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Ground states of colloidal molecular crystals on periodic substrates
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Two-dimensional suspensions of spherical colloids subject to periodic external fields exhibit a rich

variety of molecular crystalline phases. We study in simulations the ground state configurations of

dimeric and trimeric systems, that are realized on square and triangular lattices, when either two or

three macroions are trapped in each external potential minimum. Bipartite orders of the checkerboard

or stripe types are reported together with more complex quadripartite orderings, and the shortcomings

of envisioning the colloids gathered in a single potential minimum as a composite rigid object are

discussed. This work also sheds light on simplifying assumptions underlying previous theoretical

treatments and that made possible the mapping onto spin models.
Fig. 1 (a) Several representative orientational structures observed on

a 2D rectangular lattice, for a stoichiometry n ¼ 2 (dimers). For visual-

isation purposes, the two colloids forming a dimer are hereafter linked by

a thick line. The parameters associated with the different phases are the

following: for the structure denoted P0,0 (ferromagnetic): kd ¼ 0.25,

kl¼ 6, a¼ 0.9; Pq,q (tilted ferromagnetic): kd¼ 1, kl¼ 4.5, a¼ 1; Pq1,q2
: kd

¼ 1.5, kl¼ 6, a¼ 1; and for the P0,p/2 (antiferromagnetic) phase: kd¼ 0.5,
I. Introduction

Colloidal suspensions provide valuable systems for the study of

collective effects and phase transitions (see e.g ref. 1 or more

specifically ref. 2 and references therein). Freezing and melting

transitions3 and clustering4 in two dimensions have been studied

experimentally, with a link to the vortex dynamics in super-

conducting materials.5 The orientational ordering of columnar

phases of DNA molecules6 is another related problem.

Recent advances in optical trapping techniques have enlarged

the whole field and opened the possibility of experimentally

realizing quasi two-dimensional colloidal systems, which can

furthermore be subject to an external potential. A possibility of

realizing such external perturbations is through the interference

of laser beams, the typically micron-sized colloids being attracted

to the regions of highest intensity. Unusual phases have been

reported in the case of 1D troughs,7 such as floating solids or

locked smectic phases.8,9

The control parameters governing the static behaviour of

colloids in periodic external potentials are numerous: filling

fraction (mean number of colloids per substrate minimum),

pinning amplitude (trap strength, increasing with laser intensity),

temperature, and, concerning the substrate geometry, lattice

spacing and aspect ratio (i.e. rectangular unit cell instead of

a square one). In addition, the colloids considered are highly

charged objects, so that the Debye length of the suspension,

modified by changing the salt content, is a crucial parameter. In

the present paper, we concentrate on the experimentally relevant

ground state of those 2D systems, where the long range orien-

tational order observed has been coined ‘‘colloidal molecular

crystals’’. If the external laser potential is strong enough, the

colloids are irreversibly bound to the potential minima. In cases

when more than one colloid is trapped in a single minimum we

speak of a ‘‘colloidal molecule’’. Its size is determined by the

interplay between light forces and interparticle repulsion.

Fig. 1(a) provides an illustration of typical phases observed when
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the ratio of the total number of colloids in the system to the total

number of external potential minima is exactly two. While

defects are present at finite temperature, we observe that the

ground state is free of such objects, so that each trap captures

exactly two colloids.

The orientational ordering of ‘‘colloidal molecules’’ on a two-

dimensional periodic substrate is remarkably rich and has been

addressed experimentally,10 numerically11–13 and analytically.14,15

The purpose of the present paper is twofold. The first goal is to

provide a thorough numerical investigation of orientational

ordering in colloidal molecular crystals on two-dimensional

periodic substrates. We will focus on stoichiometries of 2 and 3,

where dimers and trimers are formed, respectively, with the

underlying square or triangular symmetry for the potential. We

will also address the situations where the corresponding lattice
kl ¼ 6, a ¼ 1. 1/k is the inverse Debye length and represents the range of

the electrostatic screened interactions between colloids. (b) Schematic

drawing showing dimers in the traps (shaded circles). l is the distance

between the neighbouring traps and 2d is the size of the ‘‘colloidal

molecule’’.
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unit cell is distorted by changing the aspect ratio a. The second

objective is to critically test several assumptions that led to the

theoretical frameworks used in ref. 14 and 15 to study such

problems. In section II, we will start with an approach, common

to ref. 14 and 15, where the composite objects (n-mers) formed in

each trap are considered as rigid entities with an orientational

degree of freedom only, while the confining potential is taken

into account implicitly. This allows for a significant reduction of

the complexity of the problem. Reference phase behaviour is thus

obtained, which will be tested against more realistic simulations

in Section III, where each colloid is resolved and the confining

potential explicitly accounted for. Finally, we will also test the

relevance of the various effective potentials used in ref. 14 to

construct a tractable Hamiltonian allowing for analytical prog-

ress. Our main finding and the ensuing consequences will be

summarised in section V.
Fig. 2 Ground state of dimers (n ¼ 2) on a square or rectangular lattice,

as obtained from simulated annealing. Graphs (a), (b), (d) and (e) exhibit

the dependence of characteristic angles q1 and q2 on dimer spacing d,

lattice constant l and aspect ratio a. The first row is for a square lattice (a

¼ 1) with (a) kl ¼ 4.5 and (b) kl ¼ 6. The corresponding phase diagram is

shown in (c). The second row is for kl ¼ 6 and (d) a ¼ 0.9, (e) a ¼ 0.7,

while (f) shows the phase diagram. As in subsequent figures, the symbols

refer to parameters used for the more complete Monte Carlo simulations

of section III, which lift the rigidity assumption. Circles: ‘‘rigid’’ simu-

lated annealing and ‘‘flexible’’ Monte Carlo simulations agree; triangles

for parameters where they do not agree. Here, no triangles are reported

since both approaches yield similar results, see below.
II. The rigid n-mer approach

The integer number n of colloids that gather in a light potential

minimum16 are subject to gradient forces arising from the

dielectric mismatch between colloids and the solvent, and light

pressure.17 Under such forces alone, the colloids have a prefer-

ence for the regions of highest laser intensity. In addition, the

(spherical) colloids interact through strong mutual repulsion,

considered to be of a screened Coulomb form18

FC ¼ K
X
isj

exp �krij
� �
krij

(1)

where rij is the distance between the centres of mass of macroions

i and j, 1/k is the Debye length,19 and K is an irrelevant prefactor.

To a large extent, colloids in a given trap experience repulsion

from their n� 1 ‘‘trap-mates’’ only, and interactions with colloids

in other traps are of little relevance in determining the shape that

the n-mer adopts within a trap.We therefore assume here that the

antagonistic effects of light interaction and Coulombic repulsion

lead to the formation of rigid composite objects with n-fold

symmetry (e.g. equilateral triangles for trimers when there are 3

colloids per trap). This is the basic assumption of ref. 14 and 15

for which the relevant ground state dimensionless parameters are

kl, kd and aspect ratio a, where l is the distance between the

centres of two adjacent traps, d is the distance between the centre

of the trap and the centre of one of the colloids forming an n-mer

[so that in the dimeric case, 2d is the dimer extension, see

Fig. 1(b)].

The rigidity assumption lumps substrate potential effects

into the length scale d (increasing the well’s amplitude decreases

d). The position of each n-mer is then described by a unique

angular coordinate, while its centre of mass always coincides with

the trap minimum. Unlike in ref. 15 we do not assume that such

angles are discrete with values dictated by the lattice geometry: it

is indeed of interest to realize that Coulombic repulsion alone is

able to select well defined orientations that do not match any of

the underlying lattice principal direction. Finding the ground

state of a system ofN n-mers therefore amounts tominimising the

energy function eqn (1) with respect to N angles.20

For the simplest case of dimers (n ¼ 2) on a square (a ¼ 1) or

rectangular (a s 1) lattice, we found that in the lowest energy
1492 | Soft Matter, 2008, 4, 1491–1498
configuration—obtained by a simulated annealing technique—

the system adopts a bipartite structure of the checkerboard type.

The long range orientational order is therefore characterised by

two angles q1 and q2, which define a phase denoted Pq1,q2
, see

Fig. 1. Interestingly, the angles q1 and q2 are constant in some

parameter range, while they vary continuously in other param-

eter regions. This is illustrated in Fig. 2. The low kd regions of

graphs (a) and (b) are such that (q1, q2) ¼ (0, p/2), a situation

coined ‘‘antiferromagnetic’’ in previous studies and illustrated in

the lower right corner of Fig. 1. Starting from kl ¼ 6 with

a square lattice [Fig. 2(b)] and slightly distorting the lattice into

a rectangular one with an aspect ratio of 0.9, we observe that the

antiferromagnetic P0,p/2 phase disappears and turns into

a ferromagnetic one P0,0, for small enough dimer extensions

(small kd), see Figs. 2(d) and (e). For higher kd, a tilted ferro-

magnetic Pq,q phase appears the most stable, and changes into

a tilted antiferromagnetic Pq1,q2
[Fig. 2(d) and (e)]. Mild param-

eter differences therefore trigger significant orientational

changes: for instance, at kl ¼ 6 all phases are antiferromagnetic-

like [see graph (b)] while at kl ¼ 4.5 [graph (a)] there exists

a window around kd ¼ 1 with ferromagnetic ordering. Note also

that the upper part of the phase diagram (c) corresponds to cases

where d$l/2, which is ruled out since a given trap cannot extend

further than half the inter-trap distance. Similarly, the forbidden

upper region of diagram (f) corresponds to d$al/2.

When the lattice geometry is triangular, we have observed the

formation of stripes,10,11 and the corresponding phases are

denoted Sq1,q2 (the stripes are of the same bipartite family as the

order reported on the square lattice, since the checkerboard
This journal is ª The Royal Society of Chemistry 2008



Fig. 3 Phase diagram for rigid dimers on a triangular lattice for (a) a ¼
0.9 and (b) kd ¼ 1. The insets show the representative stripe configura-

tions. The parameter dependence of bipartite angles along the kl ¼ 6 line

of phase diagrams (a) and (b) is shown in (c) and (d), respectively. Circles

have the same meaning as in Fig. 2.
structure itself is made up of parallel stripes). The main results

are summarised in Fig. 3. The upper left and lower left regions of

graphs (a) and (b) respectively are forbidden regions where some

configurations of the rigid trimers in neighbouring traps would

lead to overlap. For a given aspect ratio, two ground states are

generically observed: a herringbone order [see e.g. the upper inset

of Fig. 3(a)] and a ferromagnetic one where dimers align. The

sequence of these two phases as parameters are modified is quite

complex, particularly so when the aspect ratio a is changed. The

lattice with maximal symmetry a ¼ 1 appears singular in that the

only phase selected there is the herringbone one. This qualita-

tively confirms the results of ref. 15. The case of trimers on

a square or rectangular lattice is somewhat simpler, with only the

stripe S0,p/3 order observed [see Fig. 4(a)]. When the trimers are

put on the triangular lattice, several stripe phases are possible,

but roughly speaking, there is a unique type of order for a given

aspect ratio, see Fig. 4(b).
Fig. 4 Phase diagram of rigid trimers on (a) a rectangular lattice for a ¼
1 and (b) a triangular lattice for kd ¼ 1. The stripe phases are sketched in

the insets, where the centres of mass of the three colloids gathered in

a potential minimum are linked by a thick line. Here, again, circles

indicate an agreement between ‘‘rigid’’ and ‘‘flexible’’ simulations, and

triangles report a mismatch.
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III. Towards a more complete description: effects of
flexibility

To test the relevance of the rigidity assumption we now explicitly

take into account the confining potential in the simulations. In

order not to introduce any orientational bias, we consider an

isotropic (harmonic) confining potential FL(r) ¼ V0(kr)
2, so that

the total dimensionless energy of colloid i reads:

ei ¼ Ei=K ¼ A kdið Þ2 þ
X
jsi

exp �krij
� �
krij

(2)

where di denotes the distance between the centre of mass of

colloid i and the trap centre. The relevant parameters are now kl,

A ¼ V0/K which measures the relative strength of the light

confinement against the Coulomb repulsion and therefore sets

the n-mer size denoted d in section II, and again the aspect ratio.

We have performed Monte Carlo simulations of this ‘‘flexible’’

model, which has 2nN degrees of freedom whereas the ‘‘rigid

model’’ only has N degrees of freedom.

The results are shown in Fig. 5, 6 and 7, and depend on the

particular situation. The comparison between the predictions of

the flexible and rigid model was performed by first implementing

simulated annealing for the flexible model, measuring the

resulting n-mer size, and using the corresponding value of d in

a rigid model simulation. For dimers on the square/rectangular

lattice, we always found an excellent agreement between both

routes, see Fig. 5 where three typical bipartite orders are shown

in the insets. On the triangular lattice, we found that the quali-

tative features put forward in section II remain correct (see e.g.

the configuration shown in the inset of Fig. 6), while on closer

inspection, some differences arise. Indeed, the histograms P(d) of

the distances to trap centre d and P(q) of the tilt angle q in Fig. 6

clearly reveal the mismatch between the rigid and flexible ground

states that are respectively of bipartite and of quadripartite type

(the inset shows the new unit cell by a shaded area). Correlating

the histograms to the snapshot of the inset, it appears that the top

row of the inset corresponds to the most intense peak in the P(q)

distribution, and to the two extreme peaks in P(d) at d x 0.65d
Fig. 5 Comparison between the ground states for dimers on a square

substrate, obtained considering the full ‘‘flexible’’ model including

explicitly the trapping potential, against the restricted approach where

the n-mers are considered as rigid objects. The curve corresponds to the

rigid scenario, while the circles are for its flexible counterpart. Here, kl ¼
4.5 and (a) kd ¼ 0.4, (b) kd ¼ 0.97, and (c) kd ¼ 1.62.
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Fig. 6 Emergence of quadripartite ground state configurations for

flexible dimers on a triangular lattice with kl ¼ 6, kd ¼ 1.94, a ¼ 1. The

‘‘rigid’’ configuration is shown for comparison with dimers indicated by

lines, while the discs materialise the colloids in the flexible ground state.

Graph (a) shows the probability distribution function of the colloid

position in the trap (d ¼ 0 for the trap centre). Graph (b) is for the dis-

tribution function of the angle between a reference direction and the line

joining the trap centre to a given colloid. As for the inset showing the

configuration, the flexible data are shown with discs and the rigid ones are

shown by the continuous line.

Fig. 7 Same as Fig. 6 for trimers on a rectangular lattice [graphs (a) and

(b) for which kd ¼ 1.88, kl ¼ 6 and a ¼ 0.9], and for trimers on a trian-

gular lattice [graphs c) and (d) for which kd ¼ 1.66, kl ¼ 6 and a ¼ 0.75].

Fig. 8 Comparison of the nearest neighbour assumption (shown with

symbols) and the correct result (shown with solid lines) for dimers on

a rectangular lattice. The top row is for a square geometry (a ¼ 1), with

(a) kl ¼ 4.5, (b) kl ¼ 6 and (c) kl ¼ 8. The second row is for kl ¼ 6, tuning

the aspect ratio: (d) a ¼ 0.9, (e) a ¼ 0.85 and (f) a ¼ 0.7.
and 1.35d. Conversely, the second row from the top has colloids

contributing to the two smaller peaks in P(q) that are weighted as

half the previous one, and contributing to the peaks at d x d. It

can be seen that the average d is d, as it should be from the

definition of d in the flexible case.

Fig. 7 shows similar results for trimers on both rectangular and

triangular lattices. On the rectangular lattice, the main difference

with the rigid case (where the trimer centre is imposed to coincide

with the trap centre), lies in an off-centre shift, see the inset of

graph (a). Graphs (a) and (b) corroborate and quantify this

visual observation. On the triangular lattice, the effect is more

spectacular. While the rigid model leads to an order where all

trimers align in the same direction (S0,0 fashion), due account of
1494 | Soft Matter, 2008, 4, 1491–1498
the internal flexibility of the trimers yields an order that is visu-

ally reminiscent of a stripe phase Sp/6,p/2, but that is in reality

more complex. This can be appreciated by comparing the

configurations in the first and third rows from the top of the inset

in graph (c) (or equivalently second and fourth): an off-centre

shift of the triangles may be observed, and substantiated by the

histograms of graphs (c) and (d). Here again, the order selected is

of quadripartite form, with a unit cell shown by the shaded area,

and not bipartite as found in section II.

IV. On the relevance of different approximation
schemes

In the previous section, we have shown that assuming the trap-

ped colloids form a rigid composite object may be incorrect in

some cases. Here, we address the applicability of two other

classes of simplification of the original model provided by the

energy function eqn (2).

A. The nearest neighbour interactions

The first simplification, considered in both ref. 14 and 15 consists

of restriction of colloid interactions to partners in nearest

neighbour traps. Given the exponential character of screened

Coulombic law [eqn (1)], this seems an a priori reasonable

assumption, provided both the distance between adjacent traps

(l) and the closest distance between colloids (l � 2d) are large

enough compared to the Debye length 1/k. The comparison

between the two approaches is displayed in Fig. 8 for dimers on

a square or rectangular lattice, and on Fig. 9 for dimers on

a triangular lattice. We consider only the rigid dimers, which has

been shown to be sufficient in section III, see Fig. 5. The above

argument leads to the belief that for large enough kl and small

enough kd, interactions beyond the nearest neighbours should be

immaterial. This can be observed in Fig. 8, where the angles q1
This journal is ª The Royal Society of Chemistry 2008



Fig. 9 Comparison of the nearest neighbour assumption (shown with

symbols) and the correct result (shown with solid lines) for dimers on

a triangular lattice. The parameters are the same as in Fig. 8.
and q2 (those of the bipartite checkerboard structure) are plotted

against kd for six different (kl, a) combinations. The nearest

neighbours approximation generally works well when kd � kl

with, however, the surprise that at kl ¼ 4.5 and small kd, the

nearest neighbour route is quantitatively wrong, leading to

a tilted ferromagnetic phase Pp/4,p/4 instead of the antiferro-

magnetic P0,p/2 [see Fig. 8(a)]. A comparison between the ener-

gies of the different phases is performed in Fig. 10. Surprisingly,

the relative energy difference between ferromagnetic and anti-

ferromagnetic phases is minute (see the y-scale) and explains why

including second nearest neighbours is essential to get the correct

phase behaviour. The dashed line in Fig. 10 is obtained by
Fig. 10 Comparison of the energies of the P0,p/2 phase (denoted AF) and

the Pp/4,p/4 phase (denoted F*) for dimers on a square lattice (a ¼ 1) with

kl ¼ 4.5 and small kd. This parameter range corresponds to the small kd

region of Fig. 8(a). The symbols are for nearest neighbour interactions

only, the dashed line adds the next shell of nearest neighbours (the four

corner sites in the square), while the solid curve is for the case where all

neighbours in all traps are considered. Due to the extremely small energy

differences VAF�VF* summation over more neighbour shells is required

and the nearest neighbour approximation, although intuitively expected

to be valid, fails.
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summing over the four nearest neighbour traps and over the four

next-nearest corner traps in the rectangular array. Restricting to

nearest neighbours leads to the prevalence of the tilted ferro-

magnetic (symbols), which is incorrect, although energetically

very close to the antiferromagnet. When kl is increased, this quasi

degeneracy disappears, and including next-nearest neighbours in

the analysis becomes irrelevant.

In the case of the triangular lattice, the nearest neighbour

approximation is more efficient than on the rectangular lattice, as

can be seen in Fig. 9. The reason for this is most likely that in the

triangular lattice where there are six nearest neighbour sites,

the next-nearest neighbour distance is O3 times larger than the

nearest neighbour one. On a square lattice on the other hand,

there are four nearest neighbour sites and the next-nearest

distance is only a factor O2 larger. The situation is thus less

favourable for nearest neighbour truncation.
B. The large distance approximation

The second simplification enforced in ref. 14 with the purpose to

allow for the constructionofa tractableHamiltonian,which canbe

mapped onto a spin model, amounts—within the rigid scenario—

to considering the leading order term only in the large distance

expansion of the interaction potential. The reason for doing so is

again to focus on the large kl case, with the technical bonus that

then interactions between 2 n-mers in different traps may be

written in a factorized way. To be specific, the large distance

potential of interactionbetween twodimers labelled 1 and2, of size

2d, with centre-of-mass–centre-of-mass separation r reads

V12 ¼ cosh kd cos q12ð Þ½ � cosh kd cos q21ð Þ½ � e
�kr

kr
(3)

where r¼ |r| and qij is the angle between vector r and the direction

defined by dimer i. Similar considerations prove generically

fruitful to the discussion of interactions between anisotropic

colloids in the low density regime21,22 and to study the orienta-

tional ordering of DNA molecules.6 It can be seen in Fig. 11 that

for low kd, the corresponding predictions fare favourably against

the results of the full expression, eqn (1). However, the truncated

approach always predicts the antiferromagnetic phase in the

square case,14 and misses the tilted antiferromagnet (see the top

row). On a rectangular lattice, it correctly captures the transition

from a ferromagnet P0,0 to a tilted ferromagnet, but over-

estimates the threshold (see the bottom row), to such an extent

that it can exceed al/2, the maximum allowed value of d [see

graph (f)]. The failure at larger kd has a different origin from the

one observed in Fig. 8, and could have been anticipated by

computing the sub-dominant terms in eqn (3). For the sake of

clarity, we focus here on the electric potential created by a dimer,

a simpler than, but related to, the dimer–dimer potential

considered in eqn (3); the sum of the two screened Coulombic

terms associated to each colloid may be written

V rð Þx cosh kd cos qð Þ½ � exp kdð Þ2

2kr
cos2q� 1
� � !

e�kr

kr
(4)

where q, defined as above, is the angle under which the dimer is

seen from a distance r. Neglecting the second factor on the right

hand side (which leads to eqn (3) for the interaction) is only
Soft Matter, 2008, 4, 1491–1498 | 1495



Fig. 11 The effect of considering the large distance approximation

(LDA) of the interaction potential between dimers (on rectangular

lattices) on the bipartite angular ordering. The parameters are the same as

in Fig. 8. The truncated potential results from eqn (3) are shown with the

symbols: triangles restricting to nearest neighbours, and circles including

all neighbours. The results are compared to the ‘‘all neighbours’’ simu-

lation of the rigid dimers (solid lines).

Fig. 12 (a) The optimal orientation q of a dimer in the triangular light

potential obtained throughminimisation of the total energy (confinement

+ Coulombic). The dot-dashed line is for an isotropic parabolic light

potential where only the Yukawa part of the energy determines the angle

q. The upper dashed line is the constant value q¼ p/3 compatible with the

lattice symmetry of the light potential. The solid line is for the case of the

anisotropic confining potential, eqn (5), where orientations favoured by

Yukawa interactions and those favoured by the lattice symmetry

compete. The shaded area represents the parameter regime of the

experiments.10 (b) Radial cut through the total energy landscape for

different points in graph (a) corresponding to different values of the ratio

A. The depth of the minimum represents the binding strength of the dimer

in radial direction. The sizes of the molecule are determined from the

location of this minimum. (c) Angular cut through the total energy

landscape for the same points as in graph (b). The depth of a minimum

represents the angular binding strength of the dimer. This angular

binding energy is of the order of a few kBT at large kd (point D) and very

small for smaller molecules (curves A, B, C). The total energy E ¼ Ke in

(b) and (c) is obtained assuming K ¼ 1 � 105 kBT.
justified provided (kd)2<kl. Finally, we note that although the

parameters in Fig. 8 and 11 are exactly the same, truncating

colloid interactions to nearest neighbour traps makes only

a small difference if the potential is of the form of eqn (3). This is

at variance with what can be observed in Fig. 8. We are back here

to the message conveyed by Fig. 10, that minor modifications of

the original problem may significantly alter the preferred phase.

C. The discrete angles approximation

In, ref. 15 an effective Potts-like Hamiltonian was constructed by

assuming rigid molecules of fixed sizes placed on the lattice

points, restricting the orientations qi of the molecules to discrete

values compatible with the lattice symmetry and by considering

the nearest neighbour interactions—Yukawa interactions

between colloids in neighbouring traps. Since the phase behav-

iour studied in ref. 15 pertains to triangular substrate potentials,

the nearest neighbour approximation seems well justified, see

Fig. 9. The restriction to discrete angles, which rests on the

remark that the confinement potential exhibits some preferred

directions, however deserves a more careful discussion.

In order to quantitatively examine the applicability of the

discrete angles approximation, we consider, in the triangular

geometry case, a confinement potential of the same form as in

ref. 11:

fL ¼ constant �
"
cos 2p

x� y=
ffiffiffi
3

p

l

 !
þ cos 4p

y

l
ffiffiffi
3

p
� �

þ cos 2p
xþ y=

ffiffiffi
3

p

l

 !#
ð5Þ

The iso-fL lines are isotropic (circular) in the vicinity of the

minima, with an anisotropy that increases with increasing energy
1496 | Soft Matter, 2008, 4, 1491–1498
fL. As a consequence, the confinement potential anisotropy is all

the more important as the n-mer is more extended (large d), but

this parameter range corresponds to a situation of strong

Coulombic repulsion where details of the light potential may not

matter. It is therefore not straightforward to anticipate the

relative ranges of applicability of the discrete angle approxima-

tion of ref. 15 and of the isotropic confinement potential

approach followed in this paper, which leads to Fig. 1–11.

To answer this question, we have minimised the total energy

e ¼ A
P

ifL + fC, with respect to the angular orientation of the

dimer. Such an approach takes due account of the interplay

between the realistic potential eqn (5) and Coulombic interac-

tions. The ground state results are shown in Fig. 12, for the same

parameters as in the experiments: a ¼ 1, kl ¼ 20. The dimers are

assumed to form the herringbone structure Sq1,q2, where, due to

the symmetry, we may assume q2 ¼ p � q1 (see Fig. 3). For

a given ratio A between the light confinement and the strength of

the Yukawa interaction, the total energy e has been minimised

with respect to the radial (kd) and angular (q1) positions of the
This journal is ª The Royal Society of Chemistry 2008



colloid inside the trap. The resulting angles q1 are plotted against

kd in Fig. 12(a), see the solid line. For comparison, the lower dot-

dashed curve is the result obtained with the isotropic potential

(angles selected by the Yukawa interactions). The upper dashed

curve is the constant angle q1 ¼ p/3 assumed in ref. 15. It appears

that the angles are compatible with the pure Yukawa prediction

at large values of kd. In essence, although the confinement

potential is more anisotropic at large d (corresponding to small

A), the Yukawa term nevertheless dominates the total energy so

that the isotropic potential approach becomes correct.

Conversely, the discrete angle approach appears more relevant

for small colloidal molecules.

In Fig. 12(b) we show the radial dependence of the total

energy, fixing q to its optimal value. The total energy E ¼ Ke is

obtained assuming the experimentally realistic value K ¼ 1 � 105

kBT, the value used also in ref. 15. Larger molecules have weaker

radial binding energies and are therefore more prone to fluctuate

at a finite temperature. In Fig. 12(c), we plot the angular

dependence of the total energy at fixed kd. The depth of the

minimum can be understood as the angular binding energy. This

binding energy is of several kBT at large kd, while it is very small

at small kd, in the q ¼ p/3 regime.23 The assumption of discrete

angles therefore fails at large kd (weak light potentials) and leads

to the correct results only at small kd, where, however, due to the

shallow binding in the angular direction, there is no a priori

reason to justify it but for ground state properties.

The parameter regime of the experiments10 is marked as

a shaded area in Fig. 12(a). Interestingly, the experimental

situation is somewhat intermediate between both limiting

regimes and neither of the approaches seems to be perfectly

appropriate. However, other realizations of the light confinement

are possible, like creating isotropic optical point traps instead of

using the interference patterns as in ref. 10. For such an experi-

ment, the present approach—the lower curve in Fig.12(a),

corresponding to the isotropic trap—would be relevant.

Finally, we also note that numerical simulations of colloidal

molecules in the anisotropic light confinement, eqn (5), have been

performed in ref. 11. The parameters studied there (kl ¼ 2) are

nevertheless quite distant from those of the experiments10 where

kl z 20. In an aqueous solution, kl ¼ 2 cannot be achieved with

3 mm size colloids as used in ref. 10, since the inverse Debye

length k is bounded from below by the solvent dissociation.

Moreover, in the regime kl z 2, the pair-wise additivity

assumption leading to the Yukawa potential is questionable, and

many-body effects could play an important role.
V. Conclusion

We have provided a numerical analysis of the type of long range

orientational orders selected in so-called colloidal molecular

crystals, where a given integer number n of colloids is trapped in

each potential minimum of a light lattice. We investigated the

cases of dimers (n ¼ 2) and trimers (n ¼ 3) on both square and

triangular lattices, together with deformed geometries obtained

when a given direction of the original lattice is expanded or

shrunk by a factor a. The sequence of phases reported is rich. For

triangular lattices mostly, and although we were only interested

in the lowest energy configuration, we have uncovered the

relevance of the flexibility of the n-mers in a given trap (inner
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molecular degrees of freedom), whereas previous approaches

envisioned those composite objects as a rigid entity. In most

cases, the predictions derived within the rigid picture appear

qualitatively correct though. We have also addressed the

adequacy of truncating interactions to colloids located in nearest

neighbour traps, and found that in some cases the quasi degen-

eracy between states of different orientational orders makes

second nearest neighbours and possibly more remote shells

relevant.

We emphasise that the pinning potential we considered is of

isotropic form, and therefore does not favour any orientation of

the trapped n-mers. On the other hand, it was assumed in ref. 15

that the pinning potential itself leads to a discrete set of possible

orientations, which were supposed to match the lattice

symmetry. In particular, such an assumption would only be

compatible with the ferromagnetic P0,0 and antiferromagnetic

P0,p/2 phases for dimers on the square lattice. Our investigation

shows that several other tilted phases exist, with an angular

selection due to Coulombic repulsive interactions alone. Instead

of a discrete set of predefined angles we find that the angular

coordinates change continuously with parameters. We have

explored in detail the limits of validity of both assumptions and

have concluded that working with discrete angles can only be

justified if the light confinement is very strong or when colloids

repel weakly. We have shown however that the angular

confinement is very weak in this regime.
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