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Nonlinear screening of spherical and cylindrical colloids: The case of 1:2 and 2:1 electrolytes
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From a multiple scale analysis, we find an analytic solution of spherical and cylindrical Poisson-Boltzmann
theory for both a 1:2monovalent coions, divalent counterigrad a 2:1(reversed situatiorelectrolyte. Our
approach consists of an expansion in powers of rescaled curvatuta) lWherea is the colloidal radius and
1/« the Debye length of the electrolytic solution. A systematic comparison with the full numerical solution of
the problem shows that for cylinders and spheres, our results are accurate as saornla¥Ve also report an
unusual overshooting effect where the colloidal effective charge is larger than the bare one.
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I. INTRODUCTION monovalent counteriongurns out to differ much from the
1:2 situation(monovalent coion, divalent counteriprOur
Almost a century ago, the work of Goyg], followed by ohavtical results—obtained from a multiple scale technique
that of Chapman[2], established the foundations of the 13" neglectO(xa)2 corrections for the electrostatic poten-

mean-field treatment of the electric double IayBl_oisson- tial and, converselyO(xa)~! terms for effective charges. By
BO'FZ””'a’?” theo.ry This ap_proaph served as a basis for COMan explicit comparison with the numerical mean-field results,
puting microionic correlations in a homogeneous electrolytethey will be shown to be precise whenever> 1, as was the

.[3]’ and' later led to the pr.omme'nt [.)LVO. theory of.coII0|daI case in Ref[12]. In Sec. Il the general methoa will be pre-
interactiong/4]. An essential notion in this context is that of sented, and the electrostatic potential obtained. The results
charge renormalizatiofb—9]: at large distances, the electro- ' )

static signature of a charged bodyith chargeZ,,,9 in an f\(/) négm:'njgsiiﬁzcxﬁqueuzr;;&isixv gebce \g/lven in Secs. Il and
electrolyte takes the same form as that of an effective mac-" C

roion with a suitable effective charg&y, the latter object |1 QUASIPLANAR SOLUTION TO POISSON-BOLTZMANN
being treated within linearized Poisson-Boltzmann theory. EQUATION FOR 2:1 OR 1:2 ELECTROLYTES

Only for smallZ,,. do effective and bare parameters coin-
cide (weak coupling limis. In general, one hagZ.
<|Zyad, Which reflects the nonlinear screening effect of the We consider a cylindricalj =1) or sphericalj=2) colloid
electric double layer around a collo{dQ]. This nonlinear  of radiusa with surface charge densigo>0 immersed in
regime, beyond the weak coupling limit but below the cou-an electrolyte with coiongrespectively, counteriopsf va-
plings that would invalidate the mean-field assumption undency z; (respectively,z,) and numeric density, (respec-
derlying the approach, is precisely that which is relevant fotively, n,). Let us analyze in some detail the cage 2, z,
colloids (see, e.qg., the discussion in Reffg,11]). =-1, hereafter referred to as 2:1.

Recently, analytical expressions have been obtained, As wusual, we define the Debye lengthk™?
within Poisson-Boltzmann theory, for the effective charges=(4xlgSinz) 2=(12mm,lg)*?, the reduced electrical po-
of spherical and cylindrical macroior{d2]. These predic- tential y=Bey, ando* =4 wlgoa. Here,lg denotes the Bjer-
tions for a uniqgue macroion, immersed in an infinite sea ofrym length, defined from the permittiviy of the suspending
monovalent electrolyte with inverse Debye lengthare ex- medium and the inverse temperatu@=1/(kT) as lg
act up to(xa)"! corrections, wherea is the radius of the =Be?/ y. Using the method of multiple scales, closely fol-
macroion. For practical purposes, the predictions are accyowing Ref.[13], the Poisson-Boltzmann equation
rate as soon aga>1. In this paper, we consider the situa-
tion of spherical and cylindrical macroions in a charge asym- 1d r‘d—y =~ Arlgny(eY - &) 2.1)
metric electrolyte with both monovalent and divalent ddr| dr| e ’ '
microions. The asymmetry of electrolyte has noticeable con- .
sequences on the structure of the electric double layer, arf?n Pe cast into
the case of 2:1 electrolyteg.e., with divalent coions and 2 2 i i

ytes i I K B A K o

A. 2:1 electrolyte

1
2 2 - _(e - ey),
IX]  OXq Xy Xo OXp X5 Xp OXp 3
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[ﬂ+ﬂ} = -0, (2.3a
€0Xy Xy X;=0%,=1

lim xiz[ﬂ+ﬂ] =0, (2.3b
X190, Xp—% 6(7)(1 (7X2

Here, we have defined=(xa)™%, x;=«(r—a), andx,=r/a.
We seek a solution as an expansion in powers which is
supposed to be a small parametgryy+ey;+---.
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o

(2.9
X1 | x=0x,=1

=-s,

where we have set=ec*.
for A

This gives a third-order equation

B6A(1+A) B
(1-A)AZ+4A+1) S

(2.9

Its physical solution(which vanishes whers— 0) can be
written as

The equation for the zeroth-order term is the Poisson-

Boltzmann equation for a planar interface

52)’0

P (2.9

= SeP-e),

which was solved by Gouy in his pioneering wdry (see
also Graham¢l4]). The solution reads

with the shorthand notatiog=t(x,)e™*1, which will be used
extensively in the following. Here(x,) is a function ofx,
which appears as a constant of integratiaith respect to
Xy), since in EQq.(2.4) the variablex, does not appear. As
explained in Ref[13], this function is determined by the

6q
(1-97?

Yo(X1, %) = In(l + (2.5

requirement that the nonhomogeneous part of the differential

equation for the next ordey,, decays faster thae™ when
X, — . The equation fol, reads

(2.6

The requirement that the right-hand side of E26) decay
faster thane™ leads tot(xz):Axg”z, with A a constant of
integration. We therefore have

q=Ax"%e™, 2.7

Notice that the situation is exactly the same as in the 1:1

electrolyte cagd 3]; the zero-order solution in the quasipla-

nar approximation is obtained from the planar solution with

the replacement of the constant of integratidrby Axg"z.
Actually, this is a general result for any type of electrolyte,
since the right-hand side of E(R.6) does not depend on the
microscopic constitution of the electrolyte, and when
—oo for any electrolyte the behavior gf will be given by
the Debye-Huickel solution: ctt(x,)exp(—X;).

The constant of integratioA can be expressed as a func-
tion of the surface charge densi by enforcing the bound-
ary condition(2.39 at the dominant order

A= é[— 2-s+2%2(2+s+ sz)mcos(gﬂ , (210

|

This constant has also been computed in the study of the
planar interface effective charg€A=4ms.;) in Ref. [15],
although it is presented there in a slightly differémtit com-
pletely equivalentform.

Replacing the explicit expressiof2.5) for y, into Eq.
(2.6) gives for the order-one teryy, the following equation:

with

-4-3%-38-5
V2(2 +5+ )32

0=cos‘1[ (2.11)

Py, 1+27g2+ 1603+ 27q* + °
» (1-9AL+4q+)’
12 g*(g®+3q° +3q-1)
T % 1-qA1+4q+ PP

1

(2.12

Using the variable) instead ofx; and performing the change

of function y;(x;,%)=f(q)/[(1-q)(1+4g+g?)] vyields a
second-order linear differential nonhomogeneous equation
for f(g) with polynomial coefficients ing whose associated
linear homogeneous equation has the simple solutign
=q(g+1), therefore allowing the complete solution of the
nonhomogeneous equation to be found using the traditional
method of “variation of the constant.” After some tedious but
otherwise straightforward calculations, we find the solution
satisfying the appropriate boundary conditi@3b) at infin-

ity

K0)a(a + 1) = (e + 94~
2
(1-a)1+4q+q?)

Ya1(X,%0) =
(2.13

Again, there is a functiof(x,) that appears as a constant of
integration with respect tg, since there are no derivatives of
y1 with respect tox, in Eq. (2.6). This function k(x,) is
determined[13] by the requirement that the nonhomoge-
neous part of the equation for the next order tergnde-
creases faster tham™ whenx; — oo
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(92_3/2()+l%+2 Py, J W1+yz(eyo 4e70) = o(e™). . X)_[C 3141)(22)](1(q+1) 20 q%(g?+99-8)
Xy Xp Xy f7X1(9X2 Xp X1 YilXuXo) = (1-q)(1+49+)

(2.14 (2.15
Applying the boundary conditio(2.33 to the next order ire

This givesk(xy)=c,+3j(j—2)/(4x,), with ¢; another con- gives the equatioraxly1+axzyolxlzo,xzzfo, and subsequently
stant of integration, so finally the order-one solution is determines the constant of integration

___2A6+12A5+A4(34+3j)+2A3( 88 + 3) + 6A%(- 7+3])+2A(34+3j)+3(2+])
€="l A1+ 2+ 6AZ + 2A3 1 AY)

(2.16

The quantityA is given by _Eq.(2.1(). Both consta_ntsé\ and —q(q-Dlc, + Jfljx ]+ g q?(c? - 99 - 8)

¢, are related to the effective charge of the colloid and there- v, (x,,x,) = 2 2

fore carry important physical information about the system. (1+q)(1-49+0)

Let us notice that at saturatian— o, they take simple val- (2.19
ues:AS¥=1 andc$*=-j(3j-8)/4.

Note that the solution for the 1:2 case is simply obtained
from the one for the 2:1 case by a global change of sign and
by replacingqg by —q.
B. 1:2 electrolyte The constant of integratio is again a solution of a
third-order equation which can be obtained from E49) by
The quasiplanar approximate solution of the Poissona global change of sign and by replaciAdy -A. However,
Boltzmann equation for the cagg=1 andz,=-2 (1:2 elec-  the physical solution is not the same as in the 2:1 case, and
trolyte) follows from similar calculations. We only report the now takes the form

results. The zero-order teryy reads 1 0+4
A= g[— 2+s+ 2842 -5+ 32)1’2cos< 3 77) :

(2.19
6
Yo(Xq1,Xp) = = In(l - q +q1)2>, (2.17  with 6 given by
9= cost| AT B+ (2.20
V2(2 - s+ )32 '
with g given by Eq.(2.7), and the order-one term is The constant of integration for the order-one term is here
|
- 12A%+ A%(34 + 3) - 2A%(—- 88 + J) + 6A%(— 7 + 3j) - 2A(34 + 3) + 3(2 +1)
Ci=- 2 3 4 (221)
4(1 - 2A+ 6A? - 2A3 + AY)

with A given by Eq.(2.19. The saturatiorfs— o) values of  tionsy, andy; are given by Eqs(2.5) and(2.15 in the 2:1
these constants are now different. We haw&=2-3 and case, and by Eq$2.17 and(2.18 for 1:2 electrolytes. It is
c=—j(28+3-24\3)/4. instructive to compare the resulting predictions to the nu-
merical solution of Poisson-Boltzmann theory, obtained fol-
lowing the method of Ref{16]. Figures 1 and 2 show that
already forka=2, the agreement is good. Although the po-
tential at contacy(a) is predicted accurately, we observe that
Gathering results, we obtain up to corrections of orderour theoretical expression slightly underestimates the
1/(ka)?, y(r)=yo(r)+(xa) ly,(r), where the auxiliary func- potential. A similar trend will be observed for effective

C. Comparison between analytical and numerical
potential profiles
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ey/kT
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FIG. 1. Reduced electrostatic potentigl) as a function of
rescaled distance for a spherical macroion in a 1:2 electrolyte. The FIG. 3. Effective vs bare charge for a spherical macroion in a
continuous curve shows the numerical solution of the problem, and.:2 electrolyte(i.e., monovalent coions/divalent counteripnfhe
the crosses indicate the values found from E@sl7) and(2.18. open circles are obtained from the full, nonlinear Poisson-
The inset shows the same data on a linear-log scale. Here? Boltzmann theory, while the continuous curve corresponds to the

and the reduced bare charge is very higfy.ds/a=2000. analytical prediction given by E@3.3). The dashed line has slope 1
and shows the initial linear regime for weak charges. The salinity
charges—again for spheres—in Sec. Ill. In cylindrical geom-conditions here are such thea=3, wherea is the sphere radius.
etry, a slight overestimation may be found in the 1:2 case.
The parameters in Figs. 1 and 2 are chosen to be in the Ill. EEFECTIVE CHARGES
nonlinear saturation regimg,, . allg. It is interesting to
notice that the relative error of our analytic solution from the A. Spheres

numerical one in the cases presented in Figs. 1 and 2 is of The far-fieldr —« behavior of the solutiory(r)=yq(r)
order 3%, that is of ordefxa)™2/10. We have also studied +ey,(r)+0(€?), obtained in the last section, is

the linear regimeZ,,..small, and in this case the error is of i

larger order, 25%, i.e., of ordé¢ka) 2 [remember that in our y(r) ~ Ae—:<(r—a)<_) (6 +&> +0(&) (3.1
analytical solution we neglect terms of ordeta)™2]. We r—o r Ka ' '

have also computed the relative error for other valuesapf , . . .

and the trend isf)general: in the linear regime the relative erroWIth th'? expression, Y\ie can ded_uce the effective charge. For
is of order(ka)~?, but for the nonlinear saturation regime the a sphencal r_nacrqlo(u _2).Of radiusa and chargeZey, the
situation improves and the error is reduced by a factor of 1OSOIUt'On . Imeanzed" P0|sson-Bozltz_maZmn theq@iso re-
This makes our analytic solution practical since experimentaﬁerre‘d to as Debye-Hickel thegry“y=«"y reads

situations are often in the saturation regime where our solu-

tion i t y(r) = Zetle
10N IS More accurate. 1+xa r

e—K(r—a)
E— (3.2

8

By comparison with expressiog8.1), we conclude that the
effective charge is given by

I 1
Zeﬁ—B=A|:6Ka+6+C1+ o(—)]. (3.3
a Ka
F
X The coefficientsA andc, are given by Eqs2.10) and(2.16)
%‘ (2:1 electrolytg or Egs.(2.19 and(2.21) (1:2 electrolytg in
1 terms of the bare chargd,, by substitutings=e€Z,,,dg/a.
=N

Figures 3 and 4 compare the above analytical predictions to
the effective charge obtained from the far-field behavior of
the numerical solution of Poisson-Boltzmann theory, ob-
tained as explained in RefL6]. The agreement is satisfying,
and improves upon increasing, as was anticipated.
01 1‘1 1‘2 1'3 1‘4 15 One may readily check from Eq3.3) that in the limit
' | rla ' ' ' Zpare— 0, Zeiil Zpare— 1. Effective and bare parameters coin-
cide in the weak coupling limit, as they shou{dee the
FIG. 2. Same as Fig. 1 in a 2:1 electrolyte. Hete=2 and the  dashed lines in Figs. 3 and).4In the other limit, where
reduced bare charge %, dg/a=34. Zyare— %, We observe the saturation picture common to sev-
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FIG. 4. Same as Fig. 3 for a 2:1 electrolyiivalent coions,

monovalent counterionsAs indicated, the main graph corresponds _ o
to ka=2, while the inset shows results fan=5. FIG. 5. Effective charge at saturation in a 1:2 electrolyte for a

spherical colloid. The line shows the prediction of E8.5). The
circles again correspond to the numerical resolution of Poisson-
Boltzmann theory, and the dotted line between them is a guide to
Fe eye. The inset shows the same data in a log-linear scale.

eral mean-field theorigf8,11]: the effective charge goes to a
plateau value that only depends on two dimensionless qua
tities, a/lg and ka. The effective charge at saturatigab-

tained whers— «) takes a simple expression. For a 2:1 elec-

9 ¢ 1
trolyte )\effIB:A|:3Ka+_+_1+O<_>:|' (3.7
8 2 Ka
satIB 1
Zeﬁg:6xa+7+0 o) (3.9
K
The explicit expression of the effective linear charge density
and for a 1:2 electrolyte in terms of the bare linear charge density,.is obtained by
| _ _ reportings=_2elg\p4ein the analytical expressions férand
Zz?fEB =(2-V3)[6ka—11+12/3+0(€)] c; given in Egs.(2.10 and (2.16 (2:1 electrolyt¢ or Egs.

(2.19 and(2.2)) (1:2 electrolyte. Figure 7 shows the accu-
1 racy of our analytical expression, that turns out to be slightly
= 1.608a + 2.623 +0(—>- (3.5  better in the 2:1 situation than in the 1:2 cqtiee reverse
Ka : . . i
observation follows from inspecting Figs. 5 and 6
We note that the conditions of Fig. 1 are those of saturation. The effective charges at saturation are, for a 2:1 electro-
These expressions are tested against the numerical datalyte
Figs. 5 and 6. The agreement is good f@&>1. In Figs.5
and 6, an inset has been added to show the regime oktw- ‘ ‘
values where our approach breaks down. In this limit, the  4q
observed divergence @3 means that the bare charge is no
longer renormalized. As happens for monovalent electrolytes
[5], the saturated effective charge is a nonmonotonous func:
tion of xa that reaches its minimum fara=0.3. In the latter
1:1 case, we recall for completeness that the asymptotic ex
pansionZ3lgz/a=4«ka+6 holds forka>1 [12].

B. Cylinders

Sa

y4 [lB/a

For an infinitely long cylindrical colloidj =1, with linear
charge densitg, the far-field solutior(3.1) should be com-
pared to the one obtained from Debye-Huickel theory

7 —x
_ Zlgher Kolkt) _ Zlgher \5m€ a(9>l’2e—K<r_a>

r L
y(r) ka Ki(ka)r—» xa Ky(ka) \r
(3.6
whereK, andK; are modified Bessel functions. We conclude  FIG. 6. Same as Fig. 5 for a 2:1 electrolyte. The line shows the
that the effective line charge density is given by prediction of Eq.(3.4).

011404-5
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case 2:1

0 L L L L L
10 20 30 40 50 60

20 40
A,

bare °B

FIG. 7. Effective line charge density as a function of its bare
counterpart, for a rod-like macroion. The line shows the prediction
of Eq. (3.7) and the symbols stand for the “exact” numerical values.

PHYSICAL REVIEW E70, 011404(2004)
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5r1 1 )
15
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FIG. 9. Same as Fig. 8 for a 2:1 electrolyte. The line corre-
sponds to Eq(3.9).

The main graph and the inset correspond to the same salinity Corg.ether with their COUnterpartS obtained from the solution of

ditions ka=3, wherea is the cylinder’s radius.

7 1
7\2%13:3Ka+4—1+0(;1>, (3.8
and for a 1:2 electrolyte
sa [ 11 [~
Nerlg = (2 -V3)| 3ka- 1 +3v3+0(e)
1
= 0.804<a+ 0.655 +O<_a) . (3.9
K

These simple expressions are plotted in Figs. 8 and 9, to-

7

}\'sat lB

Ka

FIG. 8. Saturated effective line charge of an infinite cylinder
with radiusa in a 1:2 electrolyte. Line: Eq(3.9) and symbols:
numerical solution. The inset is a log-linear plot. The arrow indi-
cates the valuey3/(2w)=0.275, obtained in the<a—0 limit
[21,22.

Poisson-Boltzmann theory, shown by symbols. When con-
verted into effective surface charge densiié§, the previ-
ous results yield, up téxa)™* corrections

Amalgoiy'= 6xka+ 7 (2:1, spheres (3.10
7
=6Ka+§ (2:1, rods, (3.11
while in the planar case, one getsralgoii=6ka+0. The

increase of the zeroth-order ter@d,7/2,7 as the dimen-
sionality of the object increases, reflects the concomitant
weaker range of the bare Coulomb potential in 1D,
logr in 2D, 1/r in 3D...). Indeed, a weaker Coulomb con-
tribution leads to a weaker screening, hence a higher effec-
tive charge. A similar argument therefore explains the in-
crease of effective charges witta. For completeness, we

also give the 1:2 results
sat

4malgogy

—— e

(2-+3)

[6rka—11+ 12\5] (spherey (3.12

11 —
=[6Ka— > + 6\’3] (rods, (3.13

and the same argument as above applies here equally.

It may be observed in Figs. 8 and 9 that in cylindrical
geometry, the saturated effective charge does not diverge in
the limit ka— 0, as was the case for spheres due to entropic
reasongBoltzmann beats Coulomb in this linitwith infi-
nite cylinders, this is no longer the cagetwo-dimensional
situation is more favorable to Coulomb than a 3D praad
A& reaches a constant value for smedl (see the inset of
Figs. 8 and 9

C. An overshooting effect

Although the effect is not very marked, it may be ob-
served in Fig. 4 thaZ. as a functiorZ,,,. has an inflection

011404-6
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%0 S 7\ ¢ 17 .
// - 7\eﬁ|B:7\barJB+g Ka—g —7—2 Ka+1—2 +0O(sY).
40 | ] (3.19
05 In this cases=2\pydg(xa) ™t Fo_r spherical colloids, the be-
s N7 ; ~n havior for small bare charges is
Q / ’/’
—~— / ,/, IB IB 382 7 53 7
& 20 / 0.5 i . Zait = Zoarey * g | KAT 5| T gg| kA +O(SY,
i (3.19
10F// 1 ) . .
0 \ now with s=Z7,..dg/ (xa?). Remembering that our analytical
i 0 025 05 solution is valid for large values afa, we notice that in both
0 0 50 100 cases the coefficient of the term of order two in the bare
Z,,. lla surface charge density is positive. This implies that the
are

effective charge will become larger than the bare charge in a
FIG. 10. lllustration of the overshooting effect, for a spherical C€rtain intermediate regime of values of the bare charge

colloid in a 5:1 electrolyte, withka=2. The dashed line has slope 1 When nonlinear effects start to become importéeting nev-

and the inseta zoom of the bottom left corngshows that for small ~ €rtheless far from the strongly nonlinear saturated regime

chargesZq is a convex-up function ofy e where the effective charge saturgtdst us mention that this

overshooting effect is also expected for a planar geometry,

point, so that Zes>Zy.. in a given charge range since in that case the effective charge is essentially given by
l € are

(0<Z5<10a/lg, where not only our prediction but also the ™
symbols showing numerical data lie above the dashed.line
This was unexpected since with a monovaléni) electro- o !
lyte, the effective charge is always smaller than the bare onébe formal replacemerﬂ—> S andA—>—A,. n partlcular, the
This overshooting effect occurs for spherical but also for>!dn of thg ordes? in Achqnges Sign. Th's gives the follow-
rod-like macroions. It requires a 2:1 salt for which the diva-N9 Pehavior for the effective charges:
lent coions are expelled from the vicinity of the macroion, 7 8 17
which leads to a much weaker screening than in the reverse Meils = Mpards ~ g(Ka‘ 6) (Ka*' 1—2) +0(s")
1:2 situation. That this effect is able to impa&g;> Z, 4 iS
however surprising, and in order to check its robustness we (3.17)
a[so investigated more asymmetric electrolytes n_umt_aric:allyfOr rods, and
Figure 10 shows that for a 5:1 salt, the overshooting is more
pronounced and foZ.;=10a/lg, the effective charge may 7 B_5 lg 3j2<K _ Z) _ §<Ka+ 1_7> +0(sf)
be twice as big as the bare one. effg ~ Py 9 3) 36 6

Additional insight into this unexpected overshooting ef- (3.19
fect may be obtained from our analytical expressions for the '
effective charges, Eq$3.3) and (3.7). For a small surface for spheres. The coefficient ef has changed sign with re-
charge densitys, in the 2:1 case, the quantitiés andc;  spect to the 2:1 case. This coefficient is now negative, and
involved in the expressions of the effective charges have this implies that the effective charge will remain smaller than

In contrast with this, in the case of a 1:2 electrolyte the
Taylor expansions of andc; are similar to Eqs(3.14) with

72

Taylor expansion of the form the bare charge, thus no overshooting effect for the 1:2 elec-
trolyte case.
s & & It is interesting to mention that for a symmetric 1:1 elec-
A==+—-—+0(s", (3.149 trolyte, the small bare charge behavior refitig
6 18 216
X 1 5
)\eﬁlB:)\barJB_z Ka - Z +O(Xr) (3.19
9 7s 13¢ 10s° . _
G ==y 3 st g T O(s"); rods, (3.14D  for rods, withx, =\, ds/[xa+(1/2)] and
| lg ¢ 1
zeﬁgB = zbaregB - §<Ka— 5) +0(x0)  (3.20
~ 14s 138* 20s° N
¢, =-6 T3 Tt g * O(s"); spheres. for spheres, withg=Z,dg/[2a(ka+1)]. Interestingly, there

is no term of order two in the bare charge as opposed to the
asymmetric electrolytes cases. The first correction to the lin-
ear term is of order three and it is negative. The effective
For rods, this gives the following behavior of the effective charge will be smaller than the bare charge: no overshooting
linear charge density for small bare charge: effect here either.

(3.140
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The first corrections to the linear theory are of order two 7 ,

in the bare charge for asymmetric electrolytes, with the sign \_
of EQZzna, z, being the valency of species and n, its
density. On the other hand, for symmetric electrolytes, the 2:1
first correction is of order three in the bare charge. This im- I
portant difference between symmetric and asymmetric elec-
trolytes also appears in others contexts, namely in the study
of the contributions due to correlations to the effective |
charge, in a framework going beyond the mean-field ap- 12
proximation[17-19. &

Finally, we mention that recent HNC integral equation | = - il0To-———o——mme==—om]
computations for the same systems as investigated here con- 1 . .
firm the validity of the overshooting effed0]. Explicit 0 2 4 6
comparisons with our predictions are under Wag). Ka

yeﬁ

FIG. 11. Effective potentials at saturation following from Egs.
IV. COLLOIDS AS CONSTANT POTENTIAL OBJECTS (4.1) and (4.2, as a function of<a. The limiting values forxa

) ) ) _ — are shown by the dotted lines.
Colloids are usually highly charged so that their effective

charge—within mean field—is saturated and ther_efore inde- V. CONCLUSION
pendent of the bare one. Yet, the bare charge is often not
large enough to meet the region of high microionic electro- In conclusion, we have found an analytical solution of
static correlations where the mean-field approach wouldylindrical and spherical Poisson-Boltzmann equation in
break down[7,11]. This has led to the proposal to consider asymmetric 1:2 and 2:1 electrolytes. Our approach amounts
highly charged colloids as objects of fixed effective potentialto performing a curvature expansion, and neglects correc-
in the case of a 1:1 electrolyti8]. Similar considerations tions of order 1(xa)? for the electrostatic potential. For
may be put forward here. From the analysis of Sec. I, thexa>1, the corresponding solution and associated effective
surface potentialsy=ey/(kT) associated with effective charge are in excellent agreement with their counterparts ob-
charges read, for spheres tained from the full numerical resolution of the problem.
Our multiple scale analysis relies on the possibility to
solve analytically the planar problefeorresponding taca
— o). Since for an:m electrolyte(wheren and m, respec-
4.1) tively, stand for the valency of coions and counteriorisis
_ _ 12\5'3_3 _17 solution is only known explicitly fon/m=1,1/2, and 2,_we .
e?ft: 6(2-\3)+(2-\3)———; (1:2). focused on 1:2 and 2:1 salts. The monovalent 1:1 situation
1+ has been investigated in Ref42,13. For a given salinity,

The i int is that thea d q . K nonlinear screening is more efficient with divalent than with
€ important point Is that thea dependence Is very weak .,y alent counterions. Accordingly, we always found

for ka>1, which reinforces the picture of constant potentialyjyner effective charges in the 2:1 than in the 1:2 situation.

objects. One may therefore consider a highly charged spheig - /singly, we found that 2:1 screening is even able to

as an effective body of potentiak®/ eor 6(2_Y3) KT/e de—_ drive the effective charge in a regime where it is higher than

pending on 2:1 or 1:2 asymmetry, irrespective of physicoyhe pare one. This overshooting effect happens in an inter-
chemlc_al parameters. In a 1:1 salt_, one gets a vakie el ediate charge range, since whag,. is large enoughZe

[8]. It is natural to find this quantity in between the twWo 51 rates. We finally emphasize that we have worked here
bounds &T/e and G2-v3)kT/e, since screening is all the iihin the Poisson-Boltzmann mean-field framework that ne-

more efficient as the valency of counterions is large and thgjects microionic correlations. For a discussion of the valid-

=6+ ;(2:),

1+ka’

valency of coions is lowin absolute valugs ity of such a picture, we refer to Sec. 7 of REf], and to the
For rod-like polyions, we get concluding section of Ref11].
7 \Ko(ka
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