-
formed, and the conditions of stability for the local fields are discussed.
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I. INTRODUCTION

The hydrodynamic description of a low density gas of
elastic hard spheres supported by an underlying kinetic
theory attracted a lot of attention already more than 40 years
ago[1–3]. It has now become a well established description
[4]. A key ingredient in the hydrodynamic approach is the
existence of collisional invariants(quantities conserved by
the—instantaneous—collisions). The question of the rel-
evance of a coarse-grained hydrodynamic approach is there-
fore more problematic when the kinetic energy is no longer a
collisional invariant[5]. This is the case of rapid granular
flows (that may be modeled by inelastic hard spheres in a
first approach), where the hydrodynamic picture, despite in-
cluding a hydrodynamic field associated with the kinetic en-
ergy density, is nevertheless reliable(see, e.g.,[6–9] and
Dufty for a review [10]). It seems natural to test hydrody-
namiclike approaches further and in more extreme condi-
tions, and investigate a system where particles react so that
there existno collisional invariants. The present article, fo-
cusing on the derivation of the hydrodynamic description for
such a system, is a first step in this direction.

The system we consider is made of an assembly of hard
spheres that move ballistically between collisions. Whenever
two particles meet, they either annihilate with probabilityp,
or undergo an elastic collision with probabilitys1−pd. The
model of probabilistic ballistic annihilation in one dimension
for bimodal discrete initial velocity distributions was intro-
duced in[11], whereas for higher dimensions and arbitrary
continuous initial velocity distributions it was considered in
[12]. When p=1, we recover the annihilation model origi-
nally defined by Elskens and Frisch[13], that has attracted
some attention since[14–21]. In one dimension(again for
p=1), the problem is well understood for discrete initial ve-
locity distributions[15,16]. On the contrary, higher dimen-
sions introduce complications that make the problem much
more difficult to treat[19,20]. Only a few specific initial
velocity conditions lead to systems that are tractable using
the standard tools of kinetic theory[21].

Our starting point will be the Boltzmann equation, which
describes correctly the low density limit of granular gases

(see[22] and [23,24] for the elastic case). For annihilation
dynamics, the ratio of particle diameter to mean free path
vanishes in the long-time limit, such that ford.1 the
Boltzmann equation is valid at least at late times[20,21]. For
such a dynamics, none of the standard hydrodynamic fields
(i.e., mass, momentum, and energy) is associated with a con-
served quantity. There are therefore three nonzero decay
rates, one for each field. Numerical evidence shows that in
the long-time limit, a non-Maxwellian scaling solution for
the homogeneous system appears[homogeneous cooling
state (HCS) [19,20], which also exists for inelastic hard
spheres[25]]. Nothing is known about the stability of the
latter solution, the only existing result being that in one di-
mension, with a bimodal initial velocity distribution, clusters
of particles are spontaneously formed by the dynamics[16].
In view of this situation we develop a hydrodynamic descrip-
tion for probabilistic ballistic annihilation. The limiting case
of vanishing annihilation probabilityp→0 gives the known
results for elastic dilute gases[26], whereas the other limit
p→1 yields the case of pure annihilation.

In order to derive the hydrodynamic equations, we make
use of the Chapman-Enskog method. We thus consider(at
least) two distinct time scales in the system. The microscopic
time scale is characterized by the average collision time and
the corresponding length scale defined by the mean free path.
The macroscopic time scale is characterized by the typical
time of evolution of the hydrodynamic fields and their inho-
mogeneities. The fact that those two time scales are very
different implies that on the microscopic time scale the hy-
drodynamic fields vary only slightly. Therefore they are on
such length and time scales only very weakly inhomoge-
neous. Combined with the existence of a normal solution for
the velocity distribution function(i.e., a solution such that all
time dependence may be expressed through the hydrody-
namic fields), this allows for a series expansion in orders of
the gradients, i.e., application of the Chapman-Enskog
method. The knowledge of the hydrodynamic equations thus
obtained to first order allows us to perform a stability analy-
sis. Taking the HCS as a reference state, we study the corre-
sponding small spatial deviations of the hydrodynamic fields.

The paper is organized as follows. In Sec. II we present
the Boltzmann equation for probabilistic ballistic annihila-
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tion, and establish the subsequent balance equations. Section
III is devoted to the Chapman-Enskog solution of the balance
equations. For this purpose we consider an expansion of the
latter equations in a small formal parameter. The solution to
zeroth order provides the hydrodynamic fields of the HCS.
Assuming small spatial inhomogeneities, we make use of an
explicit normal solution for the velocity distribution function
to first order. This allows us to establish the expression for
the transport coefficients and for the decay rates to first order,
and thus the closed set of equations for the hydrodynamic
fields. The technical aspects of the derivations are presented
in the Appendixes while our main results are gathered in Eqs.
(47). In Sec. IV, we study the linear stability of those equa-
tions around the HCS. Finally, Sec. V contains the discussion
of the results and our conclusions. Since from the point of
view of dissipation probabilistic ballistic annihilation shares
some features with granular gases, making several parallels
between those two systems will prove to be instructive.

II. BOLTZMANN AND BALANCE EQUATIONS

The Boltzmann equation for the one particle distribution
function fsr ,v ; td of a low density system of hard spheres
annihilating with probabilityp is given by

s]t + v1 · = dfsr ,v1;td = pJaff, fg + s1 − pdJcff, fg, s1d

where the annihilation operatorJa is defined by[20]

Jaff,gg = − sd−1b1E
Rd

dv2v12fsr ,v2;tdgsr ,v1;td s2d

and the elastic collision operatorJc is defined by[22,23,27]

Jcff,gg = sd−1E
Rd

dv2E dŝsŝ ·v12dus− ŝ ·v12d

3sb−1 − 1dgsr ,v1;tdfsr ,v2;td. s3d

In the above expressions,s is the diameter of the particles,
v12=v1−v2 the relative velocity,v12= uv12u, u the Heaviside
distribution, ŝ a unit vector joining the centers of two par-
ticles at collision and the corresponding integral is running
over the solid angle,b1=psd−1d/2/Gfsd+1d /2g whereG is the
gamma function, andb−1 an operator acting on the velocities
as follows[28]:

b−1v12 = v12 − 2sv12 · ŝdŝ, s4d

b−1v1 = v1 − sv12 · ŝdŝ. s5d

SinceJc describes elastic collisions, this operator conserves
the mass, momentum, and energy. On the other hand,Ja
describes the annihilation process and thus none of the pre-
vious quantities are conserved.

In order to write hydrodynamic equations, we need to
define the following local hydrodynamic fields:

nsr ,td =E
Rd

dv fsr ,v;td, s6ad

usr ,td =
1

nsr ,tdERd
dv vfsr ,v;td, s6bd

Tsr ,td =
m

nsr ,tdkBd
E

Rd
dv V2fsr ,v;td, s6cd

wherensr ,td, usr ,td, andTsr ,td are the local number density,
velocity, and temperature, respectively. The definition of the
temperature follows from the principle of equipartition of
energy. In Eq.(6c), kB is the Boltzmann constant andV =v
−usr ,td is the deviation from the mean flow velocity. The
balance equations follow from integrating the moments 1,
mv, andmv2/2 with weight given by the Boltzmann equa-
tion (1). We thus obtain

]tn + ¹isnuid = − pvff, fg, s7ad

]tui +
1

mn
¹ jPij + uj¹ jui = − p

1

n
vff,Vi fg, i = 1, . . . ,d,

s7bd

]tT + uj¹ jT +
2

nkBd
sPij¹iuj + ¹ jqjd

= p
T

n
vff, fg − p

m

nkBd
vff,V2fg, s7cd

where we have summation over repeated indices,u
=su1, . . . ,udd, and

vff,gg = sd−1b1E
R2d

dv1dv2uv12ugsr ,v1;tdfsr ,v2;td. s8d

In the balance equations(7), the pressure tensorPij and heat
flux qi are defined by

Pijsr ,td = mE
Rd

dv ViVj fsr ,v;td

=E
Rd

dv fsr ,v;tdDijsVd +
n

b
di j , s9d

qisr ,td =E
Rd

dv SisVdfsr ,v;td, s10d

whereb=1/skBTd and

DijsVd = mSViVj −
V2

d
di jD , s11d

SisVd = Sm

2
V2 −

d + 2

2
kBTDVi . s12d

One sees from Eqs.(7) that when the annihilation probability
p→0, all quantities are conserved. In addition, the long-time
solution of the system in this limit is given by the Maxwell
distribution [12].
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III. CHAPMAN-ENSKOG SOLUTION

In order to solve Eqs.(7), it is necessary to obtain a closed
set of equations for the hydrodynamic fields. This can be
done using the Chapman-Enskog method, by expressing the
functional dependence of the pressure tensorPij and of the
heat fluxqi in terms of the hydrodynamic fields. Note that
other routes have been developed as well[27,29]. A thorough
comparison of the different approaches seems, however, to
be a difficult attempt[29]. In order to apply the Chapman-
Enskog method, it is necessary to make two assumptions.
The first one is that all temporal and spatial dependence of
the distribution functionfsr ,v ; td may be expressed as a
functional dependence on the hydrodynamic fields:

fsr ,v;td = ffv,nsr ,td,usr ,td,Tsr ,tdg. s13d

What is the physical justification for the existence of such a
normal solution? Suppose that the variations of the hydrody-
namic fields are small on the scale of the mean free path, for
example,snsd−1d−1u= ln nu!1. Therefore, to first order the
functional dependence of the distribution function may be
made local in the hydrodynamic fields, leading to the normal
solution written above. Note that none of the hydrodynamic
fields is associated with a conserved quantity. The theoretical
question that arises is to know if the new time scales thereby
introduced by the cooling rates are shorter than what is al-
lowed for the existence of a normal solution[10]. For suffi-
ciently smallp this should be the case. However, in the re-
lated context of granular gases, this point is not yet
quantitatively clarified and is still subject to discussions
[10,30,31]. The justification of the normal solution may be
done a posteriori by studying the relevance of the results
through the appearance of the HCS, for example[20,25]. The
second assumption is based on the existence of(at least) two
distinct time scales. The microscopic time scale is character-
ized by the average collision time and the spatial length is
defined by the corresponding mean free path. On the other
hand, the macroscopic time scale is defined by a typical time
scale describing the evolution of the hydrodynamic fields
and their inhomogeneities. The difference in those two time
scales implies that on the microscopic time scale the hydro-
dynamic fields vary only very slightly. Thus, those fields are
on such time and space scales only very weakly inhomoge-
neous. This allows for a series expansion in orders of the
gradients of the fields:

f = f s0d + lf s1d + l2f s2d + ¯ , s14d

where each power of the formal small parameterl means a
given order in a spatial gradient. The formal parameterl
may be seen as the ratio of the mean free path to the wave-
length of the variation of the hydrodynamic fields. This
shows again the idea of the separation of both microscopic
and macroscopic time and length scales. The Chapman-
Enskog method assumes the existence of a time scale hierar-
chy, and thus of a time derivative hierarchy as well:

]

]t
=

]s0d

]t
+ l

]s1d

]t
+ l2]s2d

]t
+ ¯ , s15d

where a given order in the temporal hierarchy(15) corre-
sponds to the same order in the spatial hierarchy(14). One
thus concludes that the higher the order of the spatial gradi-
ent, the slower the corresponding temporal variation. Insert-
ing expansions(14) and (15) in the Boltzmann equation(1)
one obtains

So
kù0

lk]skd

]t
+ v1 · =Do

lù0
ll f sld

= pJaFo
lù0

ll f sld,o
lù0

ll f sldG
+ s1 − pdJcFo

lù0
ll f sld,o

lù0
ll f sldG . s16d

Collecting the terms of a given order inl and solving the
equations order by order allows us to build the Chapman-
Enskog solution.

A. Zeroth order

To zeroth order in the gradients, Eq.(16) gives

]t
s0df s0d = pJaff s0d, f s0dg + s1 − pdJcff s0d, f s0dg. s17d

This equation has a solution, describing the HCS, and which
obeys the scaling relation

f s0dsr ,v;td =
nstd

vTstdd f̃scd. s18d

The approximate expression forf̃scd was established in[12]
and is recalled by Eq.(40). In Eq. (18), vT=f2/sbmdg1/2 is
the time dependent thermal velocity, andc=V /vT, V =v−u.
The existence of a scaling solution of the form(18) seems to
be a general feature that is confirmed numerically(direct
Monte Carlo simulations or molecular dynamics) not only
for ballistic annihilation[20] or granular gases[32], but for
the dynamics of ballistic aggregation as well[33,34].

The functionf s0d is isotropic. Thus to this order the pres-
sure tensor(9) becomesPij

s0d=ps0ddi j , whereps0d=nkBT is the
hydrostatic pressure, and the heat flux(10) becomesqs0d=0.

The balance equations(7) to zeroth order read

]tn = − pnjn
s0d, s19ad

]tui = − pvTjui

s0d, i = 1, . . . ,d, s19bd

]tT = − pTjT
s0d, s19cd

where the decay rates are

jn
s0d =

1

n
vff s0d, f s0dg, s20ad

jui

s0d =
1

nvT
vff s0d,Vi f

s0dg, i = 1, . . . ,d, s20bd
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jT
s0d =

m

nkBTd
vff s0d,V2f s0dg −

1

n
vff s0d, f s0dg. s20cd

For antisymmetry reasons, one sees from Eq.(20b) that
jui

s0d=0. The two other decay rates are given later on by Eqs.
(43).

B. First order

To first order in the gradients, the Boltzmann equation
(16) reads

f]t
s0d + Jgf s1d = − f]t

s1d + v1 · = gf s0d, s21d

where

Jfs1d = pLaff s0d, f s1dg + s1 − pdLcff s0d, f s1dg, s22d

with

Laff s0d, f s1dg = − Jaff s0d, f s1dg − Jaff s1d, f s0dg, s23d

Lcff s0d, f s1dg = − Jcff s0d, f s1dg − Jcff s1d, f s0dg. s24d

The balance equations(7) to first order become

]t
s1dn + ¹isnuid = − pnjn

s1d, s25ad

]t
s1dui +

kB

mn
¹isnTd + uj¹ jui = − pvTjui

s1d, i = 1, . . . ,d,

s25bd

]t
s1dT + ui¹iT +

2

d
T¹iui = − pTjT

s1d, s25cd

where the decay rates are given by

jn
s1d =

2

n
vff s0d, f s1dg, s26ad

jui

s1d =
1

nvT
vff s0d,Vi f

s1dg +
1

nvT
vff s1d,Vi f

s0dg, i = 1, . . . ,d,

s26bd

jT
s1d = −

2

n
vff s0d, f s1dg +

m

nkBTd
vff s0d,V2f s1dg

+
m

nkBTd
vff s1d,V2f s0dg. s26cd

By definition we know thatf s1d must be of first order in
the gradients of the hydrodynamic fields; therefore for a low
density gas[35]

f s1d = Ai¹i ln T + Bi¹i ln n + Ci j¹ jui . s27d

The coefficientsAi, Bi, andCi j depend on the fieldsn, V, and
T. Inserting Eq.(27) in Eq. (21) and making use of Eqs.(13),
(18), and(19), one obtains the following set of equations for
Ai, Bi, andCi j (see Appendix A):

H− pFjT
s0dT]T + jn

s0dn]n +
1

2
jT

s0dG + sJ − pVdJAi − p
1

2
jn

s0dBi

= Ai , s28ad

h− pfjT
s0dT]T + jn

s0dn]n + jT
s0dg + sJ − pVdjBi − pjT

s0dAi = Bi ,

s28bd

h− pfjT
s0dT]T + jn

s0dn]ng + sJ − pVdjCi j = Cij , s28cd

where

Ai =
Vi

2

]

]Vj
fVj f

s0dg −
kBT

m

]f s0d

]Vi
, s29ad

Bi = − Vi f
s0d −

kBT

m

]f s0d

]Vi
, s29bd

Cij =
]

]Vi
fVj f

s0dg −
1

d

]

]Vk
fVkf

s0dgdi j , s29cd

andV is a linear operator defined by

Vg = f s0djn
s1dff s0d,gg −

]f s0d

]Vi
vTjui

s1dff0,gg +
]f s0d

]T
TjT

s1dff s0d,gg,

s30d

whereg is eitherAi, Bi, or Ci j , and the functionalsjn
s1d, jui

s1d,

andjT
s1d are obtained from Eqs.(26) upon replacingf s1d by g.

It is possible to show that from Eqs.(29) the solubility con-
ditions ensuring the existence of the functionsAi, Bi, andCi j
are satisfied(see, e.g.,[35]).

C. Navier-Stokes transport coefficients

The hydrodynamic description of the flow requires the
knowledge of transport coefficients. The concern of the
present section is to determine the form and coefficients of
the constitutive equations. This can thus be achieved by link-
ing those macroscopic transport coefficients with their mi-
croscopic definition. Using a first order Sonine polynomial
expansion, it is then possible to find explicitly the transport
coefficients to first order. This will allow us to express the
functionsAi, Bi, andCi j in terms of the transport coefficients,
thus determining the distribution functionf s1d.

The pressure tensor may be put in the form

Pijsr ,td = ps0ddi j − hS¹iuj + ¹ jui −
2

d
di j¹kukD − zdi j¹kuk,

s31d

whereps0d=nkBT is the ideal gas pressure, andh is the shear
viscosity. For a low density gas, the bulk viscosityz van-
ishes; therefore the last term in the pressure tensor may be
neglected[10,35,36]. Fourier’s linear law for heat conduc-
tion is

qi = − k¹iT − m¹in, s32d

wherek is the thermal conductivity andm a transport coef-
ficient that has no analog in the elastic case. A similar quan-
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tity appears for granular gases, which again is nonvanishing
in the inelastic case only[26,37].

The identification of Eq.(31) with Eq. (9) using the result
of the first order calculation yields

Pij
s1d =E

Rd
dv DijsVdf s1d. s33d

Similarly, the identification of Eq.(32) with Eq. (10) using
the first order calculation leads to

qi
s1d =E

Rd
dv SisVdf s1d. s34d

The main steps of the calculation are shown in Appendix B,
and the result is

h * =
h

h0
=

1

nh
* −

1

2
pjT

s0d*
, s35ad

k * =
k

k0
=

1

nk
* − 2pjT

s0d* F1

2
pjn

s0d*m * +
d − 1

d
s2a2 + 1dG ,

s35bd

m * =
nm

Tk0
=

2

2nm
* − 3pjT

s0d* − 2pjn
s0d* FpjT

s0d*k * +
d − 1

d
a2G ,

s35cd

wherea2 is the kurtosis of the distribution

a2 =
4

dsd + 2d
1

vT
4n
E

Rd
dV f s0dsVd − 1, s36d

and

k0 =
dsd + 2d
2sd − 1d

kB

m
h0, s37d

h0 =
d + 2

8

Gsd/2d
psd−1d/2

ÎmkBT

sd−1 s38d

are the thermal conductivity and shear viscosity coefficients
for hard spheres, respectively[38]. jn

s0d* =jn
s0d /n0 and jT

s0d*

=jT
s0d /n0 are the dimensionless decay rates, wheren0

=ps0d /h0, with ps0d=nkBT. The dimensionless coefficientsnh
* ,

nk
* , andnm

* are given by

nk
* =

1

n0

E
Rd

dV SisVdJAi

E
Rd

dV SisVdAi

− p
1

n0

E
Rd

dV SisVdVAi

E
Rd

dV SisVdAi

,

s39ad

nm
* =

1

n0

E
Rd

dV SisVdJBi

E
Rd

dV SisVdBi

− p
1

n0

E
Rd

dV SisVdVBi

E
Rd

dV SisVdBi

,

s39bd

nh
* =

1

n0

E
Rd

dV DijsVdJCi j

E
Rd

dV DijsVdCi j

− p
1

n0

E
Rd

dV DijsVdVCi j

E
Rd

dV DijsVdCi j

.

s39cd

It must be emphasized that the above results are still exact
within the Chapman-Enskog expansion framework. How-
ever, the relations(39) and the decay rates(20) cannot be
evaluated analytically without approximations. For this pur-
pose, we first consider the Sonine expansion forf s0d. It was
shown that to first non-Gaussian contribution in Sonine poly-
nomials the distributionf s0d reads[12]

f s0dsVd =
n

vT
dMS V

vT
DH1 + a2F1

2

V4

vT
4 −

d + 2

2

V2

vT
2 +

dsd + 2d
8 GJ

s40d

where

MS V

vT
D =

1

pd/2e−V2/vT
2

s41d

is the Maxwellian and

a2 = 8
3 − 2Î2

4d + 6 −Î2 + fs1 − pd/pg8Î2sd − 1d
. s42d

The coefficienta2 was shown to be in very good agreement
with direct Monte Carlo simulations[12]. The relation(40)
allows us to compute the decay rates(see Appendix C):

jn
s0d* =

d + 2

4
S1 − a2

1

16
D , s43ad

jT
s0d* =

d + 2

8d
S1 + a2

8d + 11

16
D . s43bd

Next, we retain only the first order in a Sonine polynomial
expansion applied toA, B, andC. We thus have

AsVd = a1MsVdSsVd, s44ad

BsVd = b1MsVdSsVd, s44bd

CsVd = c0MsVdDsVd, s44cd

wherea1, b1, andc0 are the coefficients of the development.
This allows us to compute the relations(39). For this pur-
pose, as already shown the probabilistic collision operatorJ
given by Eq.(22) can be split into the sum of an annihilation
operator and of a collision operator. Each contribution may
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thus be treated separately. Therefore we make use of previ-
ous calculations for the collision process[39]. The calcula-
tions for the annihilation operator are shown in Appendix D,
and the final results read

nk
* = nm

* = p
1

32d
F16 + 27d + 8d2

+ a2
2880 + 1544d − 2658d2 − 1539d3 − 200d4

32dsd + 2d G
+ s1 − pd

d − 1

d
S1 + a2

1

32
D , s45ad

nh
* = p

1

8d
F3 + 6d + 2d2 − a2

278 + 375d + 96d2 + 2d3

32sd + 2d G
+ s1 − pdS1 − a2

1

32
D . s45bd

One may check that these expressions approach the known
elastic values whenp→0 [39]. The transport coefficients are
thus found from Eqs.(35) using Eqs.(37), (38), (42), (43),
and (45).

In order to establish the decay rates to first order, one
needs the distributionf s1d (see Appendix E):

f s1dsVd = −
b3

n
MsVdF 2m

d + 2
SisVdsk¹iT + m¹ind

+
h

b
DijsVd¹ juiG . s46d

D. Hydrodynamic equations

The pressure tensor and the heat flux defined by Eqs.(31)
and (32), respectively, are of order 1 in the gradients. Thus
their insertion in the balance equations(7) yields contribu-
tions of order 2 in the gradients. Consequently there are sec-
ond order terms(so called Burnett order) that contribute to
the first order(so called Navier-Stokes order) transport coef-
ficients, and the knowledge of the distributionf s2d is thus
necessary. Indeed, use was made of the zeroth order relations
Pij =ps0ddi j and qi =0 to establish the balance equation for
energy(25c). However, it was shown in the framework of the
weakly inelastic gas—and consequently for an elastic gas—
that those Burnett contributions were three orders of magni-
tude smaller than the Navier-Stokes contributions[26]. For
the sake of simplicity, we will here neglect those second
order contributions. For small annihilation probabilitiesp,
this approximation is thus likely to be justified. However, we
havea priori no control on the error made when the annihi-
lation probabilityp is close to unity.

The hydrodynamic Navier-Stokes equations are given by

]tn + ¹isnuid = − pnfjn
s0d + jn

s1dg, s47ad

]tui +
1

mn
¹ jPij + uj¹ jui = − pvTjui

s1d, i = 1, . . . ,d,

s47bd

]tT + ui¹iT +
2

nkBd
sPij¹iuj + ¹iqid = − pTfjT

s0d + jT
s1dg,

s47cd

where the decay ratesjn
s0d and jT

s0d are given by Eqs.(43a)
and (43b), respectively.Pij and qj are given by Eqs.(31)
with z=0, and(32), respectively. The ratesjn

s1d, jui

s1d, andjT
s1d

may be calculated using their definition(25) and the distri-
bution (46). We find (see Appendix F):

jn
s1d = 0, s48ad

jui

s1d = − vTSk *
1

T
¹iT + m *

1

n
¹inDju

* , s48bd

jT
s1d = 0, s48cd

where

ju
* =

sd + 2d2

32sd − 1dF1 + a2
− 86 − 101d + 32d2 + 88d3 + 28d4

32sd + 2d G .

s49d

We thus have a closed set of equations for the hydrodynamic
fields to the Navier-Stokes order.

IV. STABILITY ANALYSIS

The hydrodynamic Eqs.(47) form a set of first order non-
linear partial differential equations that cannot be solved ana-
lytically in general. However, their linear stability analysis
allows us to answer the question of formation of inhomoge-
neities. The scope of the present study is to find under which
conditions the homogeneous solution to zeroth order, i.e., the
HCS, is unstable under spatial perturbations. To this end we
consider a small deviation from the HCS and the lineariza-
tion of Eqs. (47) in the latter perturbation. Equations(19)
give the time evolution of the HCS, which is found to be

nHstd = n0S1 + p
t

t0
D−gn

, s50ad

THstd = T0S1 + p
t

t0
D−gT

, s50bd

where the decay exponents aregn=jn
s0ds0dt0, gT=jT

s0ds0dt0,
and the relaxation timet0

−1=jn
s0ds0d+jT

s0ds0d /2. The subscript
H denotes a quantity evaluated in the homogeneous state.
The density and temperature fields of the HCS are thus de-
creasing monotonically in time, with exponents that depend
on the annihilation probability through the kurtosis of the
velocity distribution. The explicit expression of the decay
exponents may be obtained straightforwardly using Eqs.
(43).

The linearization procedure used here follows the same
route as the method used for granular gases[26]. We define
the deviations of the hydrodynamic fields from the HCS by
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dysr ,td = ysr ,td − yHstd, s51d

wherey=hn,u ,Tj. Inserting the form(51) in Eqs.(48) yields
differential equations with time dependent coefficients. In
order to obtain coefficients that do not depend on time, it is
necessary to introduce the new dimensionless space and time
scales defined by

l =
1

2
n0HstdÎ m

kBTHstd
r , s52ad

t =
1

2
E

0

t

dsn0Hssd, s52bd

as well as the dimensionless Fourier fields

rkstd =
dnkstd
nHstd

, s53ad

wkstd =Î m

kBTHstd
dukstd, s53bd

ukstd =
dTkstd
THstd

, s53cd

where

dykstd =E
Rd

dl e−ik·ldysl,td. s54d

From Eq.(52a), it appears that lengths are made dimension-
less making use of the time dependent mean free path as a
reference scale. Making use of Eqs.(53) and (52) in Eqs.
(47), the linearized hydrodynamic equations read

F ]

]t
+ 2pjn

s0d*Grkstd + pjn
s0d*ukstd + ikwki

std = 0,

s55ad

F ]

]t
− pjT

s0d* +
d − 1

d
h * k2Gwki

+ ikfs1 − pju
*m * drkstd

+ s1 − pju
*k * dukstdg = 0, s55bd

F ]

]t
− pjT

s0d* +
1

2
h * k2Gwk'

std = 0, s55cd

F ]

]t
+ pjT

s0d* +
d + 2

2sd − 1d
k * k2Gukstd

+ F2pjT
s0d* +

d + 2

2sd − 1d
m * k2Grkstd +

2

d
ikwki

std = 0,

s55dd

wherewki
andwk'

are the longitudinal and transverse parts
of the velocity vector defined bywki

=swk ·êkdêk and wk'

=wk −wki
, where êk is the unit vector along the direction

given byk. Equation(55c) for the shear mode is decoupled
from the other equations and can be integrated directly so
that

wk'
std = wk'

s0dexpfs'sp,kdtg, s56d

where

s'sp,kd = pjT
s0d* −

1

2
h * k2. s57d

The transversal velocity fieldwk'
lies in thesd−1d dimen-

sional vector space that is orthogonal to the vector space
generated byk, and therefore the modes' identifiessd−1d
degenerate perpendicular modes. The longitudinal velocity
field wki

lies in the vector space of dimension 1 generated by
k. Hence there are three hydrodynamic fields to be deter-
mined, namely, the densityrk, temperatureuk, and longitu-
dinal velocity fieldwki

=wki
êk. The linear system thus reads

1 ṙk

ẇki

u̇k

2 = M ·1 rk

wki

uk
2 , s58d

with the hydrodynamic matrix

M =1
− 2pjn

s0d* − ik − pjn
s0d*

− iks1 − pju
*m * d pjT

s0d* −
d − 1

d
h * k2 − iks1 − pju

*k * d

− 2pjT
s0d* −

d + 2

2sd − 1d
m * k2 −

2

d
ik − pjT

s0d* −
d + 2

2sd − 1d
k * k22 . s59d

The corresponding eigenmodes are given bywnskd
=expfsnsp,kdtg, n=1, . . . ,3, wheresnsp,kd are the eigenval-
ues ofM . Each of the three fields above is a linear combi-

nation of the eigenmodes; thus only the biggest real part of
the eigenvaluesnsp,kd has to be taken into account to discuss
the limit of marginal stability of the parallel mode of the
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velocity field. Figure 1 shows the real part of the eigenvalues
for p=0.1 andd=3 (obtained numerically).

One may identify three regions from the dispersion rela-
tions. We first definek' (dimensionless) by the condition
Refs'sk' ,pdg=0, i.e.,

k' =Î2pjT
s0d*

h*
, s60d

andki by maxki
Refsiski ,pdg=0 (the expression forki is too

cumbersome to be given here); we haveki ,k'. Figure 2
shows the dependence ofk' and ki as a function of the
annihilation probabilityp. Then for allk.k' all eigenvalues
are negative and therefore, according to Eq.(56), correspond
to linearly stable modes. ForkP fki ,k'g only the shear mode
wk'

of the velocity field is linearly unstable. In the case of
granular gases in dimension larger than one this region ex-
hibits velocity vortices[25,40,41], with a possible subse-
quent nonlinear coupling to density inhomogeneities. From
jT

s0d* =jT
s0d /n0 and Eq.(52b) one may integrate Eq.(19c) in

order to find THstd=THs0dexpf−2pjT
s0d*tg. Then equating

Eqs.(53b) and (56), making use of the latter expression for
THstd, of Eq. (57), and of Eq.(53b) for t=0, one finds

duk'
std = uk'

s0dexpS−
1

2
h * k2tD . s61d

The exponential decay in the reduced variablet translates
into a power-law-like decay in the original variablet [since
the exponentk=kstd depends itself on time]. Indeed, the in-
tegration of Eq. (19c) yields t=−lnfTHstd /THs0dg /2jT

s0d* ,
which we replace in Eq.(61) and make use of the homoge-
neous solutionTHstd given by Eq.(50b) in order to finally
obtain

duk'
std = uk'

s0dS1 + p
t

t0
D−h*k2/4t0

*

, s62d

where t0
* = t0/nHs0d is the dimensionless relaxation time. In

the linear approximation the perturbation of the transversal
velocity field therefore decays even ifs'sk,pd.0. The re-
scaled modes withk,ki are linearly unstable.

However, a crucial point is that for any real(finite) sys-
tem, the wave numbers are larger than 2p /L (assuming a
cubic box of sizeL), which corresponds to atime dependent
dimensionless wave numberkmin=2p / sLnsd−1d, which in-
creases with time as 1/n. This lower cutoff therefore inevi-
tably enters into the stable regionkmin.k', so that an insta-
bility may only be a transient effect. In other words, an
unstable mode associated with a given value ofk corre-
sponds to a perturbation at a wavelength which increases
with time in real space, and ultimately becomes larger than
system size. However, at late times, the Knudsen number
defined as the ratio of mean free path(which is proportional
to kmin) over system size becomes large, which should invali-
date a Navier-Stokes-like description. Similarly, the present
coarse-grained approach isa priori restricted to low enough
values ofk. Given thatk' increases quite rapidly withp (see
Fig. 2), the stable regionk.k' might correspond to a “non-
hydrodynamic” regime whenp is larger than some(difficult
to quantify) threshold. Conclusions concerning the stability
of the system for such parameters rely on the validity of the
hydrodynamic description(which could be tested by Monte
Carlo or molecular dynamics simulations) which is beyond
the scope of the present article.

At this point, we conclude that the system may exhibit
transient instabilities, but safe statements may only be made
for very low values ofp for which k' is low enough to
guarantee that the hydrodynamic analysis holds. The stable
region is then ultimately met irrespective of system size.

With the above possible restrictions in mind, it is instruc-
tive to consider the counterpart of Fig. 1 for “large” values of
p (see Fig. 3). For p.0.893. . ., we obtain the unphysical
result that some eigenvalues increase and diverge upon in-
creasingk. An a priori similar deficiency was reported for
the inelastic Maxwell model where some transport
coefficients—which are obtained exactly within the
Chapman-Enskog method—diverge for strong dissipation
[32].

V. CONCLUSION

In this paper we construct a hydrodynamic description for
probabilistic ballistic annihilation in arbitrary dimensiond

FIG. 1. Real part of the eigenvalues in dimensionless units for
probabilistic ballistic annihilation withp=0.1 andd=3. The disper-
sion relation obtained from Eq.(57) is represented by a dashed line
(labeleds') whereas the three remaining relations obtained upon
solving Eq.(59) are represented by continuous lines(labeledsi).

FIG. 2. Wave numbersk' andki in dimensionless units as func-
tions of the annihilation probabilityp for d=3.
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ù2, where none of the hydrodynamic fields can be associ-
ated with a conserved quantity. The motivation is not only to
discuss the possibility of large scale instabilities in such a
system, but also to provide the starting point for further(nu-
merical) studies centered on the applicability of hydrody-
namics to systems in which there are no collisional invari-
ants. To this aim, we consider the low density and long-time
regimes in order to make use of the Boltzmann equation with
the homogeneous cooling state as a reference state. The
Chapman-Enskog method then allows us to build a system-
atic expansion in the gradients of the fields, with an associ-
ated time scale hierarchy. We consider only the first(Navier-
Stokes) order in the gradients to build the hydrodynamic
equations describing the dynamics of probabilistic ballistic
annihilation. The transport coefficients and decay rates are
established from the microscopic approach neglecting Bur-
nett contributions and restricting ourselves to the first non-
Gaussian term in a Sonine expansion. We then linearize the
hydrodynamic equations around the HCS. The subsequent
dispersion relations inform on the range of the perturbation’s
wavelength and time scales for which the system may exhibit
density inhomogeneities.

Interestingly, the behavior of the dispersion relations and
of the wave numbersk' andki is qualitatively similar to its
counterpart obtained for(inelastic) granular gases[26,42].
This leads us to conclude that some features of those models
do not depend on the details of the dynamics, but rather on
the parameter controlling the dissipation(referring to the ex-
istence of nonconserved quantities) in the system, namely,p
[or s1−a2d in the case of granular gases, wherea is the
restitution coefficient]. However, a specific feature of our
model is that the mean free path increases rapidly with time.
Consequently, even if the stability analysis leads us to the
conclusion that this feature drives the system in a region
where the homogeneous solution with a vanishing flow field
is stable, the associated Knudsen numbers may be too large
to validate our coarse-grained approach. At very small values
of p, however, the stable region(k.k' with the notations of
Sec. IV) should be relevant, but then the effects of transient
instabilities in the case where the system is large enough to
allow for kmin,k' or kmin,ki seem difficult to assess.

Another point to emphasize is the amplitude of the dissi-
pation in the system, which appears through the decay rates

of the hydrodynamic fields. Again, there must be a clear
separation between the macroscopic time scales described by
those decay rates, and between the microscopic time scales.
This separation of scales is required in the hydrodynamic
approach in order to make use of the hydrodynamic fieldsn,
u, and T that are associated with nonconserved quantities.
The decay rates having the dimension of the inverse of a
time, their inverse thus defines a time scale. If those decay
rates increase, the associated time scales decay. In our case,
we clearly introduce three such time scales that are supposed
to be macroscopic; one for each nonconserved field. It is
therefore required that the maximum of these decay rates
defines a macroscopic time scale that is much bigger than the
microscopic one. Nevertheless, those decay rates increase as
a function of the annihilation probability and hence the de-
crease of the associated time scale. One question that arises
is to determine for which value ofp the smallest time scale
introduced by the decay rates is of the order of the micro-
scopic time scale—which increases as a function of time
because of the decreasing density of particles remaining in
the system. When this is the case, the hydrodynamic descrip-
tion becomes irrelevant and one may not make use of the
fields n, v, andT any more. As the parameterp controls the
dissipation in the system, the question at hand here—left for
future work—is reminiscent of the controversial issue of the
validity of hydrodynamics for granular gases with “low” co-
efficients of restitution.
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APPENDIX A: INTEGRAL EQUATIONS FOR Ai, Bi,
AND Cij TO FIRST ORDER

Using the normal solution(13), the scaling form(18), and
the balance equations(19) one may rewrite the right hand
side of Eq.(21) in such a way that

f]t
s0d + Jgf s1d = Ai¹i ln T + Bi¹i ln n + Cij¹iuj + pVf s1d,

sA1d

whereVi =vi −ui,

Vf s1d = f s0djn
s1d −

]f s0d

]Vi
vTjui

s1d +
]f s0d

]T
TjT

s1d, sA2d

and

Ai = − ViT
]f s0d

]T
−

kBT

m

]f s0d

]Vi
, sA3ad

Bi = − Vi f
s0d −

kBT

m

]f s0d

]Vi
, sA3bd

Cij =
]

]Vi
fVj f

s0dg +
2

d
T

]f s0d

]T
di j . sA3cd

FIG. 3. Real part of the eigenvalues in dimensionless units for
probabilistic ballistic annihilation withp=0.95 andd=3. The figure
caption is the same as for Fig. 1.
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The velocity dependence off s0d occurs only throughV/vT.
Because of the normalization the temperature dependence of

the function f s0d is of the form T−d/2f̄ s0dsV/T1/2d, and one
obtains

− T
]f s0d

]T
=

1

2

]

]Vi
fVi f

s0dg. sA4d

The insertion of Eq.(A4) in Eqs. (A3) yields the relations
(29).

Using the scaling form(18) and by definition of the decay
rates(20) one has

jn
s0d , jT

s0d , nT1/2. sA5d

This yields the relations

T
]jn,T

s0d

]T
=

1

2
jn,T

s0d sA6d

and

n
]jn,T

s0d

]n
= jn,T

s0d , sA7d

wherejn,T
s0d =hjn

s0d ,jT
s0dj. Using the form(27) in the left hand

side of the Boltzmann equation(21) and making use of the
relations(A6) and (A7) one obtains after some calculations
the relations(28).

APPENDIX B: EQUATIONS FOR THE TRANSPORT
COEFFICIENTS

As we will apply a Sonine expansion, the symmetry prop-
erties ofAsVd andBsVd are the same as those ofSsVd,
whereas the properties ofCsVd are the same as those of
DsVd. Thus the insertion of Eq.(27) in Eq. (33) yields

Pij
s1d =E

Rd
dv DijsVdCklsVd¹kul . sB1d

The identification of Eqs.(B1) and (31) yields (see, e.g.,
[36])

h = −
1

sd − 1dsd + 2dERd
dV DijsVdCi jsVd. sB2d

Integrating Eq.(28c) over V in Rd with weight −1/fsd−1d
3sd+2dgDijsVd and making use of Eq.(B2) one obtains

f− pjT
s0dT]T − pjn

s0dn]n + nhgh

= −
1

sd − 1dsd + 2dERd
dV DijsVdCij . sB3d

Functional dependence analysis shows thatn]nh=0 and
T]Th=h /2. Using the definitions(11) for DijsVd and (29c)
for CijsVd, it is possible to compute the right hand side of Eq.
(B3), which gives

h =
1

nh −
1

2
pjT

s0d

1

d
E

Rd
dV mV2f s0d. sB4d

Using the hydrostatic pressureps0d=nkBT with the definition
(6c) for the temperature, and dividing Eq.(B4) by h0 we
finally obtain Eq.(35a).

The insertion of Eq.(27) in Eq. (34) gives

qi =E
Rd

dV SisVdAksVd¹k ln T +E
Rd

dV SisVdBksVd¹k ln n.

sB5d

The identification of Eqs.(B5) and (32) yields

k = −
1

dT
E

Rd
dV SisVdAisVd, sB6ad

m = −
1

dn
E

Rd
dV SisVdBisVd. sB6bd

The fact thatmÞ0 is due to the annihilation process.
Integrating Eqs.(29a) and (29b) over V on Rd with weight
−SisVd /d and making use of Eq.(B6), then making use of
T]TsTkd=3Tk /2, T]Tsnmd=3nm /2, and n]nsTkd=n]nsnmd
=0 obtained from functional dependence analysis, it follows
that

k =
1

nk − 2pjT
s0d

1

TF1

2
pjn

s0dnm −
1

d
E

Rd
dV SisVdAisVdG ,

sB7ad

m =
1

nm −
3

2
pjT

s0d − pjn
s0d

1

nFpjT
s0dTk −

1

d
E

Rd
dV SisVdBisVdG .

sB7bd

Using Eqs.(29a), (29b), (12), and(42) one may calculate
the integrals appearing in the right hand side of Eqs.(B7):

1

dT
E

Rd
dV SisVdAisVd = −

d + 2

2

nkB

mb
s2a2 + 1d, sB8ad

1

dn
E

Rd
dV SisVdBisVd = −

d + 2

4

1

b2m
2a2. sB8bd

The insertion of Eqs.(B8) in (B7) yields Eqs.(35b) and
(35c).

APPENDIX C: EVALUATION OF jn
„0…* AND jT

„0…*

The decay rates(20a) and (20c) may be computed using
the definition (8) and Eqs.(40) and (41). We first change
variables toci =V i /vT, i =1,2, then to c12=c1−c2 and C
=sc1+c2d /2 in order to decouple the integrals. Next, the in-
tegrals being isotropic with a symmetric weight, only even
powers of the components ofC and c12 will give nonzero
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contributions. Thus the termssC ·c12d2 in the integrals be-
comeC2c12

2 /d. Finally, the resulting integrals may be com-
puted using the following relation[20]. If we define

Mnp
0 =

1

pdE
R2d

dc12dC e−c12
2 /2e−2C2

c12
n Cp, sC1d

Mnp = kc12
n Cpl =

1

pdE
R2d

dc12dC e−c12
2 /2e−2C2

c12
n Cp

3F1 + a2HC4 +
1

16
c12

4 +
d + 2

2d
C2c12

2 − sd + 2dC2

−
d + 2

4
c12

2 +
dsd + 2d

4
JG , sC2d

then

Mnp
0 = 2sn−pd/2Gfsd + nd/2gGfsd + pd/2g

Gsd/2d2 , sC3d

Mnp

Mnp
0 = 1 +

a2

16d
fdsn2 + p2d − 2dsn + pd + 2npsd + 2dg.

sC4d

Equations(C3) and(C4) may be easily verified using the
relation

E
Rd

dxuxune−ax2
=

pd/2

asd+nd/2
Gfsd + nd/2g

Gsd/2d
, sC5d

for aPR+. We thus obtain the decay rates to zeroth order
(43).

APPENDIX D: EVALUATION OF nk
* , nm

* , AND nh
*

Using the first order Sonine expansion(44), Eq. (39) re-
duces to

nh
* =

1

n0

E
Rd

dVDijsVdJfMDijg

E
R2

dVDijsVdMsVdDijsVd

− p
1

n0

E
Rd

dV DijsVdVfMDijg

E
R2

dV DijsVdMsVdDijsVd
, sD1ad

nk
* = nm

* =
1

n0

E
Rd

dV SisVdJfMSig

E
R2

dV SisVdMsVdSisVd

− p
1

n0

E
Rd

dV SisVdVfMSig

E
R2

dV SisVdMsVdSisVd
. sD1bd

The denominators of Eqs.(D1) are straightforward to
compute using the formula(C5). We thus find

nh
* =

b2

sd + 2dsd − 1dnn0
FE

Rd
dV DijsVdJfMDijg

− pE
Rd

dV DijsVdVfMDijgG , sD2ad

nk
* = nm

* =
2mb3

dsd + 2dnn0
FE

Rd
dV SisVdJfMSig

− pE
Rd

dV SisVdVfMSigG . sD2bd

The collision operatorJ defined by Eq.(22) is made of the
sum of an annihilation operatorLa with weight p and of an
elastic collisional operatorLc with weight s1−pd. Using pre-
vious calculations forLc [39], we thus obtain the elastic gas
contributions proportional tos1−pd in the right hand side of
Eqs.(45).

The following computations are technically simple, but
lengthy. We shall thus only give the main steps. The annihi-
lation contributions, writtennh

*a, nk
*a, andnm

*a, are given by

nh
*a =

b2

sd + 2dsd − 1dnn0
E

Rd
dV DijsVdLafMDijg + nh

*a8,

sD3ad

nk
*a = nm

*a =
2mb3

dsd + 2dnn0
E

Rd
dV SisVdLafMSig + nk

*a8,

sD3bd

whereLa is given by Eqs.(23) and (2), and

nh
*a8 = −

b2

sd + 2dsd − 1dnn0
E

Rd
dV DijsVdVfMDijg,

sD4ad

nk
*a8 = nm

*a8 = −
2mb3

dsd + 2dnn0
E

Rd
dV SisVdVfMSig.

sD4bd

Using the relation
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E
Rd

dv1Ysv1dLafMXg = sd−1b1E
R2d

dv1dv2uv12uf s0dsv1d

3Msv2dXsv2dfYsv1d + Ysv2dg,

sD5d

whereX andY are arbitrary functions, changing variables to
ci =vi /vT for i =1,2, then changing variables toc12=c1−c2
[in the following we adopt the notationc12=sc121

, . . . ,c12d
d]

andC=sc1+c2d /2 in order to decouple the integrals, replac-
ing under the integral sign for symmetry reasons the relations
sC ·c12d2 by C2c12

2 /d, and using

E
R2d

dC dc12FsCdGsc12dsC ·c12d4

=E
R2d

dC dc12FsCdGsc12dS 3

d2C4c12
4 − 2dCi

4c12j

4 D ,

sD6d

where i and j can be chosen arbitrarily in the seth1, . . . ,dj
and F, G are arbitrary isotropic integrable functions, one
obtains

nh
*a =

1

dsd − 1dpdÎ2

Gsd/2d

GSd + 1

2
DH1sa2,dd + nh

*a8, sD7ad

nk
*a = nm

*a =
1

dpdÎ2

Gsd/2d

GSd + 1

2
DH2sa2,dd + nk

*a8, sD7bd

where

Hksa2,dd = o
si,jdPVa

k

ai jE
Rd

dC e−2C2
CiE

Rd
dc12e

−c12
2 /2c12

j+1

+ o
si,jdPVg

k

gi jE
Rd

dC e−2C2
CiC1

4

3E
Rd

dc12e
−c12

2 /2c12
j+1c121

4 , sD8d

with ai j and gi j that are functions ofd and a2, Va
k and Vg

k

being the sets of allowed values for the pairssi , jd defining
the moments in the integrals(D8). Expressions forai j , gi j ,
Va

k , andVg
k are too cumbersome to be given here. The inte-

grals in the first sum of the right hand side of Eq.(D8) may
be computed using the formula(C5). The integrals in the
second sum may be computed using the particular casei = j
=k= l of the formula

Mijkl
sad ; E

Rd
dxuxune−ax2

xixjxkxl

= bsadFdi jkl +
1

3
s1 − di jkldsdi jdkl + dikd jl + dild jkdG ,

sD9d

where

bsad = pd/23

4

sd + ndsd + n + 2d
dsd + 2d

Gfsd + nd/2g
Gsd/2d

1

asd+n+4d/2 .

sD10d

Using Eqs.(C5) and (F5) we find nh
*a8=nk

*a8=0. The calcu-
lation can thus be performed and we obtain the first terms in
the right hand side of Eqs.(45).

APPENDIX E: THE DISTRIBUTION f„1…

Using the form(27) for f s1d and the first order Sonine
expansion(44) one has

f s1dsVd = MsVdfa1SisVd¹iT + b1SisVd¹in + c0DijsVd¹ juig.

sE1d

The coefficientsa1, b1, andc0 may be expressed as functions
of the transport coefficients, thus determiningf s1d. Equation
(B2) in which we insert the Sonine expansion(44) yields

h = − c0
1

sd − 1dsd + 2dERd
dV DijsVdMsVdDijsVd

sE2d

=− c0
n

b2 , sE3d

where we have made use of the definitions(11) and (41).
Proceeding in a similar way with Eqs.(B6) and (44) it

follows that

k = − a1
1

dT
E

Rd
dV SisVdMsVdSisVd sE4d

=− a1
d + 2

2

nkB

mb2 , sE5d

m = − b1
1

dn
E

Rd
dV SisVdMsVdSisVd sE6d

=− b1
d + 2

2

1

mb3 . sE7d

Replacing in Eq.(E1) the coefficientsc0, a1, andb1 obtained
from Eqs.(E3), (E5), and (E7), one obtains the distribution
(46).

APPENDIX F: EVALUATION OF jn
„1…, jui

„1…, AND jT
„1…

The zeroth order and first order distributionsf s0d and f s1d

being known, it is possible to compute the first order decay
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rates(26). The procedure is similar to the calculation of the
zero order decay rates of Appendix C. We first change vari-
ables toci =V i /vT, i =1,2, then to c12=c1−c2 and C=sc1

+c2d /2 so that

vfAfs0d,Bfs1dg = − n
Gsd/2d

GSd + 1

2
D

Î2

pd

d + 2

4
FvT

2

d

d − 1

3Sk *
1

T
¹iT + m *

1

n
¹inDI1 + h * ¹ juiI2G ,

sF1d

where vff ,gg is defined by Eq. (8), sA,Bd
=hs1,1d ,sV2

2,1d ,s1,V1
2d ,sV2i

,1d ,s1,V1i
dj, V i =sVi1

, . . . ,Vid
d,

and

I1 =E
Rd

dc12uc12ue−c12
2 /2E

Rd
dC e−2C2

AsvTc2dBsvTc1d

3Sc1
2 −

d + 2

2
Dc1i

f1 + a2S2sc2
2dg, sF2d

I2 =E
Rd

dc12uc12ue−c12
2 /2E

Rd
dC e−2C2

AsvTc2dBsvTc1d

3Sc1i
c1j

−
1

d
di j c1

2Df1 + a2S2sc2
2dg. sF3d

In the above integrals,c1 andc2 are expressed as functions of
C and c12. Then, in order to compute those integrals one
needs the following additional relations:

Mij
sad ; E

Rd
dxuxune−ax2

xixj = Msaddi j , sF4d

where

Msad = pd/2d + n

2d

Gfsd + nd/2g
Gsd/2d

1

asd+n+2d/2 . sF5d

Assuming summation over repeated indices, it is easy to
show that

Mjk
sadMik

sa8d = MsadMsa8ddi j , sF6d

Mkl
sadMkl

sa8d = dMsadMsa8d. sF7d

Using the definition(D9) one can show that

Mijkl
sad Mkl

sa8d =
d + 2

3
bsadMsa8ddi j , sF8d

Miklm
sad Mjklm

sa8d =
d + 2

3
bsadbsa8ddi j , sF9d

Mklmn
sad Mklmn

sa8d =
dsd + 2d

3
bsadbsa8d. sF10d

For symmetry reasons, many of the terms in the integrals
(F2) and (F3) vanish upon integration. Nevertheless, the ex-
pressions are very cumbersome and the use of symbolic
computation programs is appreciable[43]. Equations(C5),
(D9), (F4), and (F6)–(F9) thus allow us after a lengthy but
technically simple calculation to find the decay rates to first
order (26).
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