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Probabilistic ballistic annihilation with continuous velocity distributions
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We investigate the problem of ballistically controlled reactions where particles either annihilate upon colli-
sion with probability p, or undergo an elastic shock with probability 12p. Restricting to homogeneous
systems, we provide in the scaling regime that emerges in the long time limit, analytical expressions for the
exponents describing the time decay of the density and the root-mean-square velocity, as continuous functions
of the probabilityp and of a parameter related to the dissipation of energy. We work at the level of molecular
chaos~nonlinear Boltzmann equation!, and using a systematic Sonine polynomials expansion of the velocity
distribution, we obtain in arbitrary dimension the first non-Gaussian correction and the corresponding expres-
sions for the decay exponents. We implement Monte Carlo simulations in two dimensions, which are in
excellent agreement with our analytical predictions. Forp,1, numerical simulations lead to the conjecture
that unlike for pure annihilation (p51), the velocity distribution becomes universal, i.e., does not depend on
the initial conditions.

DOI: 10.1103/PhysRevE.69.011303 PACS number~s!: 45.05.1x, 05.20.Dd, 82.20.Nk
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I. INTRODUCTION

We consider an assembly of particles that move freely
d-dimensional space between collisions, where only t
body collisions are taken into account. The purpose of
paper is to present a model that unifies both the dynamic
annihilation@1–5# and of hard-sphere gases@6# using a con-
tinuous parameterpP@0,1#, the probability that two par-
ticles annihilate when they touch each other@7#. In the lim-
iting casep51, we recover pure annihilation dynamics, a
for p50 the system of hard spheres. In our system in
limit p→0, p.0 ~denotedp→01), a particle will collide
elastically many times before being annihilated. Thus
particles have a diffusinglike motion before annihilating.

Another extensively studied class of problems is the o
of diffusion-limited annihilation in which diffusing particle
annihilate on contact with a given rate@8–10#. The simplest
case corresponds to the reactionA1A→B.

The number of particles decays, in the long time regim
as a power lawn(t);t2j. The decay exponent can be e
actly computed@11# and is j5min(1,d/2), whered is the
dimension of the system. However, the time decay expon
for the density found in our case whenp→01 are different
from the exponents found in diffusion-limited systems. T
reason for this difference is that the underlying microsco
mechanisms responsible for diffusion are different. In o
case, particles which have a bigger velocity modulus hav
bigger annihilation rate than the slow particles. The veloc
dependence of the annihilation rate is not present in the u
diffusion-limited annihilation.

It was recently shown@5# that in the long time limit, the
annihilation dynamics for dimensions higher than one is
equately described by the nonlinear Boltzmann equat
This may be understood in a qualitative way by the fact t
the density of the gas decays as a function of time, so tha
packing fraction~which is the total volume occupied by th
particles divided by the total volume of the system! de-
creases, and the role played by correlations~recollisions! be-
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comes neglectible. The Boltzmann equation thus beco
relevant at late times. With this phenomenology in mind,
conjecture that in the case of probabilistic ballistic annihi
tion, the Boltzmann equation adequately describes the
namics forp.0. Forp50, the resulting elastic hard sphe
system would be correctly described by Boltzmann’s eq
tion in the low-density regime only@6,12#.

The paper is organized as follows. In Sec. II, we fi
introduce the Boltzmann kinetic equation describing t
probabilistic annihilation dynamics of a homogeneous s
tem in the scaling regime, which corresponds to asympt
cally large times. We then provide analytical expressions
the exponentsj andg governing the algebraic time decay o
the particle density and the root-mean-square velocity,
spectively. Next, we give the first non-Gaussian correct
a2 to the rescaled velocity distribution by means of a Son
polynomial expansion. This allows to give explicit expre
sions for the exponentsj andg up to the first correction in
a2. Section III shows the results of direct Monte Carlo sim
lations ~DSMC! that are in very good agreement with th
analytical results. In the insight of those simulations w
clarify the ambiguities following from the analytical compu
tation of a2 @13# and select the simplest and most accur
relation fora2. It is numerically shown that unlike for pure
annihilation, the first Sonine correction for 0,p,1 does not
depend on the parameterm characterizing the initial distri-
bution f for small velocities: limuvu→0f (v;t50)}uvum. We
also show analytical and numerical evidence that the con
ture put forward in Ref.@4# according to which the exponen
j54d/(4d11) becomes exact in the limiting casep→01

@4#. Finally, Sec. IV contains our conclusions.

II. BOLTZMANN KINETIC EQUATION

A. Scaling regime

We consider a system made of spheres of diametes
moving ballistically ind-dimensional space. If two particle
©2004 The American Physical Society03-1
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touch each other, they annihilate with probabilityp and thus
disappear from the system. With probability 12p, they un-
dergo an elastic collision. The precollisional velocitiesvi**
and the postcollisional onesvi are related in the latter case b

v1** 5v12~v12•ŝ!ŝ, ~1a!

v2** 5v21~v12•ŝ!ŝ, ~1b!

wherev125v12v2 is the relative velocity of two particles
and ŝ a unit vector joining the centers of the grains. W
consider only two body collisions. The initial spatial distr
bution of particles is supposed to be and assumed to rem
homogeneous.

Let f 1(v1 ;t) be the instantaneous single particle distrib
tion function inRd. The Boltzmann equation for our homo
geneous system free of forcing reads@5#

]

]t
f 1~v1 ;t !52psd21E dv1dv2dŝu~ŝ• v̂12!

3~ŝ•v12! f 1~v1 ;t ! f 1~v2 ;t !1~12p!I c~ f 1 , f 1!,

~2!

where u is the Heaviside distribution,v̂125v12/v12, and

v125uv12u. The integration with respect todŝ runs over the
solid angle. The first term on the right-hand-side of Eq.~2!
describes the annihilation dynamics, and the second one
elastic shocks: the collision termI c reads

I c~ f 1 , f 1!5sd21E dv1dv2dŝu~ŝ• v̂12!~ŝ•v12!

3@ f 1~v1** ;t ! f 1~v2** ;t !2 f 1~v1 ;t ! f 1~v2 ;t !#.

~3!
n
r

io
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We are searching for an isotropic scaling solution of t
homogeneous system, where the time dependence of the
tribution function is absorbed into the particles densityn(t)
and in the typical velocityv̄(t)5A2^v2&/d, where ^v2& is
the mean squared velocity. This imposes the scaling fo
@5,14#

f 1~v;t !5
n~ t !

v̄d~ t !
f̃ ~c!, ~4!

where the rescaled velocity is given byc5v/ v̄(t). By con-
struction,* f̃ 51.

B. Decay exponents in the scaling regime

By integrating Eq.~2! overv1 with weights 1 andv1
2, we

obtain the number density and energy time evolution

dn

dt
52pv~ t !n, ~5a!

d~nv̄2!

dt
52pav~ t !nv̄2, ~5b!

where the collision frequencyv is given by

v~ t !5n~ t !v̄~ t !sd21E dc1dc2dŝ~ŝ•c12!u~ŝ•c12! f̃ ~c1!

3 f̃ ~c2!, ~6!

and the energy dissipation parametera by
a5

E dc1dc2dŝ~ŝ•c12!u~ŝ•c12!c1
2 f̃ ~c1! f̃ ~c2!

F E dcc2 f̃ ~c!GF E dc1dc2dŝ~ŝ•c12!u~ŝ•c12! f̃ ~c1! f̃ ~c2!G . ~7!
g

We made use of the fact that the elastic dynamics does
contribute to the decay of energy or density, thus the integ
tion over the elastic collision term vanishes. The resolut
of Eqs.~5! follows the method of Ref.@5# and we obtain

n

n0
5S 11p

11a

2
v0t D 22/(11a)

, ~8a!

v̄

v̄0

5S 11p
11a

2
v0t D (12a)/(11a)

, ~8b!
ot
a-
n

where v05v(t50) and v̄05 v̄(t50). We conclude from
this result that the dynamics are up to the time rescalint
→t/p ~and importantly up to the numerical value ofa) the
same as the ones obtained for pure annihilation@5#. The de-
cay exponents are given byn(t)}t2j and v̄(t)}t2g, with

j5
2

11a
, ~9a!

g5
a21

a11
. ~9b!
3-2
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The scaling exponents consequently satisfy the constraij
1g51.

C. Rescaled kinetic equation

Inserting the scaling form~4! in Eq. ~2! and making use of
Eqs.~8!, we obtain after some algebra

^c12&F11
12a

2 S d1c1

d

dc1
D G f̃ ~c1!

5 f̃ ~c1!E
Rd

dc2uc12u f̃ ~c2!2
12p

p

1

b1
Ĩ ~ f̃ , f̃ !,

~10!

where

Ĩ ~ f̃ , f̃ !5E
Rd

dc2E dŝu~ŝ• ĉ12!~ŝ•c12!@ f̃ ~c1** ! f̃ ~c2** !

2 f̃ ~c1! f̃ ~c2!# ~11!

and

b15E
Rd

dŝu~ŝ• v̂12!~ŝ• v̂12!5
p (d21)/2

G@~d11!/2#
, ~12!

G being the gamma function. In Eq.~10!, the angular brack-
ets denote average with weightf̃ : for a given function
q(c1 ,c2),

^q&5E dc1dc2q~c1 ,c2! f̃ ~c1 ,c2! . ~13!

Making use of the identity@14#

E
Rd

dcckS d1c
d

dcD f̃ ~c!52k^ck&, ~14!

and integrating Eq.~10! overc1 with weightc1
k , one obtains

a511
2

k S ^c12c1
k&

^c12&^c1
k&

21D 1
12p

p

2

kb1

mk

^c12&^c1
k&

;k>0,

~15!

wheremk52*Rddc1c1
k Ĩ ( f̃ , f̃ ) anda5^c12c1

2&/(^c12&^c1
2&) is

the energy dissipation parameter.

D. First non-Gaussian correction

The solution of the Boltzmann equation for pure anni
lation dynamics (p51) is non-Gaussian in several aspec
The tail of the distribution is overpopulated@5#, and devia-
tions from the Gaussian behavior may also be observed
the velocity origin@4,5#. It is thus reasonable to think that th
velocity distribution function obtained upon solving Eq.~10!
will show similar deviations. To study the correction close
the origin, it is convenient to apply a Sonine expansion
the distribution functionf̃ (c) @15#
01130
-
.

ar

r

f̃ ~c!5M~c!F11(
i>1

aiSi~c2!G , ~16!

where M(c)5p2d/2exp(2c2) is the Maxwellian distribu-
tion, and Si(c

2) the Sonine polynomials. Due to the con
straint ^c2&5d/2, the first correctiona1 vanishes@14#. For
our purposes, it is sufficient to push the truncation of expr
sion ~16! to second order, whereS2(x)5x2/22(d12)x/2
1d(d12)/8. In order to computea anda2, one may follow
the method used for inelastic granular gases in Ref.@14#: we
may use the hierarchy~15! for k52 andk54 to obtain a
system of two equations for the two unknownsa and a2.
The calculations are, however, tedious and it appears us
to consider the alternative method that consists in invok
the limit of vanishing velocities of Eq.~10! @5#. Indeed, since
we expect that the tail of the exact solution for the distrib
tion function differs significantly from M(c)@1
1( i>1aiSi(c

2)#, the computation of low order moments o
f̃ should give a more accurate result. From Eq.~1!,

^c12&F11d
12a

2 G f̃ ~0!5 f̃ ~0!^c1&2
12p

p

1

b1
lim

c1→0
Ĩ ~ f̃ , f̃ !.

~17!

We see that the limit in Eq.~17! involves moments of a
lower order thanm4. Neglecting the correctionsai , i>3,
the computation of the latter limit gives~see the Appendix!

lim
c1→0

Ĩ ~ f̃ , f̃ !5
SdM~0!

2Ap
F12d

2
a21

d~d12!

16
a2

2G , ~18!

whereSd52pd/2/G(d/2) is the surface of thed-dimensional
sphere. Inserting Eq.~18! in Eq. ~17!, one obtains a relation
betweena anda2 that is supplemented with that correspon
ing to k52 in Eq. ~15!, in order to finally obtaina anda2.
To this end, we make use of the various relations betw
moments of the velocity distribution and the fourth cumula
a2 derived in Ref.@5#. To linear order ina2, the correspond-
ing system reads

a511
2

d S 12
A2

2 D 1a2

A2

2d F1

8
2

12p

p
~d21!G , ~19!

a5
^c12c1

2&

^c12&^c1
2&

511
1

2d
1a2

1

8 S 21
3

dD1O~a2
2!, ~20!

where use has been made of the relationm250 ~the elastic
shocks conserve the total kinetic energy of the collidi
pairs!, which consequently eliminatesp in the second rela-
tion. However, as was shown in previous works@13,16#,
there are some ambiguities arising from the linearization p
cedure, which may affecta2 if this quantity is not small
enough. We have thus solved the full nonlinear problem,
then in order to have a simpler expression ofa2, chosen the
linearizing scheme that yields the closest result~the differ-
ence does not exceed 10%) to the nonlinear solution. It tu
out as well that this scheme is the closest one to the num
cal simulations of Sec. III. This correction is given by
3-3
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a2~p!58
322A2

4d162A21
12p

p
8A2~d21!

. ~21!

In the limiting case of pure annihilationp→1, one recovers
the result of Ref.@5#.

Inserting this result into the definition Eqs.~9!, we obtain
the decay exponentsj andg512j. In the limit p→01, we
note thata2 vanishes, as may have been anticipated:
velocity distribution then becomes close to its elastic Ma
wellian counterpart that holds forp50. In this limit, the
decay exponent isj54d/(4d11), as conjectured in Ref
@4#. We emphasize that the limitp→0 is singular: j is
bounded from above by 4d/(4d11) for anyp.0, whereas
j vanishes forp50. It is therefore important to excludep
50 from the limit p→0 in order to get well behaved limit
ing expressions.

III. SIMULATION RESULTS

We implement a DSMC scheme in order to solve t
Boltzmann equation. The algorithm may briefly be describ
as follows. We choose at random two different partic

$ i , j %. If their velocity is such thatv5vi j •ŝ.0, they may
collide. Time is subsequently increased by (N2v)21, where
N is the number of remaining particles. With probabilityp
the two particles are then removed from the system, and w
probability 12p their velocity is modified according to Eqs
~1!. For more details on the method see Refs.@5,17–19#. As
the number of particles decreases, the statistics at late t
suffers from enhanced noise. It is thus necessary to ave
over many independent realizations.

In dimension one, the dynamics of annihilation crea
strong correlations between particles@2#. This precludes a
Boltzmann approach that relies on the molecular chaos
sumption. We will thus focus on numerical simulations
two-dimensional systems, and we expect the role of corr
tions to diminish when the dimensionality increases.

A. First Sonine correction

Making use of the relation betweena2 and the fourth
cumulant of the rescaled velocity distribution@16#

a25
4

d~d12!
^c4&21, ~22!

we show in Fig. 1 the numerical values of the first Son
correctiona2 for different values ofp. The agreement with
Eq. ~21! is good in most cases.

It turns out that the discrepancy between Eq.~21! and
DSMC is mainly due to the limit method of computinga2.
This method yields a very precise distributionf̃ in the rel-
evant region of interest in the framework of a Sonine po
nomial expansion, namely, the small velocity region. On
other hand, it is less accurate in the less interesting h
velocity region, hence the discrepancy@13#.
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B. Decay exponents

Plotting the densityn/n0 ~and the root-mean-squared v
locity v̄/v0) as a function of timet on a log-log plot gives the
decay exponents~see Fig. 2!. The numerical results are in
agreement with the analytical predictions obtained from
set of Eqs.~19! and ~20! that is inserted in Eq.~9!. The
predicted power-law behavior is observed over several
cades, as shown by Fig. 3 forp50.5. In Fig. 4, we show tha
the scaling relationj1g51 is well obeyed for all values o
p. Such a relation holds in fact independently of the mole
lar chaos assumption underlying the Boltzmann equation

FIG. 1. First Sonine correctiona2 from the analytical estimate
~21! and from DSMC as a function of the annihilation probabilit
for d52. The initial number of particles is 53106, and each value
is obtained from approximately 104 independent runs. The result
are not sensitive to the initial velocity distribution. However, t
convergence process is much faster starting from a Gaussian d
bution.

FIG. 2. The decay exponentsj andg ~inset! in two dimensions,
obtained analytically from Eqs.~19! and ~20! that are inserted in
Eq. ~9!, and from DSMC~symbols!. The initial number of particles
is 53106, and the number of independent runs approximately 1
The values of the exponents are not very sensitive to the probab
p. The horizontal line shows the Maxwellian analytical prediction
zeroth order ina2, i.e., j and g from Eqs. ~19! and ~9! with a2

50.
3-4
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C. Evolution toward the asymptotic distribution

In order to have a more precise understanding and a
racy check of our results, it is useful to study the veloc
distribution in the scaling regime. Indeed, the distributi
may be adequately described by the Sonine correctiona2 at
late times only. Before the scaling regime is reached,
velocity distributionf̃ (c1) is time dependent. A very precis
check consists in studying the evolution of the no
Gaussianities. To this end, it is useful to consider numeric
the quantityf̃ (ci)/M(ci)511a2S2(ci). Figure 5 shows the
evolution of f̃ (ci)/M(ci) for different times corresponding
to different densities, starting from an initial Gaussian dis
bution.

It turns out that both methods of computinga2 @directly
using its definition in terms of the fourth cumulant~22! or

FIG. 3. The time dependence in two dimensions ofn and v̄
~inset! on a logarithmic scale forp50.6 and a Gaussian initia
velocity distribution, showing a clear power-law behavior. T
straight line is the linear interpolation giving the decay expone
N0(N) is the initial ~remaining! number of particles. We have de

notedv0 the initial root-mean-square velocityv̄. The same quantity
is denotedv for t.0. The deviation observed for large times is d
to the low number of remaining particles.

FIG. 4. Numerical verification of the relationj1g51 in two
dimensions for different values ofp. Note they scale.
01130
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using f̃ (ci)/M(ci)] are fully compatible numerically. How-
ever, the latter method requires much more extensive si
lations. It is instructive to investigate the evolution towa
the asymptotic solution starting from different initial distr
butions, which are characterized by their behavior near
origin. To this extent we define the exponentm by the be-
havior f̃ (c).ucum for c→0. Figure 6 shows the non
Gaussianities of the evolution towards the scaling funct
for an initial distribution characterized bym53, and Fig. 7
for m523/2.

For both initial distributionsm53 andm523/2, the so-
lution is attracted toward a scaling function characterized
m50. Hence, there is a qualitative difference betwe
probabilistic annihilation and pure annihilation. Indeed,
was shown in a previous work that for pure annihilationm is
conserved@4#, and more importantly thatm indexes the
‘‘universality classes’’ of this process~two distributions with

t.

FIG. 5. Plot of f̃ (ci)/M(c1) at different times corresponding t
different densities, forp50.5. The initial number of particles is 2
3107 and there are approximately 105 independent runs. The initia
distribution is Gaussian and thus corresponds to the flat curve.
continuous curve is the analytical prediction 11a2S2 with a2 given
by Eq.~21!. The inset shows a magnification of the small velociti
region.

FIG. 6. Same as Fig. 5, but for an initial distribution such th
m53.
3-5
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the samem are characterized by the same long time expon
j). Obviously, adding the effect of elastic collisions in th
dynamics of probabilistic annihilation violates the conser
tion of m. Next, the question is to know whether th
asymptotic distribution depends onm or not. We conse-
quently show in Fig. 8 the ratiof̃ (m50)(c1)/ f̃ (m53)(c1)5(1
1a2

(m50))/(11a2
(m53)).

The ratio tends to unity, which implies thata2
(m50)

5a2
(m53) . Moreover, we checked that for the negative va

m523/2, the same conclusion holds. The convergenc
however slower due to the divergence of the initial distrib
tion near the velocity origin. We thus conjecture that not o
the first Sonine coefficient of probabilistic annihilation b
also the full velocity distribution~and hence, all decay expo
nents! show an universal property in the sense that they
not depend on the initial velocity distribution if 0,p,1.
This is a nontrivial result since it was shown that this is n
true in the case of pure annihilationp51 @4#.

FIG. 7. Same as Fig. 5, but for an initial distribution such th
m523/2 and initially 43107 particles.

FIG. 8. Plot of f̃ (m50)(c1)/ f̃ (m53)(c1) for three different times,
andp50.5. We see that for late times the ratio of the two distrib
tions tends to unity, which leads to the conjecture that the fi
Sonine correctionsa2 are the same in both casesm50 andm53.
The results reported here correspond to particularly extensive s
lations ~note the vertical scale!.
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Finally, in order to clarify the relevance of the scalin
function, we studied the fourth cumulanta2 as a function of
N0 /N, for the same parameters as those in Figs. 5–7.
result is shown in Fig. 9. The fact thata2 reaches a plateau
indicates that the system enters a scaling regime at late tim
For m523/2 ~Fig. 7!, due to the initial central peak, th
initial distribution is extremely different from its late tim
asymptotic counterpart, so that the transient evolution ta
longer and the plateau regime is only approached. Finall
may be observed in Fig. 9 that for the three initial conditio
the fourth cumulants converge to the same value. This
further illustration of the universal behavior discussed abo

IV. CONCLUSIONS

A system made of spherical particles moving freely
d-dimensional space was studied. When two particles c
lide, they annihilate with probabilityp or undergo an elastic
collision with probability 12p. We gave empirical argu-
ments for the relevance of the Boltzmann description in t
system. We obtained analytically the decay exponents of
density of particles and of the root-mean-squared velocity
terms of the energy dissipation parametera. It turns out that
upon rescaling time according tot→t/p, p.0, the formal
structure of the decay equations is the same as in the ca
pure annihilationp51.

In the scaling regime~which emerges in the long time
limit !, the first Sonine correctiona2 to the Maxwellian dis-
tribution was obtained as a function of the continuous para
eter p. This allows to establish an explicit relation for th
decay exponents. It was shown that in the limitp→01, the
exponentj governing the decay of particles,n(t)}t2j, is
given by j54d/(4d11), thereby confirming a conjectur
put forward in Ref.@4#.

Numerical simulations~DSMC! in two dimensions are in
agreement with the analytical correctiona2(p). Moreover,
the analytical values for the decay exponents obtained f
the first correctiona2 are in good agreement as well wit
numerics. The relationj1g51 was shown to hold for all
values ofp. The study of the dynamics of non-Gaussianiti

t

-
t

u-

FIG. 9. Plot ofa2 as a function of the densitiesN0 /N for dif-
ferent values ofm. There are approximately 53104 independent
runs.
3-6
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embodied ina2S2 reveals a qualitative difference with pur
annihilation dynamics: the parameterm describing the smal
velocity behavior of the rescaled distribution is not co
served for probabilistic annihilation when 0,p,1. Numeri-
cal results for different values ofm lead to conjecture the
universality of the rescaled velocity distribution in this pr
cess~this universality being lost for pure annihilation onl
i.e., for p51).
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APPENDIX: CALCULATION OF THE LIMIT c1\0 OF
THE COLLISION TERM Ĩ

This quantity may be obtained as a particular case o
previous calculation@13#. The result is the following. We
define the loss termĨ l and gain termĨ g by
.

e

01130
-

d
s
-

a

Ĩ l52 lim
c1→0

E
Rd

dc2E dŝu~ŝ• ĉ12!~ŝ•c12! f̃ ~c1! f̃ ~c2!,

~A1a!

Ĩ g5 lim
c1→0

E
Rd

dc2E dŝu~ŝ• ĉ12!~ŝ•c12! f̃ ~c1** ! f̃ ~c2** !,

~A1b!

so that lim
c1→0

Ĩ ( f̃ , f̃ )5 Ĩ l1 Ĩ g . Within the framework of the

Sonine expansion~16! and neglecting the coefficientsai , i
>3, the calculation of the latter integrals gives

Ĩ l52
SdM~0!

2Ap
F11a2

d~d12!

8 G S 12
a2

8 D , ~A2!

Ĩ g5
SdM~0!

2Ap
F11a2

d222d13

8
1a2

2 3d~d22!

64 G ,
~A3!

whereSd52pd/2/G(d/2) is the surface of thed-dimensional
sphere, andG the Gamma function. Summing Eqs.~A2! and
~A3! leads to the result given by Eq.~18!.
t
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