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Hydrodynamics within the Electric Double Layer on Slipping Surfaces
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We show, using extensive molecular dynamics simulations, that the dynamics of the electric double
layer (EDL) is very much dependent on the wettability of the charged surface on which the EDL
develops. For a wetting surface, the dynamics, characterized by the so-called zeta potential, is mainly
controlled by the electric properties of the surface, and our work provides a clear interpretation for the
traditionally introduced immobile Stern layer. In contrast, the immobile layer disappears for non-
wetting surfaces, and the zeta potential deduced from electrokinetic effects is considerably amplified by

the existence of a slippage at the solid substrate.
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The electric double layer (EDL) is a central concept in
the understanding of the static and dynamical properties
of charged colloidal systems. This notion was introduced
in the early works of Gouy, Debye, and Hiickel [1] to
describe the distribution of microions close to a charged
colloidal surface. The EDL width determines the electric
interaction range between macromolecules and therefore
controls the static phase behavior of these systems. On the
other hand, at the dynamical level the EDL is at the origin
of numerous electrokinetic effects [1]: electrophoresis,
electro-osmosis, streaming current or potential, etc.
Because these various phenomena are governed by the
surface of the sample via the EDL, they provide smart
and particularly efficient ways to drive or manipulate
flows in microfluidic devices [2,3], where surface effects
become predominant.

The extension of the EDL is typically on the order of a
few nanometers, and electrokinetic phenomena therefore
probe the nanorheology of the solvent + ions system at
the charged surface. This therefore raises some doubts
about the validity of continuum approaches to describe
the dynamics at such scales. These doubts are particularly
relevant concerning the traditional description of the
EDL dynamics, which relies both on the mean-field
Poisson-Boltzmann theory of the microion clouds, but
also on continuum hydrodynamics for the flow fields
[1]. These two aspects are embodied in the so-called
zeta potential, denoted ¢, which is traditionally defined
as the electric potential V(z,) computed at the surface of
shear z,, where the fluid velocity vanishes [1,4—6]. This
definition of £, however, relies on the somewhat uncon-
trolled assumption of no-slip boundary condition of the
solvent at the solid surface [7].

This assumption has been critically revisited in the last
years. Indeed, a lot of progress has been made recently in
the understanding of the rheology of fluids at small scales,
thanks, in particular, to computer simulations, such as
molecular dynamics (MD) [8], but mainly to the develop-
ment of new experimental techniques, such as surface
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force apparatus (SFA) or atomic force microscope
(AFM) [9,10]. While continuum hydrodynamics are
found surprisingly to remain valid up to very small length
scales, the no-slip boundary condition (BC) for the fluid
velocity at the solid surface may be violated in many
situations [7—10]. Moreover, this violation of the usual
no-slip BC is found to be controlled by the wetting
properties of the fluid on the solid surface: while the
no-slip BC is fulfilled on hydrophilic surfaces, a finite
velocity slip is measured on hydrophobic surfaces [8,10].

In this Letter, we show using MD simulations that a
finite slip effect for the solvent at a charged surface
considerably enhances the measured electrokinetic ef-
fects. This results in an enhanced ¢ potential, the origin
of which lies in the dynamics of the solvent at the surface.

We first precise our microscopic model and some de-
tails of the simulation procedure. The fluid system (sol-
vent and microions) is confined between two parallel
solid substrates, composed of individual atoms fixed on
an fcc lattice. The solvent and solid substrate particles
interact via Lennard-Jones (LJ) potentials,

vii(r) = 4{(%)'2 - c,-,-(%ﬂ (1)

with identical interaction energies € and molecular diam-
eters 0. The tuning parameters c;; allow one to adjust the
wetting properties of the fluid on the substrate [8]: for a
given fluid-fluid cohesion cgp, the substrate exhibits a
“hydrophilic” behavior for large fluid-solid cohesivity,
crs, and a ““hydrophobic” behavior for small cgg. Here,
the wetting (nonwetting) situation is typically achieved
by taking cgg = 1 (0.5) for a fixed cgg = 1.2. This leads to
a contact angle 0 of a liquid droplet on the substrate,
measured in the simulations equal to 80° (140°) for a
temperature kzT/e = 1 [8]. Microions interact through
both LJ potentials, as described in Eq. (1), and Coulomb
potentials in a medium with dielectric permittivity €,
[Vap(r) = kgTq,qgls/r, Where q, and g are the valen-
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ces of the interacting charges, and €5 = e*/(4me kgT) is
the Bjerrum length, e denoting the elementary charge]. In
water at room temperature, €5 = 0.7 nm. We shall choose
in our simulations €3 = o. Ions also interact directly with
the surface atoms via the same LJ potential as the solvent
(i.e., the same cgg). Microions and solvent particles have
the same size o [in Eq. (1)]. Wall atoms are organized into
five layers of an fcc solid (100 direction) in both walls.
For each wall, the first layer only, in contact with the fluid,
is charged. The corresponding N,, atoms bare a discrete
charge, with valency gy, = —Z/N,, so that each wall
bears a negative net charge —Ze. The solvent contains Z
monovalent counterions, to which N, = N, + N_ salt
ions are added, all with valence one. Global electro-
neutrality is enforced by imposing N, = N_. The sys-
tems simulated are generally made up of 10* atoms. A
typical solvent density is p fa'3 ~ 1, while the concentra-
tion of microions p, = N./V is varied between p,0° =
5% 1073 and p,03 = 0.16 (with V the total volume of
the sample). This corresponds typically to an ionic
strength varying between 1072M and 1M. The charge
per unit surface on the wall is 3, = —0.2¢ o2, associated
with a Gouy-Chapman length A = 2#lz3)"! = 0.80.
Using a typical value o = 5 A, this corresponds roughly
to —0.13 Cm™2. Periodic boundary conditions are ap-
plied in the x and y directions, with L, = L, = 160,
while the distance between the walls is L, = 20.80.
Ewald sums are used to compute Coulombic interactions
(assuming a periodicity in the z direction with a box size
of 1120, much larger than the wall to wall distance) [11].
Lennard-Jones units are used in the following [distance
o, time 7 = (mo?/€)'/?). Temperature was kept constant
by applying a Hoover thermostat to the y degrees of
freedom, i.e., in the direction perpendicular to the flow
and confinement.

Our model therefore includes the discrete nature of the
solvent and charges and a tuning wettability of the sur-
face, whereas these effects are usually neglected in the
traditional description of electrokinetic phenomena. Note
that we chose to describe the charge interaction at the
level of an effective dielectric media (with dielectric
permittivity €,). This simplifying assumption, which
could be relaxed using a more realistic model for the
solvent [5], allows us to investigate specifically the ge-
neric interplay between slip effects and electric behavior,
which is the main focus of this work. Moreover, we have
explored situations beyond the ones presented here (with
or without salt, using different cgg for the ions and the
solvent, and various Bjerrum lengths €p), leaving the
present conclusions unaffected.

We now turn to the simulation results. We first focus on
the equilibrium properties of the EDL. As shown on
Fig. 1, typical density profiles are found to exhibit im-
portant structuration effects close to the charged surface
and thus depart strongly from the Poisson-Boltzmann
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FIG. 1. Microionic density profiles, averaged over the xy
directions (p 0 = 0.07, wetting case). Symbols, MD simula-
tions results for the counterions (O) and coions ([J); solid and
dashed lines, corresponding predictions of the modified PB
description (see text). Inset: electrostatic potential. The wall is
located at z,, = —10.80. Symbols (O), MD simulation results
calculated from Poisson’s equation and microions profiles;
dashed line, bare PB prediction (see text).

(PB) prediction [1]. However, the oscillations in the mi-
croions profiles originate in the structuration in the sol-
vent itself, and such an effect can be captured by a
modified PB description. Indeed, due to the presence of
the solvent, microions not only organize due to electric
interactions (which corresponds to the usual PB descrip-
tion) but also due to the effective external field associated
with the structuration in the solvent [12], defined as
Vex(z) = —kgTlog[p/(z)/ps], with p,(z) the solvent
density profile and p, its bulk value. The microions
density profiles p(z) correspondingly obey a modified
Boltzmann equilibrium:

p+(z) x ePlFeV@D V@] o pf(z)eiﬁeV(z), (2)

with B8 = 1/kgT and V(z) the electrostatic potential.
Actually, such a relationship emerges naturally from a
simple density functional theory, in which the discrete
nature of both solvent and charged atoms is taken into
account exactly, while the standard mean-field PB free
energy is assumed for the electrostatic part. Using
Poisson’s equation, the electrostatic potential is found to
obey a modified PB equation, BeAV = k’y(z) X
sinh(BeV), where k> = 87{ 5 p®"k is the Debye screening
factor defined in terms of the bulk microion concentra-
tion, and y(z) = p/(z)/py is the normalized solvent den-
sity profile. In order to test the predictions of this
approach, we have measured the fluid density profiles,
p¢(2), and solved Poisson’s equation with the microionic
densities given by Eq. (2), using Neumann boundary
conditions, and assuming a smeared (uniform) surface
charge on the wall. As shown in Fig. 1, this approach leads
to results in very good agreement with the simulation
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profiles. Moreover, a further approximation can be pro-
posed: The solution of the modified PB equation for
electrostatic potential is actually very well approxi-
mated by the “bare” PB solution Vpgp(z) [correspond-
ing to y(z) = 1], whose analytic expression can be found
in the literature [1]. This leads to p(z) * py(z) X
expl ¥ BeVpp(z)]. The validity of this approximation—
surprising in view of the strong layering effect at work—
is emphasized in Fig. 1 (inset), where the corresponding
bare PB potential [1] is plotted against the “exact” elec-
tric potential. The latter is obtained from the simulations
using Poisson’s equation by integrating twice the charge
density profile p- = e(py — p_).

We now investigate the dynamical properties of the
EDL. We first consider a streaming current experiment:
an external volume force, f), is applied to the fluid in the
x direction, enforcing a Poiseuille flow in the cell, and the
electric current, /,, associated with the convective motion
of the microions is measured. The standard EDL descrip-
tion of this electrokinetic effect predicts a linear rela-
tionship between the current and the force, in the form [1]

I, = _—ﬂfo, 3)
n

where 7 is the shear viscosity of the fluid and ‘A the fluid
slab cross area. In the simulations, a force per particle is
applied to all fluid particles and the corresponding elec-
tric current is measured. We emphasize that linear re-
sponse (in the applied force) of the system was
carefully checked. In the following, we shall use this
expression as the definition of the (apparent) { potential,
in line with experimental procedures.

We first discuss the measured velocity profiles. The
situation corresponding to a wetting substrate is shown
in the main plot of Fig. 2 (here for f; = 0.02 in LJ units).
The velocity profile is found to exhibit a parabolic shape
as predicted by continuum hydrodynamics, even at the
scale of the EDL. Moreover, the viscosity, deduced from
the curvature of the parabolic shape, is measured to keep
its bulk value. Nevertheless, the no-slip BC is found to
apply inside the liquid, at a distance of about one layer of
solvent particle, in agreement with previous theoretical
predictions [8]. This position of the no-slip BC here
defines the “plane of shear” position, z,, usually intro-
duced in the electrokinetic literature [1]. As shown in
Fig. 2, the layer of microions located within z; does not
contribute to the convective transport, thereby reducing
the global streaming current. This immobile layer coin-
cides with the so-called Stern layer of immobile micro-
ions close to the charged surface [1]. Note moreover that
we found z, to vary slightly with electrostatic parameters
(surface charge 3, Bjerrum length €3), as expected.

On the other hand, the nonwetting case exhibits a very
different behavior, as shown in the inset of Fig. 2. First,
concerning the velocity profile, a large amount of slip is

FIG. 2. Measured Poiseuille velocity profile (solid line) in the
wetting case (cgs = 1). Dashed line: hydrodynamic prediction
using a no-slip BC at the plane of shear located at z, (indicated
by the arrow). To emphasize the existence of an immobile Stern
layer, we also indicate the charge density profile p.(z) =
e[p.(z) — p_(z)] (dotted line), with arbitrary units. The posi-
tion of the wall (defined as that of the centers of the last layer of
wall atoms) is at z,, = —10.8¢. Inset: results for the nonwet-
ting case (cgs = 0.5). Solid line: velocity profile measured in
the simulation (shown on the same scale as in the main graph);
dashed line: hydrodynamic prediction with a partial slip BC,
with a slip length b = 1107 dash-dotted line, hydrodynamic
prediction with a no-slip BC; dotted line, charge density profile
(arbitrary units).

found at the wall surface, in agreement with observations
on uncharged nonwetting surfaces [8]. More quantita-
tively, slippage is characterized by a slip length, b, de-
fined as the distance at which the linear extrapolation of
the velocity profile vanishes. This amounts to replacing
the no-slip BC by a partial slip BC, defined as b‘;—’zj = vat

the wall position [8]. As shown in the inset of Fig. 2, the
velocity profile is found to be well fitted by the continuum
hydrodynamics (parabolic) prediction, together with a
partial slip BC, characterized by a nonvanishing slip
length (here b = 110). An important point here is that
the first layer of microions now contributes a large
amount to the global streaming current in contrast to
the wetting case, as emphasized in the inset of Fig. 2.
The remobilization of the Stern layer therefore adds on to
the slippage effect to increase the { potential.

We now summarize our results in Fig. 3 and plot the ¢
potential [deduced from the measure of the charge cur-
rent supplemented with Eq. (3)] as a function of the
Debye screening factor in the wetting and nonwetting
cases. In this figure, the { potential is normalized by
the bare surface potential V|;, obtained from the analytic
PB expression [1] (see Fig. 1). Moreover, the slip length in
the nonwetting case has been measured to barely depend
on the screening factor, indicating that the microions do
not affect the fluid-solid friction. The overall conclusion
from Fig. 3 is that nonwettability strongly amplifies the
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FIG. 3. The symbols show the { potential measured in MD as
a function the screening factor x{g, for the wetting (bottom
line) and nonwetting substrate (top line). The { potential is
normalized by the bare surface potential V|, obtained from the
PB expression at a given k and surface charge (see the dis-
cussion on the inset of Fig. 1). For the wetting case, the dashed
line is the PB electrostatic potential V(z,) where the plane of
shear position z; does not vary significantly with salt. For the
nonwetting case, the dash-dotted line corresponds to the slip
prediction, Eq. (4) (with b = 110).

electrokinetic effects: the ratio between the ¢ potential
and the surface potential is much larger in the hydro-
phobic case as compared to the hydrophilic case. More
precisely, in the wetting case the { potential is fixed by
the electric properties of the surface and coincides with
the electric potential at the plane of shear, { = V(z,), as is
usually assumed [1]. This is demonstrated in Fig. 3, where
the simulation points for { are compared to the PB
estimate for the electric potential, Vpg(z,), showing an
overall very good agreement. Conversely, the { potential
in the nonwetting case is dominated by the slip effect and
the immobile Stern layer is completely absent. The effect
of slip can be accounted for by considering the partial slip
BC in the electrokinetic current I, = [dSpc(z)v(z), with
pc(z) the charge density and v(z) the velocity profile
characterized by a slip length b. Within linearized PB
description, and for the present planar geometry, the
result for the current /,, Eq. (3), may then be written I, =

Ed—:" (1 + &b)fy [2]. In the nonwetting case, this leads to
{ = Vy(1 + kb), @)

with V,, the bare potential of the surface [13]. This ex-
pression is successfully compared in Fig. 3 to simulation
results.

Finally, we quote that we have tested a different elec-
trokinetic geometry, corresponding to the more common
electro-osmotic situation: flow response to the application
of an electric field. The ¢ potentials measured in this

geometry (not shown here) are in full qualitative and
quantitative agreement with the results in the present
(streaming current) geometry.

To conclude, we have shown using MD simulations that
the notion of { potential, the cornerstone in the descrip-
tion of EDL dynamics, encompasses different physical
mechanisms, depending on the wettability of the charged
substrate. In the wetting situation, the { potential can be
indeed directly related to surface charge properties, con-
firming hereby the traditional Stern layer picture [1]. In
contrast, for nonwetting substrates, electric and slip ef-
fects are strongly intricated, leading for the { potential
[Eq. (4)] to an amplification ratio of 1 + «b. Practically,
this ratio can take large values, even for moderate slip
lengths of the order of a few nanometers, since the Debye
length «~! usually lies in the nanometer range (slip
lengths of the order of tens of nanometers have been
reported for hydrophobic silanized glass surfaces [10]).
Moreover, it would be highly desirable to generalize
Eq. (4) obtained for the planar case to other geometries
(e.g., spherical) where a new length (radius R) will com-
pete with the Debye (k') and slip (b) lengths, Eq. (4)
yielding the limiting behavior for b/R, k! /R — 0. This
work also points to the difference between dynamical
and static properties of the EDL, respectively, character-
ized by the zeta and bare surface potential, { and V.
Independent static and dynamic measurements, using,
e.g., AFM or SFA, should therefore allow one to probe
the different mechanisms underlined in this study.
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