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From a multiple scale analysis, we find an analytic solution of spherical and cylindrical Poisson-Boltzmann
theory for both a 1:2(monovalent coions, divalent counterions) and a 2:1(reversed situation) electrolyte. Our
approach consists of an expansion in powers of rescaled curvature 1/skad, wherea is the colloidal radius and
1/k the Debye length of the electrolytic solution. A systematic comparison with the full numerical solution of
the problem shows that for cylinders and spheres, our results are accurate as soon aska.1. We also report an
unusual overshooting effect where the colloidal effective charge is larger than the bare one.
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I. INTRODUCTION

Almost a century ago, the work of Gouy[1], followed by
that of Chapman[2], established the foundations of the
mean-field treatment of the electric double layer(Poisson-
Boltzmann theory). This approach served as a basis for com-
puting microionic correlations in a homogeneous electrolyte
[3], and later led to the prominent DLVO theory of colloidal
interactions[4]. An essential notion in this context is that of
charge renormalization[5–9]: at large distances, the electro-
static signature of a charged body(with chargeZbare) in an
electrolyte takes the same form as that of an effective mac-
roion with a suitable effective chargeZeff, the latter object
being treated within linearized Poisson-Boltzmann theory.
Only for small Zbare do effective and bare parameters coin-
cide (weak coupling limit). In general, one hasuZeffu
! uZbareu, which reflects the nonlinear screening effect of the
electric double layer around a colloid[10]. This nonlinear
regime, beyond the weak coupling limit but below the cou-
plings that would invalidate the mean-field assumption un-
derlying the approach, is precisely that which is relevant for
colloids (see, e.g., the discussion in Refs.[7,11]).

Recently, analytical expressions have been obtained,
within Poisson-Boltzmann theory, for the effective charges
of spherical and cylindrical macroions[12]. These predic-
tions for a unique macroion, immersed in an infinite sea of
monovalent electrolyte with inverse Debye lengthk, are ex-
act up to skad−1 corrections, wherea is the radius of the
macroion. For practical purposes, the predictions are accu-
rate as soon aska.1. In this paper, we consider the situa-
tion of spherical and cylindrical macroions in a charge asym-
metric electrolyte with both monovalent and divalent
microions. The asymmetry of electrolyte has noticeable con-
sequences on the structure of the electric double layer, and
the case of 2:1 electrolytes(i.e., with divalent coions and

monovalent counterions) turns out to differ much from the
1:2 situation(monovalent coion, divalent counterion). Our
analytical results—obtained from a multiple scale technique
[13]—neglectOskad−2 corrections for the electrostatic poten-
tial and, conversely,Oskad−1 terms for effective charges. By
an explicit comparison with the numerical mean-field results,
they will be shown to be precise wheneverka.1, as was the
case in Ref.[12]. In Sec. II the general method will be pre-
sented, and the electrostatic potential obtained. The results
concerning effective quantities will be given in Secs. III and
IV. Conclusions will be drawn in Sec. V.

II. QUASIPLANAR SOLUTION TO POISSON-BOLTZMANN
EQUATION FOR 2:1 OR 1:2 ELECTROLYTES

A. 2:1 electrolyte

We consider a cylindricals j =1d or sphericals j =2d colloid
of radiusa with surface charge densityes.0 immersed in
an electrolyte with coions(respectively, counterions) of va-
lency z1 (respectively,z2) and numeric densityn1 (respec-
tively, n2). Let us analyze in some detail the casez1=2, z2
=−1, hereafter referred to as 2:1.

As usual, we define the Debye lengthk−1

=s4plBoinizi
2d−1/2=s12pn2lBd1/2, the reduced electrical po-

tential y=bec, ands* =4plBsa. Here,lB denotes the Bjer-
rum length, defined from the permittivityx of the suspending
medium and the inverse temperatureb=1/skTd as lB
=be2/x. Using the method of multiple scales, closely fol-
lowing Ref. [13], the Poisson-Boltzmann equation

1

r j

d

dr
Fr j dy

dr
G = − 4plBn2se−2y − eyd, s2.1d

can be cast into

]2y

]x1
2 +

2e]2y

]x1]x2
+

e j

x2

]y

]x1
+ e2]2y

]x2
2 +

e2j

x2

]y

]x2
= −

1

3
se−2y − eyd,

s2.2d

with boundary conditions
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F ]y

e]x1
+
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]x2
G

x1=0,x2=1
= − s*, s2.3ad

lim
x1→`,x2→`

x2
j F ]y

e]x1
+

]y

]x2
G = 0. s2.3bd

Here, we have definede=skad−1, x1=ksr −ad, and x2=r /a.
We seek a solution as an expansion in powers ofe which is
supposed to be a small parameter:y=y0+ey1+¯.

The equation for the zeroth-order term is the Poisson-
Boltzmann equation for a planar interface

]2y0

]x1
2 = −

1

3
se−2y0 − ey0d, s2.4d

which was solved by Gouy in his pioneering work[1] (see
also Grahame[14]). The solution reads

y0sx1,x2d = lnS1 +
6q

s1 − qd2D , s2.5d

with the shorthand notationq= tsx2de−x1, which will be used
extensively in the following. Here,tsx2d is a function ofx2

which appears as a constant of integration(with respect to
x1), since in Eq.(2.4) the variablex2 does not appear. As
explained in Ref.[13], this function is determined by the
requirement that the nonhomogeneous part of the differential
equation for the next order,y1, decays faster thane−x1 when
x1→`. The equation fory1 reads

]2y1

]x1
2 −

1

3
s2e−2y0 + ey0dy1 = −

2]2y0

]x1]x2
−

j

x2

]y0

]x1
. s2.6d

The requirement that the right-hand side of Eq.(2.6) decay
faster thane−x1 leads totsx2d=Ax2

−j /2, with A a constant of
integration. We therefore have

q = Ax2
−j /2e−x1. s2.7d

Notice that the situation is exactly the same as in the 1:1
electrolyte case[13]; the zero-order solution in the quasipla-
nar approximation is obtained from the planar solution with
the replacement of the constant of integrationA by Ax2

−j /2.
Actually, this is a general result for any type of electrolyte,
since the right-hand side of Eq.(2.6) does not depend on the
microscopic constitution of the electrolyte, and whenx1
→` for any electrolyte the behavior ofy0 will be given by
the Debye-Hückel solution: cst3 tsx2dexps−x1d.

The constant of integrationA can be expressed as a func-
tion of the surface charge densitys* by enforcing the bound-
ary condition(2.3a) at the dominant order

U ]y0

]x1
U

x1=0,x2=1
= − s, s2.8d

where we have sets=es*. This gives a third-order equation
for A

6As1 + Ad
s1 − AdsA2 + 4A + 1d

= s. s2.9d

Its physical solution(which vanishes whens→0) can be
written as

A =
1

s
F− 2 −s+ 23/2s2 + s+ s2d1/2cosSu

3
DG , s2.10d

with

u = cos−1F− 4 − 3s− 3s2 − s3

Î2s2 + s+ s2d3/2 G . s2.11d

This constant has also been computed in the study of the
planar interface effective charges6A=4pseffd in Ref. [15],
although it is presented there in a slightly different(but com-
pletely equivalent) form.

Replacing the explicit expression(2.5) for y0 into Eq.
(2.6) gives for the order-one termy1 the following equation:

]2y1

]x1
2 −

1 + 27q2 + 16q3 + 27q4 + q6

s1 − qd2s1 + 4q + q2d2 y1

= −
12j

x2

q2sq3 + 3q2 + 3q − 1d
s1 − qd2s1 + 4q + q2d2 . s2.12d

Using the variableq instead ofx1 and performing the change
of function y1sx1,x2d= fsqd / fs1−qds1+4q+q2dg yields a
second-order linear differential nonhomogeneous equation
for fsqd with polynomial coefficients inq whose associated
linear homogeneous equation has the simple solutionfsqd
=qsq+1d, therefore allowing the complete solution of the
nonhomogeneous equation to be found using the traditional
method of “variation of the constant.” After some tedious but
otherwise straightforward calculations, we find the solution
satisfying the appropriate boundary condition(2.3b) at infin-
ity

y1sx1,x2d =

ksx2dqsq + 1d −
j

2x2
q2sq2 + 9q − 8d

s1 − qds1 + 4q + q2d
.

s2.13d

Again, there is a functionksx2d that appears as a constant of
integration with respect tox1 since there are no derivatives of
y1 with respect tox2 in Eq. (2.6). This function ksx2d is
determined[13] by the requirement that the nonhomoge-
neous part of the equation for the next order termy2 de-
creases faster thane−x1 whenx1→`
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]x1
+ y1

2sey0 − 4e−2y0d = ose−x1d.

s2.14d

This gives ksx2d=c1+3js j −2d / s4x2d, with c1 another con-
stant of integration, so finally the order-one solution is

y1sx1,x2d =
fc1 +

3js j−2d
4x2

gqsq + 1d − j
2x2

q2sq2 + 9q − 8d

s1 − qds1 + 4q + q2d
.

s2.15d

Applying the boundary condition(2.3a) to the next order ine
gives the equation]x1

y1+]x2
y0ux1=0,x2=1=0, and subsequently

determines the constant of integration

c1 = − j
2A6 + 12A5 + A4s34 + 3jd + 2A3s− 88 + 3jd + 6A2s− 7 + 3jd + 2As34 + 3jd + 3s2 + jd

4s1 + 2A + 6A2 + 2A3 + A4d
. s2.16d

The quantityA is given by Eq.(2.10). Both constantsA and
c1 are related to the effective charge of the colloid and there-
fore carry important physical information about the system.
Let us notice that at saturations→`, they take simple val-
ues:Asat=1 andc1

sat=−js3j −8d /4.

B. 1:2 electrolyte

The quasiplanar approximate solution of the Poisson-
Boltzmann equation for the casez1=1 andz2=−2 (1:2 elec-
trolyte) follows from similar calculations. We only report the
results. The zero-order termy0 reads

y0sx1,x2d = − lnS1 −
6q

sq + 1d2D , s2.17d

with q given by Eq.(2.7), and the order-one term is

y1sx1,x2d =
− qsq − 1dfc1 +

3js j−2d
4x2

g + j
2x2

q2sq2 − 9q − 8d

s1 + qds1 − 4q + q2d
.

s2.18d

Note that the solution for the 1:2 case is simply obtained
from the one for the 2:1 case by a global change of sign and
by replacingq by −q.

The constant of integrationA is again a solution of a
third-order equation which can be obtained from Eq.(2.9) by
a global change of sign and by replacingA by −A. However,
the physical solution is not the same as in the 2:1 case, and
now takes the form

A =
1

s
F− 2 +s+ 23/2s2 − s+ s2d1/2cosSu + 4p

3
DG ,

s2.19d

with u given by

u = cos−1F− 4 + 3s− 3s2 + s3

Î2s2 − s+ s2d3/2 G . s2.20d

The constant of integration for the order-one term is here

c1 = − j
2A6 − 12A5 + A4s34 + 3jd − 2A3s− 88 + 3jd + 6A2s− 7 + 3jd − 2As34 + 3jd + 3s2 + jd

4s1 − 2A + 6A2 − 2A3 + A4d
, s2.21d

with A given by Eq.(2.19). The saturationss→`d values of
these constants are now different. We haveAsat=2−Î3 and
c1

sat=−js28+3j −24Î3d /4.

C. Comparison between analytical and numerical
potential profiles

Gathering results, we obtain up to corrections of order
1/skad2, ysrd=y0srd+skad−1y1srd, where the auxiliary func-

tions y0 andy1 are given by Eqs.(2.5) and (2.15) in the 2:1
case, and by Eqs.(2.17) and (2.18) for 1:2 electrolytes. It is
instructive to compare the resulting predictions to the nu-
merical solution of Poisson-Boltzmann theory, obtained fol-
lowing the method of Ref.[16]. Figures 1 and 2 show that
already forka=2, the agreement is good. Although the po-
tential at contactysad is predicted accurately, we observe that
our theoretical expression slightly underestimates the
potential. A similar trend will be observed for effective
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charges—again for spheres—in Sec. III. In cylindrical geom-
etry, a slight overestimation may be found in the 1:2 case.

The parameters in Figs. 1 and 2 are chosen to be in the
nonlinear saturation regimeZbare@a/ lB. It is interesting to
notice that the relative error of our analytic solution from the
numerical one in the cases presented in Figs. 1 and 2 is of
order 3%, that is of orderskad−2/10. We have also studied
the linear regime,Zbare small, and in this case the error is of
larger order, 25%, i.e., of orderskad−2 [remember that in our
analytical solution we neglect terms of orderskad−2]. We
have also computed the relative error for other values ofka,
and the trend is general: in the linear regime the relative error
is of orderskad−2, but for the nonlinear saturation regime the
situation improves and the error is reduced by a factor of 10.
This makes our analytic solution practical since experimental
situations are often in the saturation regime where our solu-
tion is more accurate.

III. EFFECTIVE CHARGES

A. Spheres

The far-field r →` behavior of the solutionysrd=y0srd
+ey1srd+Ose2d, obtained in the last section, is

ysrd ,
r→`

Ae−ksr−adSa

r
D j /2S6 +

c1

ka
D + Ose2d. s3.1d

With this expression, we can deduce the effective charge. For
a spherical macroions j =2d of radiusa and chargeZeff, the
solution of linearized Poisson-Boltzmann theory(also re-
ferred to as Debye-Hückel theory) ¹2y=k2y reads

ysrd =
ZefflB
1 + ka

e−ksr−ad

r
. s3.2d

By comparison with expression(3.1), we conclude that the
effective charge is given by

Zeff
lB
a

= AF6ka + 6 +c1 + OS 1

ka
DG . s3.3d

The coefficientsA andc1 are given by Eqs.(2.10) and(2.16)
(2:1 electrolyte) or Eqs.(2.19) and(2.21) (1:2 electrolyte) in
terms of the bare chargeZbare by substitutings=eZbarelB/a.
Figures 3 and 4 compare the above analytical predictions to
the effective charge obtained from the far-field behavior of
the numerical solution of Poisson-Boltzmann theory, ob-
tained as explained in Ref.[16]. The agreement is satisfying,
and improves upon increasingka, as was anticipated.

One may readily check from Eq.(3.3) that in the limit
Zbare→0, Zeff /Zbare→1. Effective and bare parameters coin-
cide in the weak coupling limit, as they should(see the
dashed lines in Figs. 3 and 4). In the other limit, where
Zbare→`, we observe the saturation picture common to sev-

FIG. 1. Reduced electrostatic potentialysrd as a function of
rescaled distance for a spherical macroion in a 1:2 electrolyte. The
continuous curve shows the numerical solution of the problem, and
the crosses indicate the values found from Eqs.(2.17) and (2.18).
The inset shows the same data on a linear-log scale. Here,ka=2
and the reduced bare charge is very high:ZbarelB/a=2000.

FIG. 2. Same as Fig. 1 in a 2:1 electrolyte. Here,ka=2 and the
reduced bare charge isZbarelB/a=34.

FIG. 3. Effective vs bare charge for a spherical macroion in a
1:2 electrolyte(i.e., monovalent coions/divalent counterions). The
open circles are obtained from the full, nonlinear Poisson-
Boltzmann theory, while the continuous curve corresponds to the
analytical prediction given by Eq.(3.3). The dashed line has slope 1
and shows the initial linear regime for weak charges. The salinity
conditions here are such thatka=3, wherea is the sphere radius.
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eral mean-field theories[8,11]: the effective charge goes to a
plateau value that only depends on two dimensionless quan-
tities, a/ lB and ka. The effective charge at saturation(ob-
tained whens→`) takes a simple expression. For a 2:1 elec-
trolyte

Zeff
satlB

a
= 6ka + 7 +OS 1

ka
D , s3.4d

and for a 1:2 electrolyte

Zeff
satlB

a
= s2 −Î3df6ka − 11 + 12Î3 + Osedg

. 1.608ka + 2.623 +OS 1

ka
D . s3.5d

We note that the conditions of Fig. 1 are those of saturation.
These expressions are tested against the numerical data in

Figs. 5 and 6. The agreement is good forka.1. In Figs.5
and 6, an inset has been added to show the regime of low-ka
values where our approach breaks down. In this limit, the
observed divergence ofZeff

sat means that the bare charge is no
longer renormalized. As happens for monovalent electrolytes
[5], the saturated effective charge is a nonmonotonous func-
tion of ka that reaches its minimum forka.0.3. In the latter
1:1 case, we recall for completeness that the asymptotic ex-
pansionZeff

satlB/a=4ka+6 holds forka.1 [12].

B. Cylinders

For an infinitely long cylindrical colloid,j =1, with linear
charge densityel, the far-field solution(3.1) should be com-
pared to the one obtained from Debye-Hückel theory

ysrd =
2lBleff

ka

K0skrd
K1skad

,
r→`

2lBleff

ka

Î p
2kae−ka

K1skad Sa

r
D1/2

e−ksr−ad,

s3.6d

whereK0 andK1 are modified Bessel functions. We conclude
that the effective line charge density is given by

lefflB = AF3ka +
9

8
+

c1

2
+ OS 1

ka
DG . s3.7d

The explicit expression of the effective linear charge density
in terms of the bare linear charge densitylbare is obtained by
reportings=2elBlbare in the analytical expressions forA and
c1 given in Eqs.(2.10) and (2.16) (2:1 electrolyte) or Eqs.
(2.19) and(2.21) (1:2 electrolyte). Figure 7 shows the accu-
racy of our analytical expression, that turns out to be slightly
better in the 2:1 situation than in the 1:2 case(the reverse
observation follows from inspecting Figs. 5 and 6).

The effective charges at saturation are, for a 2:1 electro-
lyte

FIG. 4. Same as Fig. 3 for a 2:1 electrolyte(divalent coions,
monovalent counterions). As indicated, the main graph corresponds
to ka=2, while the inset shows results forka=5. FIG. 5. Effective charge at saturation in a 1:2 electrolyte for a

spherical colloid. The line shows the prediction of Eq.(3.5). The
circles again correspond to the numerical resolution of Poisson-
Boltzmann theory, and the dotted line between them is a guide to
the eye. The inset shows the same data in a log-linear scale.

FIG. 6. Same as Fig. 5 for a 2:1 electrolyte. The line shows the
prediction of Eq.(3.4).
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leff
satlB = 3ka +

7

4
+ OS 1

ka
D , s3.8d

and for a 1:2 electrolyte

leff
satlB = s2 −Î3dF3ka −

11

4
+ 3Î3 + OsedG

. 0.804ka + 0.655 +OS 1

ka
D . s3.9d

These simple expressions are plotted in Figs. 8 and 9, to-

gether with their counterparts obtained from the solution of
Poisson-Boltzmann theory, shown by symbols. When con-
verted into effective surface charge densitiesseff

sat, the previ-
ous results yield, up toskad−1 corrections

4palBseff
sat= 6ka + 7 s2:1, spheresd s3.10d

=6ka +
7

2
s2:1, rodsd, s3.11d

while in the planar case, one gets 4palBseff
sat=6ka+0. The

increase of the zeroth-order terms0,7/2,7d as the dimen-
sionality of the object increases, reflects the concomitant
weaker range of the bare Coulomb potential(−r in 1D,
−log r in 2D, 1/r in 3D…). Indeed, a weaker Coulomb con-
tribution leads to a weaker screening, hence a higher effec-
tive charge. A similar argument therefore explains the in-
crease of effective charges withka. For completeness, we
also give the 1:2 results

4palBseff
sat

s2 −Î3d
= f6ka − 11 + 12Î3g sspheresd s3.12d

=F6ka −
11

2
+ 6Î3G srodsd, s3.13d

and the same argument as above applies here equally.
It may be observed in Figs. 8 and 9 that in cylindrical

geometry, the saturated effective charge does not diverge in
the limit ka→0, as was the case for spheres due to entropic
reasons(Boltzmann beats Coulomb in this limit). With infi-
nite cylinders, this is no longer the case(a two-dimensional
situation is more favorable to Coulomb than a 3D one), and
leff

sat reaches a constant value for smallka (see the inset of
Figs. 8 and 9).

C. An overshooting effect

Although the effect is not very marked, it may be ob-
served in Fig. 4 thatZeff as a functionZbare has an inflection

FIG. 7. Effective line charge density as a function of its bare
counterpart, for a rod-like macroion. The line shows the prediction
of Eq. (3.7) and the symbols stand for the “exact” numerical values.
The main graph and the inset correspond to the same salinity con-
ditions ka=3, wherea is the cylinder’s radius.

FIG. 8. Saturated effective line charge of an infinite cylinder
with radius a in a 1:2 electrolyte. Line: Eq.(3.9) and symbols:
numerical solution. The inset is a log-linear plot. The arrow indi-
cates the valueÎ3/s2pd.0.275, obtained in theka→0 limit
[21,22].

FIG. 9. Same as Fig. 8 for a 2:1 electrolyte. The line corre-
sponds to Eq.(3.8).
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point, so that Zeff.Zbare in a given charge range
(0,Zeff,10a/ lB, where not only our prediction but also the
symbols showing numerical data lie above the dashed line).
This was unexpected since with a monovalent(1:1) electro-
lyte, the effective charge is always smaller than the bare one.
This overshooting effect occurs for spherical but also for
rod-like macroions. It requires a 2:1 salt for which the diva-
lent coions are expelled from the vicinity of the macroion,
which leads to a much weaker screening than in the reverse
1:2 situation. That this effect is able to imposeZeff.Zbare is
however surprising, and in order to check its robustness we
also investigated more asymmetric electrolytes numerically.
Figure 10 shows that for a 5:1 salt, the overshooting is more
pronounced and forZeff.10a/ lB, the effective charge may
be twice as big as the bare one.

Additional insight into this unexpected overshooting ef-
fect may be obtained from our analytical expressions for the
effective charges, Eqs.(3.3) and (3.7). For a small surface
charge densitys, in the 2:1 case, the quantitiesA and c1
involved in the expressions of the effective charges have a
Taylor expansion of the form

A =
s

6
+

s2

18
−

s3

216
+ Oss4d, s3.14ad

c1 = −
9

4
−

7s

3
+

13s2

24
+

10s3

9
+ Oss4d; rods, s3.14bd

c1 = − 6 −
14s

3
+

13s2

12
+

20s3

9
+ Oss4d; spheres.

s3.14cd

For rods, this gives the following behavior of the effective
linear charge density for small bare charge:

lefflB = lbarelB +
s2

6
Ska −

7

6
D −

s3

72
Ska +

17

12
D + Oss4d.

s3.15d

In this cases=2lbarelBskad−1. For spherical colloids, the be-
havior for small bare charges is

Zeff
lB
a

= Zbare
lB
a

+
3s2

9
Ska −

7

3
D −

s3

36
Ska +

17

6
D + Oss4d,

s3.16d

now with s=ZbarelB/ ska2d. Remembering that our analytical
solution is valid for large values ofka, we notice that in both
cases the coefficient of the term of order two in the bare
surface charge densitys is positive. This implies that the
effective charge will become larger than the bare charge in a
certain intermediate regime of values of the bare charge
when nonlinear effects start to become important(being nev-
ertheless far from the strongly nonlinear saturated regime
where the effective charge saturates). Let us mention that this
overshooting effect is also expected for a planar geometry,
since in that case the effective charge is essentially given by
A.

In contrast with this, in the case of a 1:2 electrolyte the
Taylor expansions ofA andc1 are similar to Eqs.(3.14) with
the formal replacements→−s andA→−A; in particular, the
sign of the orders2 in A changes sign. This gives the follow-
ing behavior for the effective charges:

lefflB = lbarelB −
s2

6
Ska −

7

6
D −

s3

72
Ska +

17

12
D + Oss4d

s3.17d

for rods, and

Zeff
lB
a

= Zbare
lB
a

−
3s2

9
Ska −

7

3
D −

s3

36
Ska +

17

6
D + Oss4d

s3.18d

for spheres. The coefficient ofs2 has changed sign with re-
spect to the 2:1 case. This coefficient is now negative, and
this implies that the effective charge will remain smaller than
the bare charge, thus no overshooting effect for the 1:2 elec-
trolyte case.

It is interesting to mention that for a symmetric 1:1 elec-
trolyte, the small bare charge behavior reads[12]

lefflB = lbarelB −
xr

3

4
Ska −

1

4
D + Osxr

5d s3.19d

for rods, withxr =lbarelB/ fka+s1/2dg and

Zeff
lB
a

= Zbare
lB
a

−
xs

3

2
Ska −

1

2
D + Osxs

5d s3.20d

for spheres, withxs=ZbarelB/ f2aska+1dg. Interestingly, there
is no term of order two in the bare charge as opposed to the
asymmetric electrolytes cases. The first correction to the lin-
ear term is of order three and it is negative. The effective
charge will be smaller than the bare charge: no overshooting
effect here either.

FIG. 10. Illustration of the overshooting effect, for a spherical
colloid in a 5:1 electrolyte, withka=2. The dashed line has slope 1
and the inset(a zoom of the bottom left corner) shows that for small
charges,Zeff is a convex-up function ofZbare.
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The first corrections to the linear theory are of order two
in the bare charge for asymmetric electrolytes, with the sign
of oaza

3na , za being the valency of speciesa and na its
density. On the other hand, for symmetric electrolytes, the
first correction is of order three in the bare charge. This im-
portant difference between symmetric and asymmetric elec-
trolytes also appears in others contexts, namely in the study
of the contributions due to correlations to the effective
charge, in a framework going beyond the mean-field ap-
proximation[17–19].

Finally, we mention that recent HNC integral equation
computations for the same systems as investigated here con-
firm the validity of the overshooting effect[20]. Explicit
comparisons with our predictions are under way[20].

IV. COLLOIDS AS CONSTANT POTENTIAL OBJECTS

Colloids are usually highly charged so that their effective
charge—within mean field—is saturated and therefore inde-
pendent of the bare one. Yet, the bare charge is often not
large enough to meet the region of high microionic electro-
static correlations where the mean-field approach would
break down[7,11]. This has led to the proposal to consider
highly charged colloids as objects of fixed effective potential
in the case of a 1:1 electrolyte[8]. Similar considerations
may be put forward here. From the analysis of Sec. III, the
surface potentialsy=ec / skTd associated with effective
charges read, for spheres

yeff
sat= 6 +

1

1 + ka
; s2:1d,

s4.1d

yeff
sat= 6s2 −Î3d + s2 −Î3d

12Î3 − 17

1 + ka
; s1:2d.

The important point is that theka dependence is very weak
for ka.1, which reinforces the picture of constant potential
objects. One may therefore consider a highly charged sphere
as an effective body of potential 6kT/e or 6s2−Î3dkT/e de-
pending on 2:1 or 1:2 asymmetry, irrespective of physico-
chemical parameters. In a 1:1 salt, one gets a value 4kT/e
[8]. It is natural to find this quantity in between the two
bounds 6kT/e and 6s2−Î3dkT/e, since screening is all the
more efficient as the valency of counterions is large and the
valency of coions is low(in absolute values).

For rod-like polyions, we get

yeff
sat= S6 +

7

2ka
DK0skad

K1skad
; s2:1d,

s4.2d

yeff
sat= S6s2 −Î3d + s2 −Î3d

6Î3 − 11/2

ka
DK0skad

K1skad
; s1:2d.

Expressions(4.1) and (4.2) are plotted in Fig. 11.

V. CONCLUSION

In conclusion, we have found an analytical solution of
cylindrical and spherical Poisson-Boltzmann equation in
asymmetric 1:2 and 2:1 electrolytes. Our approach amounts
to performing a curvature expansion, and neglects correc-
tions of order 1/skad2 for the electrostatic potential. For
ka.1, the corresponding solution and associated effective
charge are in excellent agreement with their counterparts ob-
tained from the full numerical resolution of the problem.

Our multiple scale analysis relies on the possibility to
solve analytically the planar problem(corresponding toka
→`d. Since for an:m electrolyte(wheren and m, respec-
tively, stand for the valency of coions and counterions), this
solution is only known explicitly forn/m=1,1/2, and 2, we
focused on 1:2 and 2:1 salts. The monovalent 1:1 situation
has been investigated in Refs.[12,13]. For a given salinityk,
nonlinear screening is more efficient with divalent than with
monovalent counterions. Accordingly, we always found
higher effective charges in the 2:1 than in the 1:2 situation.
Surprisingly, we found that 2:1 screening is even able to
drive the effective charge in a regime where it is higher than
the bare one. This overshooting effect happens in an inter-
mediate charge range, since whenZbare is large enough,Zeff
saturates. We finally emphasize that we have worked here
within the Poisson-Boltzmann mean-field framework that ne-
glects microionic correlations. For a discussion of the valid-
ity of such a picture, we refer to Sec. 7 of Ref.[7], and to the
concluding section of Ref.[11].
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FIG. 11. Effective potentials at saturation following from Eqs.
(4.1) and (4.2), as a function ofka. The limiting values forka
→` are shown by the dotted lines.
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