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Density functional theory study of electric potential saturation: Planar geometry
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We investigate the possibility of electrostatic potential saturation, which may lead to the phenomenon of
effective charge saturation. The system under study is a uniformly charged infinite plane immersed in an
arbitrary electrolyte made up of several microspecies. To describe the electric double layer, we use a generic
local density functional theory in which the local microionic density profiles are arbitrary functions of the local
electrostatic potential. A general necessary and sufficient condition is obtained for saturation, whereby the
electrostatic potential created by the plane becomes independent of its bare charge, provided the latter is large
enough. As a consequence, for most situations, the following simple and practical sufficient condition follows:
if, as the electric potentialc→`, the local theory predicts that the highest valency counterions density
diverges ascn with some n.1 or faster, then the electrostatic potential will saturate. Otherwise, if the
counterion density diverges asc or slower, or does not diverge asc→`, the electric potential will not
saturate. Using this condition, we investigate the possibility of the saturation phenomenon within the frame-
work of recent theories proposed in the literature to describe electrical double layer beyond the Poisson-
Boltzmann description.
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I. INTRODUCTION

The importance of effective charge in colloidal or pol
electrolyte suspensions has been recognized for some
@1–8#. The electric potential far from a colloid immersed
an electrolyte defining the inverse screening lengthk takes
the same form as the solution of the linearized Debye-Hu¨ckel
equation—say l BZeffe

2k(r 2R)/@(11kR)r # for a charged
sphere of radiusR—but with a prefactorZeff which is differ-
ent from the bare chargeZbareof the colloid. In the previous
expression,r is the distance from the center of the sphere
interest andl B5q2/(«kBT) is the Bjerrum length, defined
from the elementary chargeq and the permittivity« of the
solvent ~the molecular structure of which is neglected!. An
interesting feature that occurs in the framework of~nonlin-
ear! Poisson-Boltzmann theory@9# is that for highly charged
colloids, the effective chargeZeff saturates to a finite valu
Zsat @7,10#. Interestingly, this saturation value is an upp
bound for effective charges found within more refined a
proaches that incorporate the microionic correlations
glected in Poisson-Boltzmann theory@11#. We will come
back to the validity of the latter approach in the concludi
section.

Since Poisson-Boltzmann is a mean field theory, th
have been several proposals to go beyond that approxima
and try to include effects such as microions excluded volu
@12–14# or electrostatic correlations between microions@15#.
A natural question arises. Under which conditions a giv
theory will account for the saturation phenomenon? We w
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not give here a definite answer to this question in its f
generality. However we will consider the special case of
cal theories—theories which provide a local relationship
tween the density of microions and the electric potentia
and give a necessary and sufficient condition under wh
the electrostatic potential of an infinite charged plane i
mersed in an electrolyte will saturate when the bare surf
charge density of the plane diverges. This general condi
is stated in Eqs.~4.1! and makes reference to functions d
fined in Eqs.~3.6!, ~3.3!, and~2.3!. From this condition fol-
lows the simpler and practical sufficient condition: if, as t
electric potentialc→`, the local relationship between th
highest valency counterions densityng and the electric po-
tential becomesng}cn for somen.1 or ng diverges faster
than any power law ofc, then the electrostatic potential wi
saturate. Otherwise, if the counterion density diverges asc,
or slower thanc, or does not diverge, the electric potenti
cannot saturate.

As explained below, the phenomenon of potential satu
tion is slightly more general than that of effective char
saturation: effective charge saturation implies potential sa
ration, whereas potential saturation does not necessarily
low one to define an effective charge.

This paper is organized as follows. We will present in S
II the framework and the class of theories that will be co
sidered. In Sec. III, we will formally integrate the genera
zation of Poisson-Boltzmann equation that these local th
ries yield. We will discuss in Sec. IV the necessa
conditions to have the potential saturation effect. Finally,
Sec. V, we will apply our results to some recent theor
@14,15# that have been proposed to go beyond the descrip
of Poisson-Boltzmann theory.
©2003 The American Physical Society01-1
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II. FRAMEWORK

Let us consider an infinite plane located atx50 with a
surface charge densitys. The half spacex.0 is filled with
an electrolyte made up of several species of microions w
chargesqa and local densitiesna(x). We use Greek indices
for the different species of microions. The system is in th
mal equilibrium at an inverse temperatureb5(kBT)21.
Without loss of generality we supposes.0.

The average electric potentialc(x) at a distancex from
the charged plane is related to the densities of microions
Poisson equation

c9~x!52
4p

«
r~x!. ~2.1!

The prime denotes differentiation with respect tox and
r(x)5(aqana(x)1sd(x) is the total charge density. Fu
thermore the electric potential satisfies the boundary co
tions

c8~01!524ps/«, ~2.2a!

c~`!50, c8~`!50, c9~`!50. ~2.2b!

Suppose now that an approximate local theory is provid
This theory gives local relations between the densities
the electric potential,

na~x!5ga@qac~x!#, ~2.3!

which leads to a closed equation for the electric poten
when we substitute Eq.~2.3! into Eq. ~2.1!:

c9~x!52
4p

« (
a

qaga@qac~x!# for x.0. ~2.4!

Whenga(u)5na
bexp(2bu), with na

b the bulk density of the
speciesa, we recover Poisson-Boltzmann equation. Eq
tion ~2.4! may then be considered as a generalized Pois
Boltzmann equation.

The local relation~2.3! between the density and the ele
tric potential may be obtained in the framework of the de
sity functional theory~DFT! by a local density approxima
tion ~LDA !. In this framework, the free energy functional
given by

F~$na%!5E
0

`

f „$na~x!%… dx

1
1

2E0

`E
0

`

r~x!G~x,x8!r~x8!dx dx8, ~2.5!

whereG is (24p/«) times the one-dimensional Laplacia
Green function with the appropriate~Neumann! boundary
conditions. We havec(x)5*0

`G(x,x8)r(x8)dx8.
The minimization of functional~2.5! subject to the con-

servation of the total number of particles~controlled by
Lagrange multipliersma , the chemical potentials of mi
crospecies! gives
06140
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qac52
] f ~$ng%!

]na
1ma . ~2.6!

We assume that upon inverting these relations, one obtai
set of relations of form~2.3! between each density and th
electric potential. Note that Eq.~2.3! is really a set of equa-
tions giving, for eacha, an explicit relation betweenna(x)
and the electric potentialc(x). In particular each relation
involves only one densityna(x). It can, however, include the
chargesqg and chemical potentialsmg of the other particles
@12–14# but not the other local densitiesng(x).

Poisson-Boltzmann theory is recovered when the lo
part of the free energy is given by the ideal gas contribut
f ($na%)5 f id($na%)5b21(ana@ ln(naL)21#, whereL is an
irrelevant length~the de Broglie wavelength!.

Relations~2.3! should obey a certain number of physic
constraints, for instance, the local charge densityr(x) should
vanish whenx→`. We will impose the following constrain
to the functionsga appearing in Eq.~2.3!:

(
a

qaga@qac~x!#c8~x!.0. ~2.7!

This condition will be used several times in the subsequ
analysis. In Appendix A we show that, in the framework
the DFT, this condition is a consequence of the stability
the system, namely,]2f ($na%)/]na]ng is positive definite.

III. FORMAL INTEGRATION OF THE GENERALIZED
POISSON-BOLTZMANN EQUATION

Multiplying Eq. ~2.4! by c8(x), we get

d

dx
$@c8~x!#2%52

8p

« (
a

qaga~qac!
dc

dx
~3.1!

which allows for a first integration

c8~x!52A2
8p

« (
a

Ga„qac~x!…, ~3.2!

where we defined

Ga~v !5E
0

v
ga~u! du ~3.3!

and we have used the boundary condition~2.2b! at x→`.
The choice of the minus sign in the right-hand side of E
~3.2! is dictated by the fact thats.0.

Note that condition~2.7! ensures that the term under th
square root sign in Eq.~3.2! is positive. Indeed, Eq.~2.7!
implies that d@c8(x)2#/dx,0, thereforec8(x)2 is a de-
creasing function and never vanishes forx finite. Then,
c8(x) never changes sign and sinces.0, c8(x),0 and we
conclude thatc8(x) is monotonic and increasing. The ele
tric field 2c8(x) is monotonically decreasing, always pos
tive, and nonvanishing forx finite. This remark is in fact a
consequence of this particular geometry of the general p
1-2
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on the absence of overcharging whereby electric double
ers are described by a local density functional theory of fo
~2.5! @16#.

Rewriting Eq.~3.2! as

dc

A2
8p

«
(
a

Ga~qac!

52dx ~3.4!

allows one to formally integrate it, to obtain

F~c!52~x1x0! ~3.5!

with x0 being a constant of integration and the indefin
integral

F~c!5Ec A« df

A28p(
a

Ga~qaf!

. ~3.6!

The solution for the electric potential is given by invertin
relation ~3.5!:

c~x!5F21
„2~x1x0!…. ~3.7!

The functionF(c) introduced in Eq.~3.6! has a few use-
ful properties. It is the integral of a positive quantity, so th
it is a strictly increasing function1 of c for cP@0,̀ @ which
can be inverted:F21 exists and it is also an increasing fun
tion. As a consequencec(x)5F21

„2(x1x0)… is a decreas-
ing function ofx.

The constant of integrationx0 is related to the surface
charge densitys of the plane and is determined by th
boundary condition~2.2a!. An interesting feature is that thi
constant of integration comes as an additive offset for
positionx. A change ins ~therefore in the constant of inte
gration x0) results in a translation of the curvec(x)2x
along thex axis. This allows a graphical determination ofx0:
plotting the functionF21(2x), the originx50 of thex axis
should be such thatdF21(2x)/dx524ps/« at this new
origin, thus satisfying the boundary condition~2.2a!. Again,
the stability condition~2.7! ensures that there is a uniqu
solution forx0 sincec8(x) is monotonic.

IV. ELECTROSTATIC POTENTIAL SATURATION

We will say that there is a saturation of the electrosta
potential if it is possible to haves→1` with a finite solu-

1We suppose that the functionF(c) exists for all values ofc
.0. This will be the case if all the functionsGa(qac) are defined
for any value ofc.
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tion for c(x) for all xÞ0.2 We emphasize that the notion o
potential saturation is more general than that of effect
charge saturation: to define an effective charge, one need
show that the ionic profiles behave far from the wall as th
would within a linear theory such as Debye-Hu¨ckel theory.
The effective charge is then defined from the far field crea
by the charged object, as that required within a linear the
to obtain the same potential at large distances. Our ana
does not require such a limitation. However, in the ca
where the local theory is formulated in the framework of t
DFT we show in Appendix B that, far from the charged wa
the theory reproduces the far field of the linear Deby
Hückel theory, provided that the Hessian matr
(]2f /]na]ng) is positive definite.

The functionF(c) is strictly increasing in the interva
@0,1`@ . Therefore there are only two possibilities for th
behavior ofF(c) whenc→1` which, as we show below
distinguish between the cases of saturation and nonsa
tion.

if lim
c→1`

F~c!,1`, there is saturation; ~4.1a!

if lim
c→1`

F~c!51`, there is no saturation.~4.1b!

Let us consider first case~4.1a!. Let limc→`F(c)52x`

,1`. The functionsF(c) andc(x) are sketched in Fig. 1
For any finite value ofs.0 the determination of the con
stant of integrationx0 gives x0.x` and ass increases,x0
approachesx` . The cases51` corresponds to the choic
x05x` . In the graphical way of determining the constant
integration explained before, this means that the origin of
x axis is chosen abovex` if 0 ,s,1` and it approachesx`

as s→1`. We have clearly the potential saturation ph
nomenon since fors51`, where the origin of thex axis is
precisely atx` , we have a finite solution for the potentia
c(x) for any value ofx.0.

In the second case~4.1b!, x` recedes to2`. Again, for
s.0 finite, the boundary condition~2.2a! yields a value for
x0.x`52`, and ass increases,x0 decreases. We actuall
have lims→1`x052`, i.e., the constant of integratio
should decrease to minus infinity to satisfy the bound
condition. But sincec(x)5F21

„2(x1x0)… and F21(1`)
51` the electric potentialc(x) is infinite for all values of
x. There is no saturation of the potential.

In practice, for a general theory formulated in the fram
work of a local DFT, it is not always easy to invert Eq.~2.6!
in order to have an explicit expression~2.3! of the density as
a function of the potential, and even more difficult to com

2It is important to excludex50. Indeed, the limits→1` im-
plies thatc8(0)52` but since bothc andc8 are monotonic and
F(c) is supposed to exist for all values ofc.0, we also have
c(0)51`. The case ofc(0).0 finite whilec8(0)51` is ruled
out by the conditions stated in footnote 1: if this was the cas
would mean that integral~3.6! definingF(c) would not be defined
for values ofc.c(0) which implies that(aGa(qaca) diverges to
2` for c5c(0) and is not defined forc.c(0).
1-3
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pute the functionF(c) to study its limit asc→`. However,
there is no need to have explicitly the functionsga of Eq.
~2.3! to discuss the possibility of potential or charge satu
tion. Indeed, as shown below, we only need to know
behavior of the functionsga(qac) asc→1`.

First we should treat the particular situation where it
possible to have from Eq.~2.3! or Eq. ~2.6! an infinite po-
tentialc→1` while all the densitiesna are finite. If this is
the case, then the functionsGa(qac) behave asc—more
precisely they are of orderc which we denoteO(c)—when
c→1`. Therefore the integrand@2(aGa(qac)#21/2 in
Eq. ~3.6! defining the function F(c) behaves as
c21/2—more preciselyc21/25O„@2(aGa(qac)#21/2

…—as
c→1` and it is not integrable. We have limc→1`F(c)
→`. We then conclude that there is no saturation. To su
marize, if a local theory predicts the possibility of having
densities of the microions finite whenc→`, this theory will
consequently not account for the phenomenon of cha
saturation.

FIG. 1. An example of a theory in which the charge saturat
phenomenon is possible. The upper figure represents the fun
F(c) defined in Eq.~3.6! and in this example it has a finite limi
whenc→`: limc→1`F(c)52x`,1`. The lower figure repre-
sents the inverse functionF21(2x). The plot of the electric poten
tial c(x) as a function ofx is simply obtained choosing a new
origin for the x axis, such thatdF21(2x)/dx524ps/« at this
new origin. For a given value ofs, only the part of the curve at the
right of this origin ~full line! has a physical meaning. Whens
increases, this new origin gets translated to the left to finally re
the position ofx` whens51`.
06140
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Now, in the opposite case where the theory predicts tha
least one densityna—the density of counterions—diverge
when c→`, the existence of the saturation effect depen
on how this density diverges asc→`. If several densities
diverge, actually what is important is the one that diverg
the fastest asc→`, say ng . Remembering thatng(x)
5gg(qgc), suppose thatgg(qgc) diverges as a power law
cn. We prove below that ifn.1, then the effect of charge
saturation will be accounted for by the theory, otherwise
will not. The argument is simple: supposegg(qgc) behaves
as cn when c→`, then Gg(qgc) behaves ascn11. The
integrand in Eq.~3.6! behaves asc2(n11)/2 asc→` and is
therefore integrable if and only if (n11)/2.1, that is,n
.1. It is also clear from this argument that in the cas
where the behavior ofgg(qgc) is not a power law ofc but
diverges faster thancn for somen.1 there will be a satu-
ration of the electric potential and in the cases where it
verges asc or slower, the electric potential will not saturat

The remaining cases, wheregg(qgc) diverges faster than
c but slower thancn for any n.1, can always be resolve
by returning to the study of the behavior o
@2Gg(qgc)#21/2 whenc→`—the dominant part of the in-
tegrand ofF(c) in Eq. ~3.6!—and determine if it is inte-
grable or not.3

In the case where the electric potential saturates, the
fective charge at saturation can be expressed in terms o
functionF(c) defined by Eq.~3.6!. Let us consider the satu
ration regime and suppose that one can define an effec
charge at saturation, i.e., the far field created by the plane
the same form as the one predicted by the linear Deb
Hückel theory~see Appendix B for details!. This means that
if c→0 we have2(4p/«)(aqaga(qac);k2c so that for
x→`,

c~x!;csate2kx ~4.2!

with csat related to the effective charge at saturation by
relation csat54pseff

sat/(k«). At saturation, in the graphica
way of determining the constant of integrationx0, the origin
is at x` . That is,x`50 and

2x5F~c! ~4.3!

with the particular choice

F~c!5E
1`

c df

A2
8p

«
(
a

Ga~qaf!

~4.4!

in the lower limit of integration. To be consistent with E
~4.2!, we must haveF(c);k21ln(c/csat) for c→0. There-
fore we can extract effective charge at saturation from

3For example, there could be cases such as@2Gg(qgc)#21/2

}(c ln c)21 ~not integrable! in which there will not be a saturation
of the potential or cases such as@2Gg(qgc)#21/2}(c(ln c)2)21

which is integrable and there will be a saturation.
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csat5
4pseff

sat

k«
5 lim

c→0
$cexp@2kF~c!#%. ~4.5!

V. SOME EXAMPLES

In this section we apply our results to some local theor
proposed in the literature. We first illustrate the results of
preceding section with some simple examples. We cons
two cases~as benchmarks, since the analytic solution of
problem is known!: Poisson-Boltzmann theory and its linea
ized counterpart, Debye-Hu¨ckel theory.

For Poisson-Boltzmann theory, ga(qac)
5na

bexp(2bqac), then the integrand in Eq.~3.6! behaves
as exp(2buq0uc/2) whenc→` and it is integrable (q0 is the
charge of the counterions with highest valency, which by
way have a density that diverges exponentially faster t
the potentialc). The functionF(c) has a finite limit when
c→`; we therefore recover there the well known fact th
effective charge saturates whens→`.

For Debye-Hu¨ckel theory,ga(qac)5na
b(12bqac) be-

haves asc when c→` and the integrand in Eq.~3.6! be-
haves asc21, it is not integrable: there is no charge satu
tion.

Now let us turn our attention to some more interest
examples. Barbosaet al. @15# have proposed a local theory t
account for counterions correlations in a one-compon
plasma~OCP! description of the electrolyte, that is, a syste
of charged counterions immersed in a uniform opposit
charged background. This theory, referred to as the Deb
Hückel-hole-cavity~DHHC! approach, is stable—it satisfie
condition ~2.7!—and the densityn of the counterions is de
scribed in framework~2.5! of the DFT. The local free energ
density is of the formf (n)5 f id(n)1 f DHHC(n) where f id is
the ideal gas part of the free energy and

b f DHHC~n!

n
5

~ka!2

4
2E

1

v

dv̄F v̄2V~v̄!2/3

2~v̄321!

1
v̄3

~11V~v̄!1/3!~v̄21v̄11!
G . ~5.1!

In this equation,

V~v̄!5~v̄21!31
~ka!3

3l Bk
~v̄321!, v5~113l Bk!1/3,

~5.2!

andk5A4p l Bn is the inverse Debye length. The theory h
a parametera which may be interpreted as a sort of radius
the microions~nonstrictly speaking, because the counter
density can actually be higher thana23).

Expression~5.1! is quite complicated and there is no ho
to be able to obtain an analytical solution for the functi
F(c) or even invert the relationship between the poten
and the density obtained from the stationary equation~2.6!.
However we only need to investigate the limitc→`.

First it is straightforward to see that if the densityn is
finite, the potential is finite. Now, ifn→` we have
06140
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b f DHHC(n);n5/3a2(p/6)2/3 and it is the leading term in
f (n). The minimization equation~2.6! then yieldsbuquc
;n2/3a2(5/3)(p/6)2/3 for n→`, so that forc→`, we have

n;
6

p S 3

5D 3/2

a23~buquc!3/2. ~5.3!

The important fact is that the density of counterions beha
ascn with n53/2.1. This theory therefore leads to a sat
ration of the electrostatic potential, and more precisely t
saturation of effective charge.4

On the other hand there are theories that do not acco
for the saturation effect. As an example, let us consider
approach proposed by Borukhov and co-workers@12–14#.
This is a local theory which incorporates approximate
steric effects due to volume exclusion between the microi
of the electrolyte. The local part of the free energy
f ($na%)5 f id($na%)1 f exc($na%) with an excess part involv-
ing the sizea of microions:

b f exc~$na%!5
1

a3 F12(
a

a3naG lnS 12(
a

a3naD .

~5.4!

This theory is also stable, namely, (]2f /]na]ng) is positive
definite@17# and, therefore, it satisfies condition~2.7!. From
Eq. ~5.4!, there is a higher bound for the value of the micr
ions densities which isa23: when the counterions densit
approachesa23 the electric potentialc diverges. Therefore
according to the discussion of the preceding section,
theory does not allow the electrostatic potential to satura

Our approach also predicts, in the case of nonsaturat
whether the effective charge will grow faster or slower th
the bare charge. Let us illustrate this point considering ag
the framework presented in Refs.@12–14#. To simplify the
argument, we consider a two-component electrolyte w
counterions/coions of charge2q/q and bulk densitynb .
Poisson’s equation then takes the form

bqc9~x!5k2
sinh~bqc!

12z1z cosh~bqc!
, ~5.5!

wherez52nba3 andk5A8pnbl B.
In this case it is possible to have finite counterion dens

when c→` and as discussed in the preceding section,
function F(c) defined in Eq.~3.6! behaves asc1/2 as c
diverges. More precisely, we have here

F~c! 5
c→`

S a3

2puqu D
1/2

c1/21O~1! ~5.6!

so that

4To allow for the definition of an effective charge, Poisso
Boltzmann generalized equation~2.4! should behave as Helmholt
equation (c9}c) whenc→0. This is discussed in Appendix B.
1-5
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F21~2x!;
2puqu

a3
x2 ~5.7!

when x→2`. On the other hand, one recovers Deby
Hückel theory for small potentials. This means thatF21

(2x);Aexp(2kx) for x→` with A being an arbitrary con-
stant sinceF is determined up to an additive constant. Su
pose that initially the plane has a small bare charge den
s (0). For Debye-Hu¨ckel theory the electric potential read
cDH(x)5(4ps (0)/«k)exp(2kx), so that«kA/(4p) may be
considered as the effective charge describing the far fiel
the plane. As explained before,c(x)5F21@2(x1x0)#
where the constant of integrationx0 can be determined
graphically. Let us chooseA54ps (0)/(k«), so that plots of
F21(2x) andcDH(x) superimpose whenx→` ~see Fig. 2!.
Now, consider a large bare charge densitys of the plane. To
obtain from the curve ofF21(2x) the correct plot ofc(x)
we should change the origin of thex axis such that the value
of dF21(2x)/dx524ps/« at this new origin. Let us sup
poses large enough so that this new origin is in the regi
x→2` whereF21(2x) behaves asx2. As s increases, we
have to shift the origin further to the left or equivalently

FIG. 2. Illustration of a theory~Refs.@12–14#! where the effec-
tive charge diverges faster than the bare charge. The dashed
represents the potentialcDH(x) predicted by Debye-Hu¨ckel theory
and the full line represents the potentialc(x) put forward in Refs.
@12–14#. The potential is measured in units ofkT/q and the dis-
tancex in units of the Debye lengthk21. We have chosen her
a3nb51/4, wherenb is the bulk density of ions.~A! A case where
the bare charges is small @actually in the figure 4psbq/(«k)
51]. Both curves have the same behavior asx→`, namely,
c(x)5exp(2x). ~B! A case wheres is large @4psbq/(«k)
510#. To obtain~b! from ~A!, it is necessary to shift the curves b
an amount indicated in~A! by the horizontal arrows. Since whe
x→2` the Debye-Hu¨ckel electric field increases exponentiall
2cDH8 (x);exp(2x), whereas the electric field of Refs.@12–14#
increases only linearly,2c8(x);2x, the curve for that last theory
should be shifted to the right much more that the one for Deb
Hückel theory. This shows that the behavior atx→` is cDH(x)
;4ps/(«k)exp(2x) andc(x);4pseff /(«k)exp(2x) with an ef-
fective charge larger than the bare chargeseff.s.
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translate the curve ofF21(2x) to the right such that at the
origin, both curves ofF21(2x) and cDH have the same
slope. But since2cDH8 (x) behaves as exp(2kx) which has a
faster increase asx→2` than2F218(2x) which behaves
as2x, it is clear that ass increases we need to shift more
right the curve ofF21(2x) than the one forcDH(x). On the
other hand, forx→`, we havec(x)5B exp(2kx) with
B} exp(2kx0). Since the translation of the curve o
F21(2x) becomes larger and larger than the one
cDH(x), this means that the factorB increases faster than th
bare charges. The corresponding effective charge therefo
increases faster thans as s is raised. We have also
checked this feature from a direct numerical solution of E
~5.5!. The above argument may be rationalized, as show
Appendix C.

In the cases of nonsaturation, generalizing the argum
presented before, if the faster divergent counterion den
ng behaves slower thanc whenc→`, then the theory will
predict an effective charge that diverges faster than the b
charge. If, on the other hand,ng diverges faster thanc—but
slower thancn for anyn.1, so there is no saturation of th
effective charge—then the effective charge will diver
slower than the bare charge.5

To sum up, a theory such as that of Refs.@12–14# cures a
deficiency of Poisson-Boltzmann theory by setting an up
limit for the density of microions, at the expense of produ
ing unphysical effective charges when the nonlinear cha
ter of the equation prevails~only for small electrostatic cou
plings would this theory give reasonable effective charg
that would then coincide with the bare charge of the pla
since the theory would reduce to Debye-Hu¨ckel theory!. The
same would happen for any DFT with the hard core p
included through a local free energy density~one may wish,
for instance, to use Carnahan-Starling-like expressions to
count for excluded volume@18#!: such approaches indee
lead to a divergence of the free energy density in the vicin
of close packing, so thatF(c)}c1/2 for large c. Since we
have to expect that effective charges are bounded from ab
when the bare charge becomes large@11#, the above analysis
seems to show that when improving upon Poiss
Boltzmann theory, incorporation of steric effects through
local functional and/or neglect of microionic electrosta
correlations is insufficient.

VI. SUMMARY AND DISCUSSION

We have found a necessary and sufficient condition th
generic local density functional theory should fulfill to d
scribe the effect of electrostatic potential saturation fo
charged planar interface, namely, if in the local relation b
tween the potential and the densities it is possible to h
c→` and all densities finite, there will be no saturation. O
the other hand, if asc→` the highest valency counterion
density diverges ascn for somen.1 or faster, the theory
will predict a potential saturation. In the other case where

5The first example of footnote 3 is a case where the divergenc
the effective charge will be slower than the bare charge.
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increase of the density is asc or slower, there will not be an
electric potential saturation, hence no charge saturation.
the limiting cases where the density diverges faster thac
but slower thancn for any n.1 one should consider th
general condition given in Eqs.~4.1!: @2(aGa(qac)#21/2,
with Ga defined in Eq.~3.3!, should be integrable asc
→` to ensure that the electric potential saturates.

A natural continuation to this work would be to addre
the same question for a colloidal object of any shape.
expect that, for large colloids, the results found here w
hold. However for small charged objects immersed in
electrolyte, the question remains open@23#. It would also be
interesting to explore in more detail the behavior of effect
charges in the framework of other theories, for instance, n
local theories.

At this point, it seems appropriate to come back to
validity of one of the simplest approaches encompassed
our formalism: Poisson-Boltzmann~PB! theory. In particular,
it seems that the validity of the saturation regime within P
theory is sometimes confusing in the literature, which
might trace back to Onsager who wrote in a seminal pa
@19# the following: ‘‘As soon as the higher order@non-linear#
terms in the Poisson-Boltzmann equation become import
we can no longer expect the ionic atmosphere to be addi
and then the Poisson-Boltzmann equation itself becomes
reliable.’’

This statement~irrelevance of PB as soon as nonline
behavior sets in! is justified for simple electrolytes, the sys
tem studied by Onsager in Ref.@19#. However, it turns in-
correct when there is a large size and charge asymm
between the constituents of a charged mixture, which is
case for colloidal suspensions@20#. This appears in the ana
lytical work of Netz in the no salt limit@21#. Indeed, PB
neglects correlations between microscopic species, which
come prevalent at high electrostatic couplings, i.e., wheG
5(q3s l B

2)1/2 becomes large@5,20–22#. On the other hand
PB enters the saturation regime when the coupling betw
the charged plane and the small ions becomes large, w
may still be compatible with the neglect of microionic co
relations, providedk l B!1, as may be seen by replacing th
saturation valuessat}k/ l B in the definition ofG. A similar
conclusion is reached enforcing that the correlational con
bution to the pressure in the bulk of the electrolyte~the cel-
ebrated term in2k3kBT appearing within Debye-Hu¨ckel
theory of electrolytes@5,24#! should be negligible compare
to the ideal gas contributionnbkBT: k3!nb imposesk l B
!1.
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APPENDIX A

We prove here that condition~2.7! is a consequence of th
stability of the theory formulated in the framework of th
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local DFT ~2.5!. First, note that

d

dx F(
a

qaga~qac~x!!c8~x!G ~A1a!

5(
a

qana8c81(
a

qanac9 ~A1b!

52(
a,g

]2f

]na]ng
na8ng82

4p

«
r2, ~A1c!

where we have used the minimization equation~2.6! and
Poisson equation~2.1!. If ( ]2f /]na]ng) is positive definite,
this latter expression~A1a! is negative and therefore

(
a

qaga~qac~x!!c8~x! ~A2!

is a decreasing function ofx. Furthermore, the boundary con
ditions atx→` impose that Eq.~A2! vanishes at infinity, so
that (aqaga@qac(x)#c8(x).0.

The condition that]2f /]na]ng is positive definite is a
sufficient condition to ensure that Eq.~2.7! is satisfied. Let us
remark that this same condition is sufficient for the none
istence of like-charge attraction between colloids and the
sence of overcharging@16#. It is also a sufficient condition
for the compressibility of the system to be always posit
within the cell model@25#. Furthermore, as it will be shown
in Appendix B, it is a sufficient and necessary condition
recover Debye-Hu¨ckel linear theory where the electric pote
tial is small.

APPENDIX B

In this appendix we prove that, far from the charged wa
any local theory reproduces the results of the linear Deb
Hückel theory provided that the Hessian matrix]2f /]na]ng
is positive definite.

Far from the wall, the densities converge to their bu
valuesna

b and the potential vanishes. Then the minimizati
equation~2.6! for c50 becomesma5(] f /]na)b , where the
subscriptb means that the partial derivative off is evaluated
at the bulk values of the densitiesna5na

b . This provides the
relationship between the chemical potentials and the b
densities.

For small values of the potential, the differencena2na
b is

small, then we can expand

] f

]na
5S ] f

]na
D

b

1(
g

~ng2ng
b!S ]2f

]na]ng
D

b

1••• ~B1!

and substituting into the minimization equation~2.6! this
gives

(
g

~ng2ng
b!S ]2f

]na]ng
D

b

52qac. ~B2!
1-7
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Provided that the Hessian matrix (]2f /]na]ng)b is invertible
we have

na5na
b2(

g
S ]2f

]na]ng
D

b

21

qgc, ~B3!

where (]2f /]na]ng)b
21 denotes the (a,g) matrix element of

the inverse of the Hessian matrix (]2f /]na]ng)b .
Replacing into the generalized Poisson-Boltzmann eq

tion ~2.4! we obtain a Debye-Hu¨ckel-like equation

c9~x!5k2c~x! ~B4!

with an inverse Debye lengthk21 defined by

k25
4p

« (
a,g

qaqgS ]2f

]na]ng
D

b

21

. ~B5!

To recover the results from Debye-Hu¨ckel theory, whatever
the values of the chargeqa might be, it is necessary an
sufficient that the Hessian matrix (]2f /]na]ng)b is positive
definite, which ensures the existence of its inverse and
k2.0.

APPENDIX C

In this appendix we prove that the theory presented
Refs. @12–14# predicts an effective charge that diverges e
ponentially faster than the bare charge whens→`.

The function defined by Eqs.~3.6! for the theory of Refs.
@12–14# reads

FBAO~c!5
bqz1/2

A2k
Ec df

ln@12z1z cosh~bqf!#
~C1!

while the one for Debye-Hu¨ckel theory is

FDH~c!5
1

k
ln~c/c (0)!, ~C2!

where in the last equation we have made the partic
choicec5c (0) of the lower bound of integration in defini
tion ~3.6! of FDH . Suppose thatbqc (0) is chosen of the
order one—say,bqc (0)51. Now we choose the lowe
bound of integration in Eq.~C1! for FBAO such that
in
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a-

at

n
-

r

FBAO~c!5k21ln~c/c (0)!1o~1!, c→0. ~C3!

That is, FBAO(c) behaves asFDH(c) when c→0 up to
terms that vanish whenc→0. On the other hand we hav
behavior ~5.6! for FBAO when c→`. Let us definecbare
54ps/(k«) and suppose that the bare charges of the plane
is large enough such thatbqcbare@1. For this values of the
charge density of the plane, we have to find the constant
integrationx0

BAO andx0
DH of Eq. ~3.5! for the theory of Refs.

@12–14# and for Debye-Hu¨ckel theory, respectively. We ca
proceed as follows: we first determine the value ofcDH,BAO

such thatFDH,BAO(cDH,BAO)52x0
DH,BAO , then we deduce

x0
DH,BAO . For Debye-Hu¨ckel theory, applying the boundar

condition ~2.2a! we have

dc

dx U
x50

52S dFDH

dc D 21U
c5cDH

52kcDH52kcbare.

~C4!

Then forcDH5cbare we haveFDH(cDH)52x0
DH and there-

fore 2kx0
DH5 ln(cbare/c

(0)). For the theory of Refs.@12–14#
the boundary condition~2.2a! yields

dc

dx U
x50

52S dFBAO

dc D 21U
c5cBAO

;2
2k

A2zbq
AcBAO, bqcBAO@1

52kcbare. ~C5!

Therefore we have cBAO;zbqcbare
2 /2 and 2kx0

BAO

5kFBAO(cBAO);zbqcbare. Clearly we havex0
BAO@x0

DH as
cbare→`. Furthermore these constants of integration ma
fest in the large-x behavior of c(x) as c(x)
;c (0)e2kx0e2kx giving, for x→`,

cDH~x!5cbaree
2kx ~C6!

for Debye-Hückel theory~as expected!, while

cBAO~x!;c (0)ezbqcbare1o(cbare)e2kx, x→` ~C7!

for the theory of Refs.@12–14#. This theory predicts an ef
fective charge that diverges exponentially fast when the b
charges→`.
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