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Molecular dynamics simulations of vibrated granular gases

Alain Barrat* and Emmanuel Trizac†

Laboratoire de Physique The´orique (UMR 8627 du CNRS), Baˆtiment 210, Universite´ de Paris–Sud, 91405 Orsay Cedex, France
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We present molecular dynamics simulations of monodisperse or bidisperse inelastic granular gases driven by
vibrating walls, in two dimensions~without gravity!. Because of the energy injection at the boundaries, a
situation often met experimentally, density and temperature fields display heterogeneous profiles in the direc-
tion perpendicular to the walls. A general equation of state for an arbitrary mixture of fluidized inelastic hard
spheres is derived and successfully tested against numerical data. Single-particle velocity distribution functions
with non-Gaussian features are also obtained, and the influence of various parameters~inelasticity coefficients,
density, etc.! are analyzed. The validity of a recently proposed random restitution coefficient model is assessed
through the study of projected collisions onto the direction perpendicular to that of energy injection. For the
binary mixture, the nonequipartition of translational kinetic energy is studied and compared both to experi-
mental data and to the case of homogeneous energy injection~‘‘stochastic thermostat’’!. The rescaled velocity
distribution functions are found to be very similar for both species.

DOI: 10.1103/PhysRevE.66.051303 PACS number~s!: 81.05.Rm, 45.70.Mg, 45.70.2n, 51.10.1y
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I. INTRODUCTION

Due to the intrinsic dissipative character of interpartic
collisions, an energy supply is requested to fluidize a gra
lar gas. This is often achieved by a vibrating boundary, a
the resulting vibrofluidized beds provide nontrivial realiz
tions of nonequilibrium steady states. The understanding
such far from equilibrium systems requires a correct desc
tion of the energy exchange between the vibrating piston
the granular medium, as well as a macroscopic continu
theory to describe the evolution of the relevant coar
grained fields@1–3# ~density, temperature, etc.!. In particular,
the derivation of an accurate equation of state is a key ste
the hydrodynamic approach.

A simple, fair, and much studied theoretical framework
capture the inelastic nature of grain-grain collisions in
rapid granular flow is provided by the inelastic hard sph
model@4,5#. In this paper, we present the results of extens
molecular dynamics~MD! simulations of inelastic hard
spheres driven by an energy injection at the boundaries
both a one-component fluid~monodisperse case! and a bi-
nary mixture~bidisperse situation!. We analyze in detail the
effects of several parameters that may be difficult to tu
experimentally, with a particular emphasis on the profiles
the hydrodynamic fields.

This paper is organized as follows. In Sec. II, we pres
the model and derive an equation of state for an arbitr
mixture of inelastic hard spheres, going beyond the ideal
contribution in view of performing accurate hydrodynam
tests. The equation of state obtained is a natural genera
tion of its standard counterpart for elastic hard spheres.
following two sections~Secs. III and IV! are then devoted to
molecular dynamics simulations for one-component syste
and for binary mixtures. In both cases, we restrict oursel
to two-dimensional simulations, both for simplicity and f
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comparisons with two-dimensional~2D! experimental data
@6–9#. As in the experiments, the energy loss due to inela
collisions is compensated for by an energy injection by
brating or thermal walls, which leads to heterogeneous d
sity and temperature profiles. The various profiles and ve
ity distribution functions are studied and compared w
experiments whenever possible. Moreover, projecting the
namics onto the direction perpendicular to that of ene
injection allows one to assess the validity of the rand
restitution coefficient model proposed in Refs.@10,11#. The
influence of various parameters on the nonequipartition
energy in a binary mixture is studied in Sec. IV, and co
parison with experimental data and with the case of hom
geneous energy injection is performed. In this latter case,
velocity distribution functions are analyzed and shown to
very similar for the two species. Conclusions are finally p
sented in Sec. V.

II. THE MODEL—COMPUTATION OF AN EQUATION
OF STATE

We consider a mixture ofNs species of hard spheres i
dimensiond, with diameterss i and massesmi , where 1
< i<Ns . A binary collision between grains of speciesi and
j is momentum conserving and dissipates kinetic energy
the simplest version of the model, the collisioni -j is charac-
terized by one inelasticity parameter: the coefficient of n
mal restitutiona i j . Accordingly, the precollisional velocities
(v i ,v j ) are transformed into the postcollisional coup
(v i8 ,v j8), such that

v i85v i2
mj

mi1mj
~11a i j !~ŝ•v i j !ŝ, ~1!

v j85v j1
mi

mi1mj
~11a i j !~ŝ•v i j !ŝ, ~2!
©2002 The American Physical Society03-1
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A. BARRAT AND E. TRIZAC PHYSICAL REVIEW E 66, 051303 ~2002!
wherev i j 5v i2v j and ŝ is the center-to-center unit vecto
from particlei to particlej. Note thata i j 5a j i to ensure the
conservation of total linear momentummiv i1mjv j .

We also considered an extension of the previous mo
allowing for rotations, introducing a coefficient of tangent
restitution (a i j

t )P@21;1# @12#, see Appendix A: the colli-
sion law for smooth spheres~1!, ~2! is then recovered for
a i j

t 521, while complete reversal of the tangential comp
nent of the relative velocity is obtained fora i j

t 51. Values in
between correspond to a decrease of the absolute value o
tangential relative velocity, with reversal fora i j

t .0 and
without for a i j

t ,0.
Irrespective of the value of the tangential restitution co

ficient a t, the linear-momentum change for particlei in a
collision i -j reads

dpi52dpj52
mimj

mi1mj
~11a i j !~ŝ•v i j !ŝ. ~3!

In Appendix B, we use this relation to compute an equat
of state for the homogeneous isotropic mixture, invoking
virial theorem~the pressure is defined kinetically from th
momentum transfer and does not follow from a statisti
mechanics derivation!. The total density is denoted byr and
the partial densities byr i5xir ~the number fractionsxi are
such that( ixi51). The temperature of speciesi is Ti , de-
fined from the mean kinetic energy of subpopulationi: Ti

5^miv i
2&/d. Only for an elastic system is the energy eq

partition Ti5T,; i recovered@6,13–23#. It is found in Ap-
pendix B that the pressure in dimensiond reads

P5(
i

r iTi1rh2d21(
i , j

xixj

mj

mi1mj
~11a i j !Ti

s i j
d

^sd&
x i j ,

~4!

independent of a i j
t , where s i j 5(s i1s j )/2, ^sd&

5( ixis i
d , h is the packing fraction~e.g. h5pr^s3&/6 in
b
rs

n

s
o
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three dimensions!, and thex i j are the pair correlation func
tions at contact. The latter~unknown! quantities may be ap
proximated by their elastic counterparts~see Ref.@24# for a
general procedure to infer reliable pair correlation functio
in a multicomponentd-dimensional hard-sphere fluid from
the equation of state of the monodisperse system!. In the
following analysis, it will turn sufficient to include only the
low-density behavior,x i j 51, to improve upon the idea

equation of stateP5Pideal5( ir iTi , that holds forr→0
only. We emphasize that no approximation has been mad
the single-particle velocity distribution in the derivation
Eq. ~4! ~the key assumption is that the two-body distributi
function factorizes at contact in a product of the sing
particle distribution@25#!.

It is instructive to check the validity of our equation o
state by considering the elastic limit wherea i j 51 and Ti
5T. A straightforward calculation~under the reasonable an
often made assumption thatx i j 5x j i ) shows that the mas
ratio simplifies and expression~4! may be cast in the form

P

rT
511h2d21(

i , j
xixj

s i j
d

^sd&
x i j , ~5!

which is the correct result~see, e.g., Ref.@26#!. In particular,
for the single-species~monodisperse! problem, we recover
the virial relationP/(rT)5112d21hx. Note that Eq.~5!
corresponds to the equation of state put forward in Ref.@27#,
which thus neglects the inelasticity of the collisions and
associated breakdown of kinetic energy equipartition. On
other hand, our approach fully incorporates these two f
tures.

We finally generalize Eq.~4! to the situation of a continu-
ous size distribution, with a probability density distributio
W(s) ~normalized to 1 so that̂sn&5*snW); the tempera-
ture is, in general, a continuous functionT(s) of size and
P

r
5E W~s!T~s!ds1

h

2E dsds8W~s!W~s8!
ms8

ms1ms8

~11ass8!T~s!
~s1s8!d

^sd&
xss8 . ~6!
wo

re
f

e

of

e

In the following sections, the above equation of state will
used to test hydrodynamic predictions for a monodispe
system and for a binary mixture.

III. MOLECULAR DYNAMICS SIMULATIONS FOR THE
ONE-COMPONENT SYSTEM

A. Introduction

We have implemented molecular dynamics simulatio
with an event-driven algorithm forN spherical particles in a
two-dimensionalL3L box. Periodic boundary condition
are enforced in thex direction, while the energy loss due t
e
e

s

collisions is compensated by an energy injection by t
walls situated aty50 andy5L ~we consider the amplitude
of motion of the walls to be small so that their positions a
considered as fixed@1#, which avoids the complication o
heat pulses propagating through the system@28#!. We will
refer to they direction as the ‘‘vertical’’ one, although we ar
interested in regimes for which gravity can be neglected@7#
~i.e., when the shaking is violent enough!. The energy can be
injected in two ways:

~1! By thermal wallsthat impose a given temperature
orderT0 @29#. When a particle collides with the wall, its new
vertical ~along y) velocity is extracted at random from th
3-2
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MOLECULAR DYNAMICS SIMULATIONS OF VIBRATED . . . PHYSICAL REVIEW E66, 051303 ~2002!
probability distribution functionv/AT0 exp@2v2/(2AT0)#,
whereasvx is unaffected.

~2! By vibrating walls. For simplicity, we consider walls
of infinite mass moving in a sawtooth manner; all partic
colliding with a wall find it with the same velocityv0.0 at
y50, 2v0 at y5L. The particle-wall collisions are consid
ered elastic. A particle of velocityv with vy,0 colliding
with the bottom wall aty50 ~respectively,vy.0 at the up-
per wall! experiences its velocity change tov8 according to
vy852v02vy ~respectively,vy8522v02vy), whereas thex
component is unaffected (vx85vx).

In both cases, energy is injected in the vertical direct
only, and transferred to the other degrees of freedom thro
interparticle collisions. The vibrating walls being the situ
tion closer to the experimental one, most of our results w
be presented in this case, and the effect of injection mo
will be briefly discussed.

In this section, we consider the monodisperse case.
particles have the same massm(51), diameters, and res-
titution coefficientsa and a t. Most of the simulations are
done with N5500 particles, and some withN51000 par-
ticles ~low enough to avoid clustering or inelastic collaps!.
For our two-dimensional system, the local packing fract
at heighty, where the local density isr(y), is defined as
h(y)5pr(y)s2/4. The global~mean! packing fraction is
denotedh0 ; h05*0

Lh(y)dy/L.
Starting from a random configuration of the particl

~with the constraint of no overlap!, we let the system evolve
until a steady state is reached. Data on density and temp
ture profiles as well as on velocity distributions are mo
tored as time averages; the various quantities are aver
along thex direction since the system remains homogene
in this direction.

B. Density and temperature profiles

The first observations concern the density and temp
ture profiles: Figures 1 and 2 show that the density is low

FIG. 1. Density profiles for two normal inelasticities and tw
densities. In all cases, the number of particles isN5500. The sym-
bols correspond to the smallest density~the mean packing fraction
averaged over the whole system ish050.015) and the lines are fo
a higher density (h050.04). The ratioh(y)/h0 is also the ratio
r(y)/r0 of local density normalized by the mean one.
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near the walls, where the temperature is higher as expe
since energy is injected at the walls and dissipated in
bulk of the system@30#. The profiles are qualitatively simila
for thermal or vibrating boundaries. Moreover, the who
temperature profile is proportional to the temperatureT0 im-
posed by a thermal wall or to the square of the velocityv0 of
the vibrating boundary, while a change inT0 or v0 does not
change the density profile~not shown!. As the mean density
increases ora decreases, the profiles get more hetero
neous; asa t is increased, more energy is transferred to ro
tional degrees of freedom, so that the temperature decre
while the density profiles become slightly more peak
~Fig. 2!.

Figure 3 clearly shows another feature resulting from
energy injection into the vertical direction: the temperature
anisotropic, i.e.,̂ vx

2&Þ^vy
2&, with Ty.T.Tx . The anisot-

ropy A(y)5(Ty2Tx)/(2T) is larger at the boundaries
where energy is fed into the vertical direction, decreases
to interparticle collisions, and reaches a plateau in the mid
of the slab. The plateau value decreases for increasing n
ber of particles or increasing densities~not shown!, as in
experiments@8#; the global anisotropy profile and the platea
values are comparable to experimental values@8#.

C. Equation of state and hydrodynamics

The equation of state derived in Sec. II reduces, in
case of a two dimensional one-component homogeneous
tem, to the relation

P5rT@11~11a!hx#, ~7!

wherex, the pair correlation function at contact, depends

FIG. 2. Density profilesh(y)/h0 ~upward curves! and tempera-
ture profiles~downward curves! for a given normal restitution co-
efficient a50.9 and different tangential restitutions (N5500 par-
ticles, mean packing fractionh050.015). The temperature is th
total one~including horizontal and vertical degrees of freedom!; it
is expressed in arbitrary units but all curves correspond to the s
velocity of the vibrating piston. From top to bottom for the tem
peratureT(y) and from bottom to top for the density, the curve
correspond, respectively, toa t521, a t520.8, a t520.5, and
a t50.2.
3-3



fo

.
k

-

th

n
di
ne

as
t

l
g
at.
in
li-
of

s in

tate

e

nd-
; a
s as
ial

-

tal
-
is

py

A. BARRAT AND E. TRIZAC PHYSICAL REVIEW E 66, 051303 ~2002!
the packing fractionh. We will use the form x5(1
27h/16)/(12h)2, which has been shown to be accurate
elastic hard-disk liquids@31#.

The hydrodynamic equations~see Appendix C and Ref
@1#! lead to]yP50 in the absence of a flow field. We chec
in Fig. 4~a! the constancy ofP with y by plotting the ideal
gas contributionr(y)T(y) ~lines! andP(y) given by Eq.~7!
~i.e., ideal gas contribution plus Enskog correction!. While,
at small enough densities~not shown!, r(y)T(y) is constant
in the bulk (yP@0.2L,0.8L#), the Enskog correction is nec
essary for the densities used in Fig. 4~note that the density
can be quite larger in the middle of the system than at
boundaries!. We also note that the inelasticity term (11a) is
relevant, although small at the densities presented@the pro-
files of rT(112hx), not shown, display a less uniform
shape withy, the effect being stronger at larger densities#. In
all cases, boundary layers (y,0.2L and y.0.8L) are ob-
served@1# in which the pressure decreases. This discrepa
can be related to the anisotropy described in the prece
section~pressure and temperature are most anisotropic
the walls!.

FIG. 3. Temperature profile fora50.9 andh054%. The hori-
zontal temperatureTx , vertical tempratureTy , and the total tem-
peratureT5(Tx1Ty)/2 are shown. The inset shows the anisotro
factor A5(Ty2Tx)/(2T) as a function of height.
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The comparison with hydrodynamics may be improved
follows. The pressure tensorP is diagonal in the presen
no-flow situation, but has differentxx and yy components,
and the homogeneity along thex direction implies that the
condition of vanishing flow field“•P50 reduces to]yPyy
50. We therefore check in Fig. 4~b! that they-y component
of the pressure tensor, given by the equation of state~7! with
the total temperatureT5(Tx1Ty)/2 replaced by its vertica
componentTy , is uniform in the whole system. With Ensko
correction, the corresponding profiles are remarkably fl
This result could be tested in experimental situations
which bothTx andTy are measured. Such an analysis va
dates both the hydrodynamic picture and the equation
state proposed by automatically sampling several densitie
a single run.

At low densities, assuming the ideal gas equation of s
to hold, the hydrodynamic study of Ref.@1# ~recalled in Ap-
pendix C!, leads to the following analytical prediction for th
temperature profile:

y

L
5

j1sinhj cosh~jm2j!

jm1sinhjm
,

j5
jm

2
6cosh21SA T

T0
cosh

jm

2 D , ~8!

where T0 is the temperature at the boundaries andjm is
proportional to the total number of particles. The correspo
ing fits of the temperature profiles are shown in Fig. 5
good agreement is obtained, especially at lower densitie
expected@since the ideal gas equation of state is a cruc
ingredient in the derivation of Eq.~8!#. We use one fitting
parameterjm to obtainT/T0 @32#. Figure 4 showed that con
sideration of the ‘‘vertical’’ pressurePyy led to a better
agreement with hydrodynamic predictions than the to
Pxx1Pyy . A similar conclusion is incorrect for the tempera
ture profiles: the transport equation for the temperature
scalar@see Eq.~C2!#, and Eq.~8! holds for the totalT, not for
the verticalTy .
FIG. 4. Pressure given by the equation of state~7!. ~a! The symbols correspond toP5r(y)T(y)@11(11a)h(y)x(y)# ~see text!, where
T is the total temperature. The lines immediately below a given set of symbols show the ideal gas contributionr(y)T(y) only. For the three
situations investigated, the mean density is the same (h050.04). ~b! Same figure with the vertical temperatureTy instead ofT inserted in
the equation of state, yielding therefore theyy component of the pressure tensor.
3-4
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MOLECULAR DYNAMICS SIMULATIONS OF VIBRATED . . . PHYSICAL REVIEW E66, 051303 ~2002!
D. Velocity distributions

Because of the energy injection through the walls,
velocity distributions are anisotropic, anda priori depend on
the distance to the walls. The vertical velocity distributi
also depends on the nature of the walls as shown in Fig.
smooth distribution is obtained in the vicinity of a therm
wall, while the incoming and outcoming particles yield tw
separated peaks for vibrating walls~see also Ref.@1#!.

On the other hand, therescaledhorizontal velocity distri-
bution P(cx) ~with cx5vx /ATx) is remarkably independen
of the distance from the walls~outside the boundary layers!,
even if the temperature changes withy, at small enough den
sities ~this result was also obtained in Ref.@29#!. At larger
densities,P(cx) becomes slightly dependent ony, as also
seen in recent similar MD simulations@33#. Figure 7 shows
clearly non-Gaussian features similar to the experiment
observed ones@7,13,34#, with in particular overpopulated
both small-velocity and high-velocity regions. A slight d
pendence on the parameters is obtained:P(cx) broadens if
the inelasticity increases~i.e., if a decreases!, if a t increases,
or if h0 or N increase. Experimentally, the dependence
density or material properties is weak and difficult to me
sure@7# but seems to exist, in particular as far asN is varied
@9#. The angular velocity distributions, also displayed in F
7, share a similar non-Gaussian character and the sam

FIG. 5. Fits of the temperature profiles measured in MD w
the analytical expression~8!. The fits are shown with continuou
curves while the symbols stand for the MD measures. For cla
the fits are restricted to heightsL/2<y<0.8L.
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pendence with the parameters.
As density or inelasticity are further increased, cluster

phenomena may occur, leading to heterogeneities along tx
direction, with the coexistence of colder, denser regions w
hotter, less dense ones. The average over thex direction then
leads to artificially broadP(cx).

Finally, as a general rule, thermal walls lead to sligh
broader velocity distributions than vibrating walls.

E. Effective restitution coefficients

We now turn to the study of the effective inelasticitie
introduced in the context of a random restitution coefficie
~RRC! model @10,11#: even if the restitution coefficienta is
constant, the energy is injected in the vertical direction a
transferred to other degrees of freedom through collisions
that the effective restitution coefficient for collisions pro
jected onto thex direction,

a1d5
v12,x8

v12,x
, ~9!

may be either smaller or larger than 1~see Ref.@3# for a
related discussion!.

Values ofa1d have been experimentally measured@9,11#

y,

FIG. 6. Probability distribution function of the vertical velocit
componentcy5vy /ATy for different heights. By definition,̂cy

2&
51, whatever the altitudey. Here,h050.04,N5500, a50.9, and
a t50.
-

-

FIG. 7. ~a! Probability distri-
bution function of the rescaled
horizontal velocity componentcx

5vx /ATx, on a linear-log plot.
Hereh050.015,N5500, a50.9
~pluses!, 0.8 ~stars!, and a t50.
The solid line is the Gaussian with
unit variance, the circles corre
spond to experimental data@7,9#
for steel beads.~b! Probability dis-
tribution function of the angular
velocities for the same param
eters.
3-5
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A. BARRAT AND E. TRIZAC PHYSICAL REVIEW E 66, 051303 ~2002!
and shown to display a broad probability distributionm(a1d)
very similar for various materials and densities. We ha
measureda1d for many collisions and thus obtained its di
tribution, displayed in Fig. 8 together with experimental da
for steel and glass beads. A remarkable agreement is fo
@35#, with a broad range of possible values fora1d . Our
study shows, in particular, thatm(a1d) displays aa1d

22 tail
for a1d.1, irrespective ofa, a t, and density.

The importance of the correlations betweena1d and the
relative velocityg5v12/A2T of the colliding particles has
been emphasized in Ref.@11# and is revealed by the compu
tation of m(a1dugx), the distribution ofa1d being condi-
tioned by a given value ofgx ; although no precise exper
mental determination of the conditionalm(a1dugx) could be
achieved in Ref.@11#, strong evidences for a sharp cuto
}1/gx at large values ofa1d were provided and the form
m(a1dugx)}exp@2(a1dgx)

2/R# at large a1d has been pro-
posed. The conditionalm(a1dugx) obtained in the presen
MD simulations confirm the above picture; they are d
played in Fig. 9 and show an exp@2(a1dgx)

2/R# decrease for
the case of vibrating walls~closer to the experimental situa
tion!, and a broader form exp@2(a1dgx)/R8# for thermal walls.
Moreover, althoughm(a1d) is not sensitive to the variou
parameters, the cutoffR increases@i.e., leads to broade
m(a1dugx)] if a decreases, and ifa t or h0 increases.

FIG. 8. Probability distribution function of effective one
dimensional restitution coefficientsa1d . The MD results are com-
pared to the experimental measures of Feitosa and Menon@9# on
steel and glass samples~for which the nominal restitution coeffi
cient may be considered close to 0.9).
05130
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Finally, theenergyrestitution coefficient

b5
uv128 u
uv12u

~10!

may also be viewed as a random variable that can take va
larger than unity due to energy transfers between rotatio
and translational degrees of freedom@9,11#. Figure 10 dis-
plays the probability distribution function~PDF! r(b) ob-
tained in the MD simulations for various values ofa t, to-
gether with the experimental data of Refs.@9,11# for steel
beads.r(b) becomes wider asa t is increased, but the ex
perimental distribution is broader, which may be traced ba
to the fact that in the experiments mentioned above,
beads can rotate in three dimensions, whereas our sim
tions are limited to 2D rotations.

The evolution with the parameters of the distributionsm,
r, and of the velocity PDFP(cx) are clearly linked in our
simulations: broader conditionalm(a1dugx) corresponds to
broader velocity distributions; for instance, both broaderm
and P(cx) are obtained ifa decreases, or, at fixed param
eters, if vibrating walls are replaced by thermal walls. Th
connection is in agreement with the phenomenology put
ward in the context of the effective RRC model@10,11#. In
the RRC approach, thed-dimensional system with energ
injection along a preferential direction is replaced by

FIG. 10. Probability distribution function of energy restitutio
coefficientsb. Various tangential restitution coefficientsa t are con-
sidered fora50.9 andh051.5%. The circles represent the expe
mental data for steel grains@9#.
g
-

)

FIG. 9. ~a! Conditional PDF
of a1d for a given valuegx of
order unity. Note the different
shapes for thermal and vibratin
walls. ~b! Same, but as a func
tion of (a1dgx)

2 ~and gx

5 0.2,0.5,1.0,1.5,2.0,3.0,4.0,5.0
for vibrated walls with a50.9,
a t50, andh050.015.
3-6
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FIG. 11. ~a! The symbols show the pressure calculated from the complete equation of state for a binary mixture~11! including Enskog
correction, while the lines immediately below display the ideal gas contributionr1(y)T1(y)1r2(y)T2(y) to the pressure. The three sets
curves correspond to:upper set, h050.015, a1150.9, a1250.8, a2250.7, m155m2; middle set, h050.04, a1150.9, a1250.8, a22

50.7, m153m2; lower set, h050.04, a1150.7, a1250.8, a2250.9, m153m2. ~b! Same curves, where the temperatures are the ver
ones (Ti ,y) instead of the totalTi5(Ti ,x1Ti ,y)/2, yielding therefore theyy component of the pressure tensor.
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(d21)-dimensional projectedeffectivesystem in which the
restitution coefficient is a random variable@10# correlated
with the relative velocities of the colliding particles@11#. In
the present situation,d52 and the effective model is on
dimensional. Although the real projected collisions are
stochastic, one effectively injects at each collision a rest
tion coefficient randomly chosen from the distributio
m(a1dugx). Takingm as an input for the model, close to th
experimental data, one obtains velocity distributions as o
put, in good agreement with the experimental ones. The
betweenm andP(cx) can be studied@11#, and broader con-
ditional distributions m(a1dugx) yield broader P(cx) ~at
largecx , compared to the Gaussian!, as in our more realistic
simulations.

IV. MOLECULAR DYNAMICS SIMULATIONS FOR THE
BINARY MIXTURE

In this section, we investigate the properties of vibra
binary mixtures; such systems have recently attracted m
attention, both on the experimental@6,13,14# and theoretical
sides@15–23,36,37#. In particular, the breakdown of energ
equipartition between the two constituents of the mixture
been thoroughly investigated.

The main difference with previous studies consists her
the realistic character of both MD simulations~as opposed to
Monte Carlo methods! and the energy injection mechanis
at the boundaries; the setup is the same as in the prece
section, with, however, two types of particles, with mas
m1 , m2, and sizess1 , s2. The three normal restitution co
efficients~corresponding to the three possible types of co
sions! are a11, a125a21, a22. In the context of a forcing
mechanism through a random external force@25,38#, it has
been shown that the influence of size ratio on the temp
ture ratio measuring the energy nonequipartition was ra
weak @17# compared to that of inelasticity parameters
mass ratio. We shall consequently limit our study to identi
sizess15s2 in two dimensions, which corresponds to th
experimental situation we will refer to@6,9#. For simplicity,
the tangential restitution coefficientsa i j

t are also taken equa
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As in the monodisperse case, we measure den
and temperature profiles, velocity distributions, as w
as the temperature ratiosg(y)5T2(y)/T1(y), gx(y)
5T2,x(y)/T1,x(y), gy(y)5T2,y(y)/T1,y(y). Some compari-
son with experimental data@6,9# will be proposed wheneve
possible.

A. Equation of state

We first test the equation of state~4! in Fig. 11. As in the
monodisperse case, the Enskog correction is clearly relev
even at low global densities, since the density profiles re
relatively high values fory.L/2. It is, however, sufficient to
truncate the equation of state at second virial order, wh
amounts to taking the low-density limiting valuex i j 51 for
the pair correlation functions at contact:

P.r1T11r2T21
ps2

2~m11m2!
@~11a11!r1

2m2T1

1~11a12!r1r2~m1T21m2T1!1~11a22!r2
2m1T2#.

~11!

Moreover, the boundary layer in which the anisotropy
strong is still apparent if the global temperaturesT1 andT2
are used, while use of the vertical ones (T1,y andT2,y), sug-
gested by the anisotropy of temperatures and pressure
the monodisperse case, leads to a uniformyy component of
the pressure tensor in the whole system. The functional
pendence of pressure upon densities is therefore accur
reproduced by the equation of state~11!.

Although we have not extended the hydrodynamic a
proach of Breyet al. @1# to binary mixtures~it would be
possible making use of the Navier-Stokes-like equations
rived in Ref. @36# where only the overall temperature ass
ciated with both species serves as a hydrodynamic field,
where the transport coefficients explicitly depend on te
perature ratio!, we see in Fig. 12 that the temperature profi
can be fitted, at low density, by the form~8!. We emphasize
that there is no fundamental reason for the agreement.
quality of the fit is much better for the less massive partic
3-7
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A. BARRAT AND E. TRIZAC PHYSICAL REVIEW E 66, 051303 ~2002!
whose density is more homogeneous across the system~see
the following!. For simplicity, we have used the shortha
notation a i j 50.7;0.8;0.9 for the situation wherea1150.7,
a1250.8, anda2250.9.

B. Nonequipartition of translational kinetic energy

The density and temperature profiles are displayed
various values of the parameters in Figs. 13 and 14.
more massive particles~labeled 1!, which display a more
heterogeneous profile and are denser in the middle of
cell, have typically larger kinetic energies than the ligh
ones; generically,g5T2 /T1 is smaller than 1, as in homo
geneous mixtures@16,17#. The study of they dependence o
g shows thatg increases from the boundaries to the cente
the system, and is constant across a wide range ofy even if
T1 andT2 vary significantly. As also experimentally show
in Ref. @6#, g is very close to 1 ifm15m2, even if the

FIG. 12. Temperature profiles for an equimolar granular m
ture, driven by vibrating walls. The symbols show the MD me
sures, and the lines are fits to the analytical expression derived
the single-component case. In all cases, the particle 1~the heaviest!
has massm153m2; its temperatureT1 corresponds to the two
lower sets.
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inelasticities of the particles are different. It decreases if
mass ratio increases~Fig. 13!, but displays only a very weak
~but strikingly similar to experimental data! sensitivity on the
global density~Fig. 15! as well as on the relative densities
heavy and light particles; moreover,g may increase or de
crease ash1,0/h2,0 is increased~see Fig. 16!, depending on
the relative inelasticities.

The anisotropy in the temperatures yield an anisotropicg;
we obtain,gx.g.gy , as in experiments@9#, also with dif-
ferent shapes.gx decreases from the walls to the center wh
g andgy increase~Fig. 15!. All these results are in very goo
agreement with the existing experimental results for tw
dimensional vibrated mixtures@6,9#. We summarize in
Tables I and II some of the effects reported here.

-
-
or

FIG. 14. Density profiles and temperature ratio profiles~binary
mixture, vibrating walls!. The lines correspond toa i j

50.7;0.8;0.9, whereas the symbols are associated with ‘‘reve
inelasticities a i j 50.9;0.8;0.7. The other parameters area t50,
m153m2 , h1,05h2,0, and h052h1,050.015. The upper flatter
curves~dashed line and stars! show the temperature ratio. As in Fig
13, the density of heavy particlesr1 ~thick continuous curve and
circles! is more peaked and denser in the middle of the cell than
of light grains~thin continuous curve and squares!.
e
e

FIG. 13. ~a! Vertical profiles for a binary mixture withm153m2 , h050.015, a i j 50.85, N5500, and equal mean densitiesh1,0

5h2,0 ~excitation by vibrating walls!. From bottom to top: temperature profiles of both species, density profilesh2(y)/(2h0) and
h1(y)/(2h0). Sinces15s2, the packing fractionh i is proportional to the local densityr i of speciesi. The upper dashed curve shows th
temperature ratiog5T2 /T1 as a function of height, and the circles show the same quantity for a nonequimolar mixture wherh1,0

58h2,0. ~b! Same with a higher mass ratiom155m2.
3-8
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FIG. 15. Effect of density on the temperature ratio form153m2 , a i j 50.9;0.8;0.7~vibrating walls!. ~a! shows the total ratioT2 /T1 and
~b! shows the ratio of horizontal temperaturesT2,x /T1,x . In both cases, the corresponding experimental measures are shown in the ins
a steel-glass mixture~at different densities, but with a density ratio of 2, close to that of the MD simulations 0.04/0.015.2.6). The purpose
is to show that the changes induced by density in MD are qualitatively the same as in the experiments.
f r

e
is

n
te

u

rd
ul

he

a
u-

n

am-
ons
sing

in-
ses,

-

-

of

ti
When rotations are included~and thusa t.21), g de-
creases. Moreover, the ratio of rotational kinetic energiesg r
can then be measured. As shown in Tables I and II,g r takes
values of the same order asg. This quantity may also be
computed from experimental data, although measures o
tational velocities area priori more difficult than that of
translational ones.

The measured values ofg are of the same order as th
experimental data. We do not however try to obtain a prec
numerical agreement for the following reasons:

~i! In the experiments of Ref.@6#, the beads can rotate i
three dimensions, whereas the simulated spheres rota
two dimensions only. Sincea t has a strong effect ong, we
suspect that this difference between experiments and sim
tions may affectg. Moreover, the experimental value ofa t is
not known, and the precise validity of the inelastic ha
sphere model with a tangential restitution coefficient sho
be assessed

~ii ! Different energy injection mechanisms~thermal vs vi-
brating walls, homogeneous driving vs injection at t

FIG. 16. Influence of number fraction on the temperature ra
T2 /T1. The total number of particles isN5N11N25500 ~vibrat-
ing walls!. Given that s15s2 , N1 /N258 corresponds toh1,0

58h2,0.
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boundaries! lead to different values ofg. Even if the energy
injection by vibrating walls is reasonably realistic, such
sensitivity ofg renders its precise numerical prediction el
sive.

Nonetheless, thequalitative very good agreement, eve
for subtle effects~see, e.g., Fig. 15!, between numerics and
experiment, and the possibility to change the various par
eters in the simulations allow us to make some predicti
on the effect of various parameters. For example, increa
the mass ratio should yield smaller values ofg ~Fig. 13!.
Moreover, Fig. 14 makes it clear that the value ofg, at given
mass ratio, is smaller for inelasticitiesa i j 50.9;0.8;0.7 than
with ‘‘reverse’’ inelasticities a i j 50.7;0.8;0.9. This effect
was already noted in Ref.@17# and has the following intuitive
interpretation: when the more massive particles are more
elastic, they lose more energy, their temperature decrea
which results in a higherg. We therefore predict that in the
context of the experiments reported in Ref.@6#, a mixture of
steel and aluminum (asteel'0.9,aal'0.83,msteel'3mal)
should yield a smaller value ofg than the brass-glass mix
ture (abrass'0.8,aglass'0.9,mbrass'3mglass) for which the
measuredg is close to 0.6–0.7. The dependence ofg upon
number fractionxi5r i /r may, on the other hand, be coun
terintuitive: at a given mean densityr0, an increase of the
relative fractionx1 of heavy particles leads to an increase
g when the heavy particles are the more elastic~see Fig. 16!.

TABLE I. Values of g, gx , g r in the middle of the system for
N5500, a i j 50.85, h1,05h2,0, m153m2 ~first three lines!, and
m155m2 ~last three lines!.

a t g gx g r

21 0.88 0.92
20.5 0.825 0.89 0.83

0 0.79 0.86 0.8
21 0.79 0.845
20.5 0.7 0.78 0.69

0 0.65 0.74 0.66

o

3-9
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This effect was also clearly observed for the homogeneo
heated mixture@17#. On the other hand, an increase ofx1

leads to a relatively weak decrease ofg when the heavier
particles are the less elastic, whereas the opposite~albeit also
quite weak! trend could be observed in Ref.@17#.

C. Velocity distributions

As in the monodisperse case, we have measured
single-particle velocity distributions, which are anisotrop
as expected. The vertical velocity distributions are similar
those shown in Fig. 6, and the horizontal velocity distrib
tions show strong non-Gaussian features, as in the mono
perse case. Moreover, it appears in Fig. 17 that the resc
velocity distributions P1(cx) and P2(cx) are very close
~even if not equal, see also Ref.@23#! for both types of par-
ticles. The differences betweenP1(cx) and P2(cx) increase
if the inelasticities or the mass ratio increase.Pi(cx) depend
slightly on the various parameters, in the same way as
velocity distributions of the monodisperse situation; this d
pendence would probably be very difficult to measure in
experiment, which would probably lead to the conclusi
that P1(cx)'P2(cx) .

TABLE II. Values of g, gx , g r in the middle of the system fo
N5500, a i j 50.9,0.8,0.7~first three lines!, and a i j 50.7,0.8,0.9
~last three lines!, m153m2 , h1,05h2,0.

a t g gx g r

21 0.735 0.775
20.5 0.69 0.735 0.735

0 0.665 0.72 0.72
21 0.95 1.0
20.5 0.89 0.99 0.84

0 0.85 0.96 0.81

FIG. 17. Probability distribution functions of the rescaled ho
zontal velocity componentsci ,x5v i ,x /ATi ,x, for an equimolar mix-
ture. Squares are forP1 ~heavy grains! and circles forP2 ~light
grains!. Hereh050.015,N5500, a i j 50.9,0.8,0.7,m153m2, and
a t50. The solid line is the Gaussian with variance 1.
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V. CONCLUSION

In this study, we have considered vibrated granular ga
outside the Boltzmann limit of~very! low densities. The mo-
lecular dynamics simulations performed are free of the
proximations underlying the usual kinetic theory or hydrod
namic approaches. Taking due account of the first correc
to the ideal gas contribution in the equation of state~second
virial order!, we, however, found a remarkable constantyy
component of the pressure tensor over the whole cell,
monodisperse or bidisperse systems, despite the strong
sity and temperature heterogeneities due to the realistic
ergy injection mechanism.

The study of the velocity distributions along the horizo
tal direction ~perpendicular to the energy injection! has re-
vealed non-Gaussian features similar to experiments, wh
depend weakly on the various parameters involved in
model.

The projection of the dynamics onto the horizontal dire
tion has allowed us to gain insight into the correlations b
tween the effective restitution coefficienta1d and the relative
velocitiesgx of colliding particles. The measured condition
probability distributionsm(a1dugx) are in agreement with
the forms proposed in Ref.@11#, based upon partial experi
mental data. The link betweenm(a1dugx) and the velocity
probability distribution functions@11# has been confirmed.

In the case of binary mixtures we have analyzed the ra
of granular temperatures as a function of the various par
eters, and found a very good qualitative agreement with
periments. The velocity distributions of the two compone
have, moreover, been shown to be very similar.
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APPENDIX A: INCLUSION OF A TANGENTIAL
RESTITUTION COEFFICIENT

In this appendix we give the collision rules when a ta
gential restitution coefficient is introduced~see also Ref.
@12#!. The two colliding particles labeled (1) and (2) hav
masses mi , diameters s i , and moment of inertiaI i

5miqs i
2/4 ~with q51/2 for disks and 2/5 for spheres!. The

precolliding velocities arev i ,vi , and postcolliding veloci-
ties are denoted with primes.

The normal unit vector is defined as

ŝ5
r12r2

ur12r2u
. ~A1!

The relative velocity of the contact point,

g5v12v22S s1

2
v11

s2

2
v2D3ŝ, ~A2!

has normal componentgn5(g•ŝ)ŝ and tangential compo
nent gt5g2gn ~this defines the tangential unit vectort̂
5gt /ugtu.
3-10
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MOLECULAR DYNAMICS SIMULATIONS OF VIBRATED . . . PHYSICAL REVIEW E66, 051303 ~2002!
The postcollisional velocities can be expressed simply
terms of the precollisional velocities through the introducti
of the linear momentum change of particle(1),

DP5m1~v182v1!52m2~v282v2!. ~A3!

Indeed, the change of angular momentum is

2I i

s i
~vi82vi !52ŝ3DP. ~A4!

One obtains

v185v11
DP

m1
, ~A5!

v285v22
DP

m2
, ~A6!

vi85vi2
s i

2I i
ŝ3DP. ~A7!

The normal and tangential components ofDP are then com-
puted using the definition of the normal and tangential co
ficients of restitution:

gn852agn , ~A8!

gt852a tgt . ~A9!

Sincegn5@(v12v2)•ŝ#ŝ, the first relation leads to

DP•ŝ52
m1m2

m11m2
~11a!~v12v2!•ŝ. ~A10!

Using the definition ofgt , and with I i5miqs i
2/4, one also

obtains
05130
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gt85gt1DPtS 1

m1
1

1

m2
D S 11

1

qD , ~A11!

whereDPt5(DP• t̂) t̂. Finally,

DP52
m1m2

m11m2
S ~11a!gn1

11a t

111/q
gtD . ~A12!

APPENDIX B: EQUATION OF STATE FOR A
POLYDISPERSE INELASTIC MIXTURE

In this appendix, we adopt a kinetic definition of the tot
pressure and compute this quantity for an arbitrary homo
neous mixture of speciesi, with number fractionxi5r i /r.
Invoking the virial theorem, the excess pressurePex5P
2Pideal5P2( ir iTi is related to the collisional transfer o
linear momentum: the partial excess pressure of specii
reads~see, e.g., Ref.@39#!

Pi
ex5 lim

t→`

1

dV

1

t (
j ,collisional partner of i

r i j •dpi ~B1!

5 lim
t→`

1

dV

1

t (
j ,collisional partner of i

mi mj

mi1mj
~11a i j !

3~ŝ•v i j !s i j where s i j 5
s i1s j

2
. ~B2!

In these equations, it is understood that the summation r
over all the collision events involving a particle of typei and
an arbitrary partnerj, in a large volume of measureV. The
collisional transfer appearing in Eq.~B2! is readily computed
within Enskog-Boltzmann kinetic theory, where the veloc
distribution functionsw i(v) obey the set of nonlinear equa
tions,
] tw i~v1 ,t !5(
j 51

Ns

x i j s i j
d21njE dv2E dŝQ~ŝ•v12!~ŝ•v12!F 1

a i j
2

w i~v1* !w j~v2* !2w i~v1!w j~v2!G , ~B3!

where Q denotes the Heaviside distribution and (v1* ,v2* ) are the precollisional velocities converted into (v1 ,v2) by the
collision rules~1! and ~2!. Equation~B2! may be rewritten as

Pi
ex5

1

2d (
j 51

Ns

x i j s i j
d21njE dv1dv2E dŝ Q~ŝ•v12!~ŝ•v12!w i~v1!w j~v2!

mimj

mi1mj
~11a i j !~ŝ•v12!s i j . ~B4!

Summing the contributions of all species, the total excess pressure follows:

Pex5
1

2d (
i , j

x i j s i j
d ninj

mimj

mi1mj
~11a i j !E dv1dv2E dŝ Q~ŝ•v12!~ŝ•v12!

2w i~v1!w j~v2! ~B5!

5
1

2d (
i , j

x i j s i j
d ninj

mimj

mi1mj
~11a i j !F E dŝ Q~ŝ•v̂12!~ŝ•v̂12!

2G E dv1dv2~v1
21v2

2!w i~v1!w j~v2!, ~B6!
3-11
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A. BARRAT AND E. TRIZAC PHYSICAL REVIEW E 66, 051303 ~2002!
wherev̂12 is the unit vector alongv12, and where the con
tribution from the dot productv1•v2 vanishes by symmetry
in the last integral. The integral over the solid angleŝ is
related to the volumeVd of a sphere with diameter 1:

E dŝ Q~ŝ•v̂12!~ŝ•v̂12!
25

pd/2

dG~d/2!
52d21Vd ,

~B7!

whereG is the Euler function and it is understood thatv̂12
denotes an arbitrary unit vector in Eq.~B7!. The volumeVd
is itself related to the packing fractionh through h
5rVd^s

d&. From the definition of kinetic temperature
*v2w i(v)dv5dTi /mi , we get

Pex5rh2d22(
i , j

x i j xixj

mimj

mi1mj
~11a i j !S Ti

mi
1

Tj

mj
D s i j

d

^sd&
,

~B8!

from which we deduce the equation of state~4!. In this last
step, no approximation~e.g., Gaussian, etc.! is made con-
cerningw i . On the other hand, the computation of any oth
moment (ŝ•v12)

p than p52 requires the detailed knowl
edge of the velocity distributions@25#. It is also noteworthy
that the decoupling of velocitiesv1 andv2 in Eq. ~B6! is a
specific property of the momentum transfer, which sign
cantly simplifies the calculation.

APPENDIX C: HYDRODYNAMICS

In this appendix, we recall the hydrodynamical approa
considered by Breyet al. @1#, and adapt it to the case o
energy injection at both boundariesy50 andy5L. The situ-
ation investigated in Ref.@1# is that of a vibrating wall aty
50 and a reflecting wall aty5L, so that the temperatur
and density gradients vanish aty5L. In our no-flow con-
figuration with two vibrating walls, the gradients vanish b
symmetry in the middle of the cell (y5L/2), so that restrict-
ing to yP@0,L/2# allows us to use directly the expressio
derived in Ref.@1# ~which amounts to the formal identifica
tion y→2y andN→2N). For completeness and clarity, w
will, however, adapt the argument to our geometry.

In the case of a stationary system without macrosco
velocity flow, the hydrodynamic equations reduce to

“•P50, ~C1!

2

rd
“•q1Tz50. ~C2!

Here P is the pressure tensor,q is the heat flux, andz the
cooling rate due to the collisional energy dissipation. In
Navier-Stokes approximation for a low-density gas descri
by the Boltzmann equation modified to account for the
elastic nature of collisions@40#,
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P5PI , ~C3!

q52k“T2m“r, ~C4!

whereP is the ideal gas pressureP5rT. The explicit ex-
pressions of the heat conductivityk, the transport coefficien
m, and cooling ratez may be found in Ref.@1#. The impor-
tant ingredient is thatm is proportional toT3/2/r and k to
AT, while z}p/AT, with coefficients depending on the in
elasticitya.

The system is considered homogeneous in thex direction,
so that only gradients along they direction are taken into
account. We emphasize that the ideal gas equation of s
(P5rT) is assumed, and this simplification is an importa
ingredient in the following derivation. The previous equ
tions then reduce to

]P

]y
50, ~C5!

2A~a!

dr

]

]y SAT
]T

]y D2pAT50. ~C6!

In order to simplify the equation on the temperature, it
convenient to introduce a new variablej, defined by

dj5Aa~a!
dy

l~y!
5Csd21Aa~a!r~y!dy, ~C7!

where l(y)5@Csd21r(y)#21 is the mean free path (C
52A2 for d52), anda(a) includes all the dependence i
a. Equation~C6! now reads

]2

]j2
AT5AT. ~C8!

The variablej takes values between 0 andjm , with jm

}N. ThenAT5A exp(2j)1Bexp(j), whereA andB depend
on the boundary conditions. In the case of two vibrati
walls, the solution is symmetric with respect toy5L/2 ~or
j5jm/2). With T(0)5T(jm)5T0, one obtains

T~j!5
T0

sinh2jm

@sinh~jm2j!1sinhj#2. ~C9!

It is possible to integrate dj5Csd21Aa(a)n(y)dy
5Csd21Aa(a)pdy/T(y) to obtainy(j) andP:
3-12
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P5
T0

2Csd21LAa~a!cosh2
jm

2

~jm1sinhjm!, ~C10!

y

L
5

j1sinhj cosh~jm2j!

jm1sinhjm
. ~C11!

Those equations are the same as for the case of one vibr
wall @1#, but with jm→2jm andL→2L, as expected on the
P.

nt

ns
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basis on the symmetry argument proposed above. It is p
sible to invertT(j) and therefore to obtain the profilesy(T)
~two symmetric branches!:

j5
jm

2
6cosh21SA T

T0
cosh

jm

2 D , ~C12!

y

L
5

j1sinhj cosh~jm2j!

jm1sinhjm
. ~C13!
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