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Density functional theory study of electric potential saturation: Planar geometry
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We investigate the possibility of electrostatic potential saturation, which may lead to the phenomenon of
effective charge saturation. The system under study is a uniformly charged infinite plane immersed in an
arbitrary electrolyte made up of several microspecies. To describe the electric double layer, we use a generic
local density functional theory in which the local microionic density profiles are arbitrary functions of the local
electrostatic potential. A general necessary and sufficient condition is obtained for saturation, whereby the
electrostatic potential created by the plane becomes independent of its bare charge, provided the latter is large
enough. As a consequence, for most situations, the following simple and practical sufficient condition follows:
if, as the electric potentiall— o, the local theory predicts that the highest valency counterions density
diverges asy” with somev>1 or faster, then the electrostatic potential will saturate. Otherwise, if the
counterion density diverges ag or slower, or does not diverge as—«, the electric potential will not
saturate. Using this condition, we investigate the possibility of the saturation phenomenon within the frame-
work of recent theories proposed in the literature to describe electrical double layer beyond the Poisson-
Boltzmann description.
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[. INTRODUCTION not give here a definite answer to this question in its full
generality. However we will consider the special case of lo-
The importance of effective charge in colloidal or poly- cal theories—theories which provide a local relationship be-
electrolyte suspensions has been recognized for some tim@een the density of microions and the electric potential—
[1-8]. The electric potential far from a colloid immersed in and give a necessary and sufficient condition under which
an electrolyte defining the inverse screening lengttakes  the electrostatic potential of an infinite charged plane im-
the same form as the solution of the linearized Debyekéli  mersed in an electrolyte will saturate when the bare surface
equation—say|gZege " "R/[(1+«R)r] for a charged charge density of the plane diverges. This general condition
sphere of radiuR—but with a prefactoZ.q which is differ- s stated in Eqs(4.1) and makes reference to functions de-
ent from the bare chargé;,. of the colloid. In the previous  fined in Eqs.(3.6), (3.3), and(2.3). From this condition fol-
expressiony 1S the2 distance from the center of the sphere ofio\ys the simpler and practical sufficient condition: if, as the
interest and g=q°/(skgT) is the Bjerrum length, defined gjectric potentialy— =, the local relationship between the
from the elementary charggand the permittivitye of the  pionest valency counterions density and the electric po-
solvent(the molecular structure of which is neglectedn tential becomes, o y” for somev>1 or n,, diverges faster

interesting feature that occurs in the framework(@bnlin- h | hen the el . il will
ean Poisson-Boltzmann theof®] is that for highly charged than any power aw o_t{/, then the e_ectrostat_lc pc_Jtentla w
saturate. Otherwise, if the counterion density divergeg,as

colloids, the effective charg& saturates to a finite value | th d t di the electri tential
Zs [7,10]. Interestingly, this saturation value is an upperOr slower thany, or does not diverge, the electric potentia
cannot saturate.

bound for effective charges found within more refined ap- X )
proaches that incorporate the microionic correlations ne- AS explained below, the phenomenon of potential satura-
glected in Poisson-Boltzmann theofg1]. We will come tion is _sllghtly more general than_tha_t of_effecnve _charge
back to the validity of the latter approach in the concludingSaturation: effective charge saturation implies potential satu-
section. ration, whereas potential saturation does not necessarily al-
Since Poisson-Boltzmann is a mean field theory, therdow one to define an effective charge.
have been several proposals to go beyond that approximation This paper is organized as follows. We will present in Sec.
and try to include effects such as microions excluded volumél the framework and the class of theories that will be con-
[12—-14 or electrostatic correlations between microiphs]. sidered. In Sec. Ill, we will formally integrate the generali-
A natural question arises. Under which conditions a giverzation of Poisson-Boltzmann equation that these local theo-
theory will account for the saturation phenomenon? We willries yield. We will discuss in Sec. IV the necessary
conditions to have the potential saturation effect. Finally, in
Sec. V, we will apply our results to some recent theories
*Electronic address: gtellez@uniandes.edu.co [14,19 that have been proposed to go beyond the description
TElectronic address: Emmanuel. Trizac@th.u-psud.fr of Poisson-Boltzmann theory.
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IIl. FRAMEWORK _otdn) | (2.6)

Let us consider an infinite plane locatedxat 0 with a “ N, “
surface charge density. The half space>0 is filled with . ) . .
an electrolyte made up of several species of microions wittYVe assume that upon inverting these relations, one obtains a
chargesy,, and local densities(x). We use Greek indices S€t of_ relatlon_s of form2.3 betwee_n each density and the
for the different species of microions. The system is in ther-2lectric potential. Note that E¢2.3) is really a set of equa-
mal equilibrium at an inverse temperatu=(kgT) 1. tions giving, fo_r eachy, an explicit rela_ltlon betweena(x_)
Without loss of generality we suppose>0. f';md the electric poten-tla!f(x). In particular eagh relation

The average electric potentigi(x) at a distance from  involves only one density,(x). It can, however, include the
the charged plane is related to the densities of microions bghargesy, and chemical potentiala., of the other particles

Poisson equation 12-14 but not the other local densitigs,(x).
Poisson-Boltzmann theory is recovered when the local
, 41 part of the free energy is given by the ideal gas contribution
Pr(x)=- ?P(X)- 2D t(n ) =fu(nb)=B"1S,.n[In(,A)—1], whereA is an
irrelevant length(the de Broglie wavelengih
The prime denotes differentiation with respect xoand Relations(2.3) should obey a certain number of physical

p(x) == ,0.n.(x)+cd(x) is the total charge density. Fur- constraints, for instance, the local charge densft) should
thermore the electric potential satisfies the boundary condivanish wherk—o. We will impose the following constraint
tions to the functionsy, appearing in Eq(2.3):

W'(0%)=—4mals, (223 > 40 0ap 014 (0>0. 2.7

P(»)=0, ¢'(»)=0, ¢"()=0. (2.2b
, i .. This condition will be used several times in the subsequent
Suppose now that an approximate local theory is providedy oy sis. In Appendix A we show that, in the framework of
This theory gives local relations between the densities ang},q DFT, this condition is a consequence of the stability of

the electric potential, the system, namely?f({n,})/dn,an,, is positive definite.

Na(X) =dalAath(X)], 2.3
I1l. FORMAL INTEGRATION OF THE GENERALIZED
which leads to a closed equation for the electric potential POISSON-BOLTZMANN EQUATION

when we substitute Eq2.3) into Eq. (2.1): Multiplying Eq. (2.4) by ¢/ (x). we get

"(X) 4 [ x)] f >0. (2.4 d 8 dy
X)=—— > X or x>0. (2. D
v o 2 defal bt &{[lﬂ'(x)]z}:_? 2 9a9aldath) g, 3D

Wheng,(u) =n"exp(— Au), with n® the bulk density of the
speciesa, we recover Poisson-Boltzmann equation. Equa
tion (2.4) may then be considered as a generalized Poisson- 8
Boltzmann equation. "(x)= — \/_ _

The local relation2.3) between the density and the elec- vx) € ; Cal8ay)), 32
tric potential may be obtained in the framework of the den-
sity functional theory(DFT) by a local density approxima- where we defined
tion (LDA). In this framework, the free energy functional is
given by

which allows for a first integration

Go(v)= fovgaw) du 3.3
A= [ 1n.00n ax

and we have used the boundary conditi@?2b at x— oo.
1 The choice of the minus sign in the right-hand side of Eq.
e IN gt (3.2) is dictated by the fact that>0.
" 2fo J'o P()GOXT)p(x)dx dX, (2.5 Note that condition2.7) ensures that the term under the
square root sign in Eq3.2) is positive. Indeed, Eq(2.7)
whereG is (—4/e) times the one-dimensional Laplacian implies thatd['(x)?]/dx<0, thereforey’(x)? is a de-
Green function with the appropriat®eumann boundary creasing function and never vanishes forfinite. Then,
conditions. We havey(x) = [5G(x,X") p(x")dx’. ¢’ (X) never changes sign and sinee-0, ' (x)<0 and we
The minimization of functional2.5 subject to the con- conclude that)’ (x) is monotonic and increasing. The elec-
servation of the total number of particlésontrolled by tric field —¢'(x) is monotonically decreasing, always posi-
Lagrange multipliersu,, the chemical potentials of mi- tive, and nonvanishing fox finite. This remark is in fact a
crospeciesgives consequence of this particular geometry of the general proof
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on the absence of overcharging whereby electric double laytion for i(x) for all x#0.2 We emphasize that the notion of
ers are described by a local density functional theory of fornpotential saturation is more general than that of effective
(2.5 [16]. charge saturation: to define an effective charge, one needs to
Rewriting Eq.(3.2) as show that the ionic profiles behave far from the wall as they
would within alinear theory such as Debye-ldkel theory.
The effective charge is then defined from the far field created
dy = —dx (3.4) by the charged object, as that required within a linear theory
8 to obtain the same potential at large distances. Our analysis
\/_ ? Eal Ga(qaw)

does not require such a limitation. However, in the case

where the local theory is formulated in the framework of the

DFT we show in Appendix B that, far from the charged wall,
allows one to formally integrate it, to obtain th? theory reproduces the far field of the linear Debye-
Huckel theory, provided that the Hessian matrix
(9*f1an,dn,) is positive definite.

The functionF () is strictly increasing in the interval
[0,+co[. Therefore there are only two possibilities for the
with Xo being a constant of integration and the indefinitebehavior ofF () when — + which, as we show below,
integral distinguish between the cases of saturation and nonsatura-

tion.

F(¢)=—(X+Xo) (3.5

Ve dop if lim F(g)<+o, thereis saturation; (4.13

b
J . (3.6 Pall
\/ —872 G(0u)

The _solution for the electric potential is given by inverting | ot us consider first cas@.19. Let lim,_..F()=—x.
relation (3.5): <+, The functions= () and¢(x) are sketched in Fig. 1.
For any finite value ofo>0 the determination of the con-
P(X)=F (= (x+Xp)). (3.7  stant of integratiorxy givesxy,>X., and aso increasesxg
approacheg,, . The caser= +» corresponds to the choice
Xo=X., . In the graphical way of determining the constant of
integration explained before, this means that the origin of the
x axis is chosen above, if 0 <o< +« and it approaches,
as o— +». We have clearly the potential saturation phe-
nomenon since foo-= + o, where the origin of the& axis is
precisely atx..,, we have a finite solution for the potential
¥(x) for any value ofx>0.
In the second casgt.1b), x,, recedes to-c. Again, for
>0 finite, the boundary conditiof2.23 yields a value for
0> X,,=—o0, and aso increasesy, decreases. We actually
e lim,_ ,.Xo=—=, i.e. the constant of integration
should decrease to minus infinity to satisfy the boundary
condition. But sincey(x)=F ~1(—(x+X)) andF ~1(+x)
=+ the electric potentialy(x) is infinite for all values of
X. There is no saturation of the potential.
In practice, for a general theory formulated in the frame-
work of a local DFT, it is not always easy to invert E3.6)
in order to have an explicit expressi@3) of the density as
a function of the potential, and even more difficult to com-

F(y)=

if lim F(y)=+«, thereis no saturation.(4.1b
—+

The functionF () introduced in Eq(3.6) has a few use-
ful properties. It is the integral of a positive quantity, so that
it is a strictly increasing functionof ¢ for ¢ e[0,¢[ which
can be invertedF ! exists and it is also an increasing func-
tion. As a consequenag(x) =F ~(— (x+X,)) is a decreas-
ing function ofx.

The constant of integratior, is related to the surface
charge densityo of the plane and is determined by the
boundary conditior(2.2g. An interesting feature is that this
constant of integration comes as an additive offset for th
positionx. A change ino (therefore in the constant of inte-
gration Xg) results in a translation of the curvg(x)—x
along thex axis. This allows a graphical determinationxgf
plotting the functiornF ~1(—x), the originx=0 of thex axis
should be such thalF~*(—x)/dx=—4male at this new
origin, thus satisfying the boundary conditi¢2.2g9. Again,
the stability condition(2.7) ensures that there is a unique
solution forxq sincey’ (x) is monotonic.

IV. ELECTROSTATIC POTENTIAL SATURATION
) ) ) 2t is important to excludex=0. Indeed, the limitr— +o im-
We will say that there is a saturation of the electrostatmp”es thatyy’ (0)=— = but since bothy and ¢’ are monotonic and
pOtentIa| |f |t |S pOSSIb|e to haVe'—>+OC W|th a f|n|te SO|U' F(¢) is supposed to exist for all values w>0’ we also have
#(0)=+0o0. The case ofy(0)>0 finite while ' (0)= +< is ruled
out by the conditions stated in footnote 1: if this was the case it
We suppose that the functiof() exists for all values ofys would mean that integrdB.6) definingF () would not be defined
>0. This will be the case if all the functiors,(q,y) are defined for values ofyy> (0) which implies tha& ,G,(q,¢¥.,) diverges to
for any value ofi. —oo for ¢y=¢(0) and is not defined fog> (0).
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F(4) Now, in the opposite case where the theory predicts that at
A least one density,—the density of counterions—diverges
when ¢y—oo, the existence of the saturation effect depends
on how this density diverges ag—o. If several densities
diverge, actually what is important is the one that diverges
the fastest asj—«, say n,. Remembering thanh,(x)
=g,(d,¥), suppose thag,(q,y) diverges as a power law
”. We prove below that ifiv>1, then the effect of charge
saturation will be accounted for by the theory, otherwise it
will not. The argument is simple: suppoge(d, ) behaves
as ¢" when —, thenG,(q,¥) behaves as)’"l. The
integrand in Eq(3.6) behaves ag/~ "*Y2 asy—x» and is
- therefore integrable if and only ify+1)/2>1, that is,v
F~(—z) P(z) >1. It is also clear from this argument that in the cases
A A where the behavior of,(q,¢) is not a power law ofj but
v diverges faster thag” for somevr>1 there will be a satu-
\ ration of the electric potential and in the cases where it di-
Y verges as) or slower, the electric potential will not saturate.
\ The remaining cases, whegg(q, ) diverges faster than
\ ¢ but slower thany” for any »>1, can always be resolved
AN by returning to the study of the behavior of
N [—G,(q,%)] 2 when§—c—the dominant part of the in-
N tegrand ofF(y) in Eq. (3.6)—and determine if it is inte-
grable or not

In the case where the electric potential saturates, the ef-

Ve

ZToo Z0 T fective charge at saturation can be expressed in terms of the
functionF(¢) defined by Eq(3.6). Let us consider the satu-

B ration regime and suppose that one can define an effective

as o — o0 charge at saturation, i.e., the far field created by the plane has

FIG. 1. An example of a theory in which the charge saturationth.e same form as the one predicted by the linear Debye-

phenomenon is possible. The upper figure represents the functi uckel theory(see Appendix B for detaﬂsTrzus means that
F(y) defined in Eq(3.6) and in this example it has a finite limit ' ¢—0 we have—(4m/e)2,0a9.(dat) ~ «“¢ SO that for
when ¢—oe: lim,,_, . .F()=—x.<+. The lower figure repre- X—=%,

sents the inverse functidh™*(—x). The plot of the electric poten- ol rx
tial ¥(x) as a function ofx is simply obtained choosing a new Y(X)~ e

origin for the x axis, such thatdF~(—x)/dx=—4mole at this

new origin. For a given value af, only the part of the curve at the With _Wsat reﬁted tzathe effective charge at saturation by the
right of this origin (full line) has a physical meaning. When  relation ¢°*=4moggi(ke). At saturation, in the graphical
increases, this new origin gets translated to the left to finally reachvay of determining the constant of integratirg the origin

the position ofx,, wheno= + . is atx,,. That is,x.,=0 and

4.2

pute the functiorF () to study its limit asy—oo. However, —x=F(y) (4.3
there is no need to have explicitly the functiogs of Eg.

(2.3 to discuss the possibility of potential or charge saturay,ith the particular choice
tion. Indeed, as shown below, we only need to know the

behavior of the functiong,(q,¥) asyg— +».

First we should treat the particular situation where it is F(y)= jw dé (4.4
possible to have from Ed2.3) or Eg.(2.6) an infinite po- +oo S '
tential y— + o while all the densities, are finite. If this is —— > G (qad)

&€ @

the case, then the functiors,(q,y) behave asj/—more
precisely they are of ordef which we denoté(y)—when
y— +o. Therefore the integranfi—=,G,(q,%)] Y2 in in the lower limit of integration. To be consistent with Eq.
Eq. (3.6) defining the function F(y) behaves as (4.2), we must have= (i)~ «~In(y/y®®) for y—0. There-
~Y>—more preciselyy™Y>=0( -2 ,G,(q.4)] Y)—as fore we can extract effective charge at saturation from
y—+o and it is not integrable. We have Ijm , .F(#)

—oo, We then conclude that there is no saturation. To sum=—

marize, if a local theory predicts the possibility of having all  3for example, there could be cases such[ a.(q,#)] ¥

densities of the microions finite whefi— e, this theory will o« (yIn ) * (not integrablein which there will not be a saturation
consequently not account for the phenomenon of chargef the potential or cases such bs G,(q,#)] Y2 (y(In $)»~*
saturation. which is integrable and there will be a saturation.
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sar_477‘72?ft _ Bfounc(n) ~n>%a2(7/6)?® and it is the leading term in
= — = lim {yexd — «F () ]} (4.5  f(n). The minimization equatior{2.6) then yields 8|q|
=0 ~n?Ra?(5/3)(7/6)%° for n—, so that foryy— o, we have

3/2

V. SOME EXAMPLES 3 3/2
a 3(Blaly)*-. (5.3

n~=\5

In this section we apply our results to some local theories
proposed in the literature. We first illustrate the results of the
preceding section with some Simp|e examp|esl We Conside-Fhe important fact is that the density of counterions behaves
two casegas benchmarks, since the analytic solution of theas#” with »=3/2>1. This theory therefore leads to a satu-
problem is knowi Poisson-Boltzmann theory and its linear- ration of the electrostatic potential, and more precisely to a
ized counterpart, Debye-ldkel theory. saturation of effective charde.

For Poisson-Boltzmann theory,  g,(q.%) On the other hand there are theories that do not account
=nPexp(-B,4), then the integrand in Eq3.6) behaves for the saturation effect. As an example, let us consider the
as exp(- Blqg|¢/2) wheny— and it is integrabled, is the ~ @PProach proposed by Borukhov and co-workgr2-14.
charge of the counterions with highest valency, which by thelNis is a local theory which incorporates approximately
way have a density that diverges exponentially faster thagteric effects due to volume exclusion between the microions
the potentialiy). The functionF (i) has a finite limit when ~Of the electrolyte. The local part of the free energy is
y—; we therefore recover there the well known fact that! ({Na}) = fia({na}) + fexd{n.}) with an excess part involv-
effective charge saturates when-. ing the sizea of microions:

For Debye-Hgkel theory,g,(q,#)=n(1-Bq,#) be-

haves as/ when ¢y—o and the integrand in Eq3.6) be- _i _ 3 _ 3
haves as/ !, it is not integrable: there is no charge satura- 'Bfexc({n“})_a3 1 % a’ng|in| 1 ; ANl
tion. (5.4

Now let us turn our attention to some more interesting
examples. Barboset al.[15] have proposed a local theory to This theory is also stable, namely;?¢/dn,an.) is positive
account for counterions correlations in a one-componendefinite[17] and, therefore, it satisfies conditi¢®.7). From
plasma(OCP) description of the electrolyte, that is, a systemgq, (5.4), there is a higher bound for the value of the micro-
of charged counterions immersed in a uniform oppositelyions densities which i®~3: when the counterions density
charged background. This theory, referred to as the Debyeggpproaches 3 the electric potential diverges. Therefore,
Huckel-hole-cavity(DHHC) approach, is stable—it satisfies according to the discussion of the preceding section, this
condition(2.7)—and the densityr of the counterions is de- theory does not allow the electrostatic potential to saturate.
scribed in framework2.5) of the DFT. The local free energy  our approach also predicts, in the case of nonsaturation,
density is of the formf(n) = fiy(n) + fpunc(n) wherefiyis  whether the effective charge will grow faster or slower than

the ideal gas part of the free energy and the bare charge. Let us illustrate this point considering again
5 — . — o the framework presented in Refd.2—-14. To simplify the
Blonnc(n) _ (xa) _f‘“d Q) () argument, we consider a two-component electrolyte with
n 4 " 2(w3—1) counterions/coions of charge g/q and bulk densityn,.
— Poisson’s equation then takes the form
w
+ — — . . i
L 0@Betrary P Ba(x) = k2 ——mBAY) 55

1—-{+cosBqy)’

3 where/=2npa® and k= \/87nlg.
Qw)=(w— 1)3+@(53_1)’ w=(1+3lgk)*3, In this case it is possible to have finite counterion density
3lgk when ¢y—o and as discussed in the preceding section, the
(5.2 function F(y) defined in Eq.(3.6) behaves as/*? as ¢

andx= \4xlgn is the inverse Debye length. The theory hasdiverges. More precisely, we have here

a parametea which may be interpreted as a sort of radius of 3

the microions(nonstrictly speaking, because the counterion F(y) = (

density can actually be higher than ®). yee 270
Expression(5.1) is quite complicated and there is no hope

to be able to obtain an analytical solution for the functionso that

F(y) or even invert the relationship between the potential

and the density obtained from the stationary equatihf).

However we only need to investigate the lingit—o. “To allow for the definition of an effective charge, Poisson-
First it is straightforward to see that if the densityis  Boltzmann generalized equati®®.4) should behave as Helmholtz

finite, the potential is finite. Now, ifn—o we have equation ¢">) when—0. This is discussed in Appendix B.

In this equation,

1/2
) J2+0(1) (5.6)

500
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a0 ¢(w) translate the curve df ~1(—x) to the right such that at the
origin, both curves off “1(—x) and ¢py have the same
slope. But since- ,,(x) behaves as exp(xx) which has a
faster increase as— —% than—F ' (—x) which behaves
as—x, itis clear that agr increases we need to shift more to
right the curve of ~1(—x) than the one folpy(x). On the
other hand, forx—oo, we have ¥(x)=B exp(—«x) with
Boc exp(—kXxg). Since the translation of the curve of
F~1(—x) becomes larger and larger than the one for
Ypou(X), this means that the fact@&increases faster than the
bare charger. The corresponding effective charge therefore
increases faster thaw as o is raised. We have also
checked this feature from a direct numerical solution of Eq.
(5.5). The above argument may be rationalized, as shown in
Appendix C.
- ° Yoz - z In the cases of nonsaturation, generalizing the argument

FIG. 2. Illustration of a theoryRefs.[12—14) where the effec- presented before, if the faster divergent counterion d(_ansity
tive charge diverges faster than the bare charge. The dashed curve bghaves slower thag when w—foo' then the theory wil
represents the potentighy(x) predicted by Debye-Fkel theory predict an effective charge that_dlverges faster than the bare
and the full line represents the potentiglx) put forward in Refs. charge. If, onvthe other hand'y d'Verg?S faster tha’_ﬁ_bUt
[12—-14. The potential is measured in units kT/q and the dis- slowe_r thany” for any v>1, so therg IS no saturat!on Qf the
tancex in units of the Debye lengt~L. We have chosen here effective charge—then the effective charge will diverge
a®n,=1/4, wheren, is the bulk density of ions(A) A case where ~ slower than the bare charge.

30

20

10

the bare charger is small [actually in the figure 4oBq/(sx) To sum up, a theory such as that of R¢fi2—14 cures a
=1]. Both curves have the same behavior xas», namely, deficiency of Poisson-Boltzmann theory by setting an upper
y(x)=exp(=x). (B) A case whereo is large [4moBq/(ek) limit for the density of microions, at the expense of produc-

=10]. To obtain(b) from (A), it is necessary to shift the curves by ing unphysical effective charges when the nonlinear charac-
an amount indicated ifA) by the horizontal arrows. Since when ter of the equation prevail®nly for small electrostatic cou-
x— —o the Debye-Hukel electric field increases exponentially, plings would this theory give reasonable effective charges
— Hu(X) ~exp(=x), whereas the electric field of Reff12-14 that would then coincide with the bare charge of the plane
increases only linearly;- ¢’ (x)~ —x, the curve for that last theory  since the theory would reduce to DebyédKal theory. The
should be shifted to the right much more that the one for Debyesame would happen for any DFT with the hard core part
Huckel theory. This shows that the behaviorxat- is ¢ou(X)  included through a local free energy dengioyie may wish,
~4mal(ex)exp(—x) and y(x) ~4moey/ (e k)exp(=x) with an ef-  for instance, to use Carnahan-Starling-like expressions to ac-

fective charge larger than the bare chaogg> o count for excluded volum¢18]): such approaches indeed
lead to a divergence of the free energy density in the vicinity
B 27|q| of close packing, so thak ()= 2 for large . Since we
FH(—x)~ ?Xz (5.7 have to expect that effective charges are bounded from above

when the bare charge becomes larg#, the above analysis
seems to show that when improving upon Poisson-
when x— —c. On the other hand, one recovers Debye-Boltzmann theory, incorporation of steric effects through a
Hiickel theory for small potentials. This means tH&at' |ocal functional and/or neglect of microionic electrostatic
(—=x)~Aexp(=«x) for x—c with A being an arbitrary con- correlations is insufficient.

stant sinceF is determined up to an additive constant. Sup-
pose that initially the plane has a small bare charge density
o(©). For Debye-Hugkel theory the electric potential reads
Pon(X) = (470 Ve k) exp(—kX), so thate kA/(47) may be We have found a necessary and sufficient condition that a
considered as the effective charge describing the far field ofeneric local density functional theory should fuffill to de-
the plane. As explained beforey(x)=F [ —(x+X)] scribe the effect of electrostatic potential saturation for a
where the constant of integratiorn, can be determined charged planar interface, namely, if in the local relation be-
graphically. Let us chooséa=475%/(ke), so that plots of tween the potential and the densities it is possible to have
F~1(—x) and¢py(x) superimpose wher— o (see Fig. 2 y—o0 and all densities finite, there will be no saturation. On
Now, consider a large bare charge densitgf the plane. To the other hand, if agr—< the highest valency counterions
obtain from the curve oF ~1(—x) the correct plot ofiy(x) density diverges ag” for somev>1 or faster, the theory
we should change the origin of tixeaxis such that the value will predict a potential saturation. In the other case where the
of dF~1(—x)/dx=—4mo/e at this new origin. Let us sup-

posec large enough so that this new origin is in the region

x— —o whereF ~1(—x) behaves as?. As o increases, we  SThe first example of footnote 3 is a case where the divergence of
have to shift the origin further to the left or equivalently to the effective charge will be slower than the bare charge.

VI. SUMMARY AND DISCUSSION
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increase of the density is @sor slower, there will not be an local DFT (2.5). First, note that

electric potential saturation, hence no charge saturation. For

the limiting cases where the density diverges faster than d ,

but slower thany” for any »>1 one should consider the ax 20:4 9aFa(Qat (X)) P (X) (Ala)

general condition given in Eq$4.1): [ —2,G.(q.4)]1 2

with G, defined in Eq.(3.3), should be integrable ag

—o0 to ensure that the electric potential saturates. = qunLi’ + > qun Y (A1b)
A natural continuation to this work would be to address @ a

the same question for a colloidal object of any shape. We

expect that, for large colloids, the results found here will 3t , ., AT,

hold. However for small charged objects immersed in an & angan e T P (Alc)

electrolyte, the question remains od@3]. It would also be '

interesting to explore in more detail the behavior of effective

h in the f K of other theories. for i where we have used the minimization equati@®) and
charges in the framework of other theories, for instance, NoNpisson equatior?. 1). If (42f/dn,an,) is positive definite,

local theories. ; : : :

At this point, it seems appropriate to come back to theth|s latter expressiofAla) is negative and therefore
validity of one of the simplest approaches encompassed by
our formalism: Poisson-Boltzmar{®B) theory. In particular, > duGal(Guth(X)) ¢ (X) (A2)
it seems that the validity of the saturation regime within PB @
theory is sometimes confusing in the literature, which we . .
might trace back to Onsager who wrote in a seminal papel§ @ decreasing function af Furthermore, the boundary con-
[19] the following: “As soon as the higher ordfmon-lineaj  ditions atx—c impose that Eq(A2) vanishes at infinity, so
terms in the Poisson-Boltzmann equation become importanthat = ,0.9.[d.¥(X) ¢ (x)>0.
we can no longer expect the ionic atmosphere to be additive, The condition thats*f/dn,dn,, is positive definite is a

and then the Poisson-Boltzmann equation itself becomes ugufficient condition to ensure that EQ.7) is satisfied. Let us
reliable.” remark that this same condition is sufficient for the nonex-

This statemen(irre|evance of PB as soon as nonlinear istence of Iike-Charge attraction between colloids and the ab-
behavior sets inis justified for simple electrolytes, the sys- sence of overcharginfl6]. It is also a sufficient condition
tem studied by Onsager in RdfL9]. However, it turns in-  for the compressibility of the system to be always positive
correct when there is a |arge size and Charge asymmetr\yithin the cell mode[25] Furthermore, as it will be shown
between the constituents of a charged mixture, which is thé Appendix B, it is a sufficient and necessary condition to
case for colloidal suspensiofi20]. This appears in the ana- recover Debye-Hekel linear theory where the electric poten-
lytical work of Netz in the no salt limif21]. Indeed, PB tial is small.
neglects correlations between microscopic species, which be-
come prevalent at high electrostatic couplings, i.e., when APPENDIX B
=(g%013)Y? becomes largé5,20—23. On the other hand, _ _
PB enters the saturation regime when the coupling between In this appendix we prove that, far from the charged wall,

the charged plane and the small ions becomes large, whicH1y local theory reproduces the results of the linear Debye-
may still be compatible with the neglect of microionic cor- HUckel theory provided that the Hessian maigé/an,an,,

i i ; i itive definite.
relations, providedlz<1, as may be seen by replacing the 'S POS! N _
saturation valuerg,e< «/1g in the definition ofl". A similar Far fgom the wall, the densities converge to their bulk
conclusion is reached enforcing that the correlational contrivaluesn, and the potential vanishes. Then the minimization

bution to the pressure in the bulk of the electrolgitee cel-  €duation(2.6) for =0 becomesg.,=(df/dn,)p, where the
ebrated term in—«x3kgT appearing within Debye-Hikel ~ Subscriph means that the partial derivative bis evaluated

theory of electrolyte§5,24]) should be negligible compared at the bulk values of the densitiag=n, . This provides the
to the ideal gas contribution,kgT: x3<n, imposesxlg  relationship between the chemical potentials and the bulk

<1. densities.
For small values of the potential, the differentg—n® is
ACKNOWLEDGMENTS small, then we can expand
We thank L. Bocquet, Y. Levin, and M. Aubouy for useful of of 92f
discussions. G.T. wishes to thank the LPT Orsay, where this 9_:(5_ + (n,— nk;)(a P ) +..- (Bl
work was completed, for its hospitality. This work was sup- Na Naly "y NadNy/y,
ported by ECOS Nord/COLCIENCIAS-ICETEX-ICFES ac- o o _ .
tion COOP02 of French and Colombian cooperation. and substituting into the minimization equati¢d.6) this
gives
APPENDIX A )
a°f
We prove here that conditigi2.7) is a consequence of the E (n,— n‘;)( o an ) =—(,¥. (B2)
Y @ Y'b

stability of the theory formulated in the framework of the
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Provided that the Hessian matri#f/on,an. ), is invertible Feao(#) =« n(yl @)+ 0(1), ¢—0. (C3
we have
That is, Fgao(¥) behaves ad=py(#) when ¢—0 up to
b A terms that vanish whegz— 0. On the other hand we have
ne=ng—2 A, (B3) i i
o e G langon, ) behavior (5.6) for Fgao When ¢y—«. Let us defineyyae

=47l (ke) and suppose that the bare chasgef the plane
where @*f/an,an.), * denotes thed, y) matrix element of  is large enough such th&ggpae> 1. For this valuer of the

the inverse of the Hessian matriﬁquﬁna&ny)b. charge density of the plane, we have to find the constants of
Replacing into the generalized Poisson-Boltzmann equahtegrationxs"° andxg' of Eq. (3.5) for the theory of Refs.
tion (2.4) we obtain a Debye-Hikel-like equation [12—-14 and for Debye-Huakel theory, respectively. We can
, proceed as follows: we first determine the valuey8t"BA°
P(X)= Kk“(X) (B4 such thatFpy gao(#P™BAC) = —xD™BAC | then we deduce

xg™BA9  For Debye-Hakel theory, applying the boundary
condition(2.2a we have

_ (dFDH)l
== ag

with an inverse Debye lengtk™* defined by

A7 ’f |\t
2 _
K g QE,, q“q"( 07nao7ny)b

B5 dys

(B5) & :_K(ﬂDH:_K‘ﬁbare-
y=yPH

To recover the results from Debye-ekel theory, whatever (C4

the values of the charge, might be, it is necessary and Then for yPH= y, ... we haveF p(#°H) = —x3" and there-

sufficient that the Hessian matrix)?(f/anaany)b is positive  ¢5re — kX2 =In(haed ¥1?) . For the theory of Ref§12—14
definite, which ensures the existence of its inverse and thqﬁe boun?:lary conSEtio(}Z.Za) yields

«k?>0.
dy| (dFBAO)l
x=0 d¢

x=0

APPENDIX C dx

l//:lﬁBAO
In this appendix we prove that the theory presented in

. . . 2k
Refs.[12-14 predicts an effective charge that diverges ex- — [7BAO BAOs. 1
ponentially faster than the bare charge when . V289 v Ry
The function defined by Eq$3.6) for the theory of Refs.
[12—14 reads =~ Kipare- (CH
Az do Therefore we have y®°~(Bqyi,d2 and — kx5
Feao( )= g f (1)  =«Fgao(¥®*°)~ Btz Clearly we have"©>xg" as
V2 J In[1-¢+{coshipqe)] Yoare— . Furthermore these constants of integration mani-

, . ) fest in the largex behavior of ¢(x) as @¥(x)
while the one for Debye-Htkel theory is ~ 4O~ Xog~ ¥ giving, for x— o

1 X)= e C6
FDH(‘//) — ;ln( ¢/ ll/(O)), (CZ) ¢DH( ) ¢bar£ ( )
for Debye-Hickel theory(as expected while
where in the last equation we have made the particular — 1{(0)alBAYpare™ 0(¥pard @ — KX
choice = y?) of the lower bound of integration in defini- Veao(X)~ye e xo= (€D

tion (3.6) of Fpy. Suppose thapqy!? is chosen of the for the theory of Refs[12—14. This theory predicts an ef-
order one—say,B8qy(¥=1. Now we choose the lower fective charge that diverges exponentially fast when the bare

bound of integration in Eq(C1) for Fgao such that chargeo—oo.
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