
Dynamic Article LinksC<Soft Matter

Cite this: Soft Matter, 2012, 8, 6755

www.rsc.org/softmatter PAPER

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

E
 P

A
R

IS
 S

U
D

 o
n 

15
 O

ct
ob

er
 2

01
2

Pu
bl

is
he

d 
on

 2
2 

M
ay

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2S
M

25
42

3A
View Online / Journal Homepage / Table of Contents for this issue
Self-assembly of spherical interpolyelectrolyte complexes from oppositely
charged polymers

Vladimir A. Baulin*ab and Emmanuel Trizacc

Received 23rd February 2012, Accepted 19th April 2012

DOI: 10.1039/c2sm25423a
The formation of inter-polyelectrolyte complexes from the association of oppositely charged polymers

in an electrolyte is studied. The charged polymers are linear oppositely charged polyelectrolytes, with

possibly a neutral block. This leads to complexes with a charged core, and a more dilute corona of

dangling chains, or of loops (flower-like structure). The equilibrium aggregation number of the

complexes (number of polycations m+ and polyanions m�) is determined by minimizing the relevant

free energy functional, the Coulombic contribution of which is worked out within Poisson–Boltzmann

theory. The complexes can be viewed as colloids that are permeable to micro-ionic species, including

salts. We find that the complexation process can be highly specific, giving rise to very localized size

distribution in composition space (m+, m�).
1 Introduction

Electrostatic interactions are instrumental in determining the

structure and function of living organisms, biopolymers and

drug delivery systems. Charged macromolecules can self-

assemble and aggregate into compact intermolecular complexes.

This ability of oppositely charged polymers to form finite size

complexes determines their biological function, which for

example is important in gene transfection and compactization of

DNA,1–3 that provide promising alternatives to viral vectors.4

Such macromolecular systems, where electrostatic forces are

usually stronger than van der Waals or hydrogen bonds, exhibit

rich behavior and structural variability. The structures formed

by opposite charges are usually more stable than micelles of

neutral block copolymers dissociating upon dilution or slight

change in the external conditions. The concept of stabilization of

intermolecular complexes by interaction of oppositely charged

polymers is realized in inter-polyelectrolyte or polyion complexes

(PIC) and polyion complex micelles (PIC micelles) that can be

used for drug delivery.5–7 High stability of PICs opens the

possibility to use them as functional devices where the respon-

siveness to external stimuli can be connected with a function, e.g.

recognition at the molecular level,8 pH-sensitive switching

devices9 or drug delivery carriers transporting charged objects

through the cell membrane.7,10

Polyion complexes have enhanced ability to undergo struc-

tural changes subject to external conditions, compared to neutral
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block copolymer assemblies. In addition to the response in

change of temperature and solvent quality,11 the structure of the

charged complexes can be very sensitive to changes in salt

concentration,12–15 pH,3,9,15,16 charge ratio,17,18 addition of ions,19

or mixing ratio.2,20 Tuning the molecular architecture and global

properties of PICs would allow for precise control of their

functional properties. Understanding the physics and funda-

mental features of the self-assembly of PICs is thus a challenging

task. Oppositely charged polymers in symmetric solutions can

precipitate into a uniform macroscopic phase of polymers and

ions.21,22 The physics of aggregated chains of opposite charge in

precipitates is somehow similar to polyampholites, polymers

containing both positive and negative charges dispersed along

the chain.23 However, if the distribution of charges along the

chain is not random24 or one of the charged polymers is a diblock

copolymer with a neutral block,3,8 oppositely charged polymers

can form finite size complexes composed of a dense poly-

electrolyte core and a swollen corona which protects the cores

from aggregation by steric repulsion.

In this paper, we explore electrostatic properties and equilib-

rium structures of spherical complexes formed by oppositely

charged polymers. The stability of finite size aggregates results

from the balance of the electrostatic attraction between opposite

charges in the core of the complexes and the steric repulsion of

backbone segments forming a corona around the core. The

description of such complexes is similar to polyelectrolyte

micellization,25–28 combined with thermodynamics of aggrega-

tion in bidisperse solution.29–32 The steric repulsion in the corona

should be strong enough to stabilize the complexes of finite size.

This is possible when the hydrophilic blocks forming the corona

of the complexes are long enough to oppose the electrostatic

attraction in the core. In addition, the bare charge of the

complexes can be screened by the ions of salt and counterions,
Soft Matter, 2012, 8, 6755–6766 | 6755
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thus changing the electrostatic forces and affecting the equilib-

rium properties of the complexes. The interplay of those effects

will be studied considering two geometries, as sketched in Fig. 1.

� Case A: the building blocks are a linear uniformly charged

polyelectrolyte and a diblock copolymer composed of a neutral

block and a charged block of opposite charge. The charged

blocks aggregate with the linear polyelectrolytes to form

a complex with a core surrounded by a corona of neutral

segments. This case is that of a ‘‘hairy’’ and neutral surrounding

outside the charged core.

� Case B: the building blocks are two linear polyelectrolytes of

opposite charge with a large asymmetry of the distances between

the charges. The core of such complexes is composed of charged

blocks of both signs, and is surrounded by the corona of loops of

the segments between the charges. The corona can be neutral

(segments between neighboring charges along the chain) or

slightly charged (tails or longer segments between distant

charges). Compared to case A, the dangling ‘‘hairs’’ are replaced

by loops, that may bear an electric charge.

The paper is organized as follows. In section 2, we first

consider case A, with a charged core decorated by neutral
Fig. 1 Interpolyelectrolyte complexes formed by (A) a linear poly-

electrolyte (blue) and a diblock copolymer composed of an oppositely

charged block (red) and a neutral block (black); upon assembling, these

chains form the complex sketched, where the corona is made up of the

neutral blocks; (B) two linear oppositely charged polyelectrolytes (blue

and red) with large asymmetry in the distances between charges (n+ and

n�). The segments with non-compensated charges form a charged corona

of loops.

6756 | Soft Matter, 2012, 8, 6755–6766
dangling hairs. The electrostatics of the complexes is taken into

account through the full Poisson–Boltzmann (PB) equation

which is solved numerically and compared with the analytical

expression of the linearized Debye–H€uckel (DH) equation.

Particular attention will be paid to the counter-ion uptake,

where a significant quantity of charge can be ‘‘trapped’’ inside

the core, thereby reducing the electric field created outside the

complex. A second mechanism for charge reduction is ascribable

to the non-linearity of the Poisson–Boltzmann framework: non-

linear screening effectively modifies the total core charge,

leading in general to a reduced effective (or renormalized)

quantity seen from a large distance.33 At this level of description,

the dangling hairs are not taken into account. The more complex

situation where the charged core is surrounded by charged loops

(case B) will be addressed in section 3. In turn, these results will

be used in section 4 to discuss the complexation behaviour of

oppositely charged polymers. Conclusions will finally be drawn

in section 5. An appendix summarizes the main notations

employed.
2 Charged core surrounded by neutral corona (case
A)

2.1 The model and its three relevant charges

The simplest structure of a thermodynamically stable polyion

complex of finite size is a spherical core, containing all bare

charges, surrounded by a neutral corona (Fig. 1A). Such

a complex can be formed, for example, by diblock copolymers

containing neutral blocks.3,6–8,17,24,34,35 The electrostatic interac-

tions between oppositely charged polyelectrolytes drive the

formation of a dense core which is stabilized by the steric

repulsion of neutral blocks forming a swollen corona around the

core. Even in such simple geometry, it is possible to tune the

structure of the complex. Its size can be controlled by the lengths

of the blocks, the density of charges, pH, the charge asymmetry,

the salt concentration and solution properties.

Assuming that the linear polyelectrolyte is positively charged

while the blocks of the diblock copolymer bear a negative charge,

a linear polyelectrolyte is described by the number of charges on

the chain z+, and the distance between the charges n+ while the

block copolymer is described by the number of charges z�, the
distance between the charges n�, and the length of a neutral

block, N. Hence, the length of the polyelectrolyte chain is n+z+
and the total length of a block copolymer is n�z� + N. Here, the

lengths are expressed in units of a Kuhn length (assumed

common to both cationic and anionic chains).

If all polyelectrolyte charges of both signs are buried in the

core and the neutral blocks form the corona, the total ‘‘bare’’

charge of the core formed by m+ linear polyelectrolytes and m�
block copolymer chains is:

Z1 ¼ z+m+ � z�m� (1)

We will assume in the subsequent analysis that this charge is

uniformly spread over the globule of radius Rc, and therefore

occupies a volume 4pR3
c/3. The counterions and the salt ions can

penetrate into the core of radius Rc, and thus, screen the bare

charge of the polymers. The resulting charge of the ’’dressed’’
This journal is ª The Royal Society of Chemistry 2012
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core, Z2, is the charge of the core screened by small ions;

assuming spherical symmetry, we have:

Z2 ¼ 4p

ðRc

0

r2 drrðrÞ (2)

where the total charge density r(r) reads (in units of the

elementary charge q):

rðrÞ ¼ Z1

4pR3
c=3

HðRc � rÞ þ cNe�bq4ðrÞ � cNe
bq4ðrÞ: (3)

In the above relation, b ¼ 1/kT is the inverse temperature, 4(r)

is the electrostatic potential andH(Rc � r) denotes the Heaviside

step function, equal to 1 inside and 0 outside the core. The first

term on the right hand side of eqn (3) stems from the polymeric

matrix, that contributes to the charge density as a spherical

uniform background. We assume here that the system is in

osmotic equilibrium with a salt reservoir with equal densities cN
of labile cations and anions; the canonical situation, where the

salt density in the system would be a priori prescribed, is

amenable to a very similar treatment as the one presented here.

From the reservoir ionic concentration, we define the Debye

length 1/k through k2 ¼ 8plBcN, where lB ¼ bq2/3 is the Bjerrum

length and 3 is the solvent dielectric permittivity. In eqn (3), the

last two terms are for the labile micro-ions concentration. The

corresponding exponential relation between the density profiles

and the local electrostatic potential is typical of the PB (Poisson–

Boltzmann) approximation36 that will be adopted in the

remainder. Within such a mean-field simplification, the electro-

static problem at hand is the following:8>>>>><
>>>>>:

V24ðrÞ ¼ � 4p

3
qrðrÞ

d4

dr

����
r¼0

¼ 0

d4

dr

����
r/N

¼ 0

(4)

The charge of the ‘‘dressed’’ core Z2 should be smaller than the

‘‘bare’’ charge Z1,
37 eqn (1), because of counterion penetration

inside the globule.However, the latter chargemay be large enough

to trigger significant non-linear screening effects, that translate

into an effective (or renormalized33,38) chargeZ3 that can be much

smaller than Z2. To be more precise, in the weakly coupled limit

where Z2 / 0 (where one also has Z1 / 0), it is possible to solve

analytically eqn (4), since it reduces to V24 ¼ k24 for r > Rc. The

resulting DH (Debye–H€uckel) potential reads, for r > Rc:

4DHðrÞ ¼ Z1QðkRcÞ e
�kr

kr
; (5)

where Q is a salt-dependent geometric prefactor; the complete

solution will be provided below in section 2.2. To define the

renormalized charge Z3, it is sufficient to note that beyond the

linear Debye–H€uckel regime, for an arbitrary charge Z2, eqn (4)

again takes the form V24 x k24, but at large distances r where 4

becomes small. We consequently have, within the non-linear PB

framework:

4ðrÞ � Z3QðkRcÞ e
�kr

kr
for r/N: (6)

By construction, Z3 x Z1 in the Debye–H€uckel regime, while

Z3 � Z1 upon increasing Z1.
This journal is ª The Royal Society of Chemistry 2012
Introducing the dimensionless electrostatic potential u(r) ¼
bq4(r) and dimensionless distance x ¼ r/Rc, eqn (4) in spherical

polar coordinates is written in a dimensionless form:8><
>:

u00ðxÞ þ 2

x
u0ðxÞ ¼ �3 ~Z1Hð1� xÞ þ ðkRcÞ2sinhðuðxÞÞ

u0ð0Þ ¼ 0
u0ðNÞ ¼ 0

(7)

There are then two dimensionless governing parameters, ~Z1 ¼
Z1lB/Rc and kRc. The solution of this nonlinear equation gives

the charge density and the distribution of small ions around the

complex.

2.2 Two limiting cases: weak charges and salt-free situation

Eqn (7) can be solved analytically in the DH approximation

when the electrostatic potential is small, u(x) � 1. In this case,

the charge density r(x) can be linearized, e�u(x) z 1 � u(x), and

the solution can be written in the form:

uDHðkrÞ ¼

8><
>:

w

�
1� ð1þ kRcÞe�kRc

sinhðkrÞ
kr

�
; r\Rc

w½kRccoshðkRcÞ � sinhðkRcÞ� e�kr

kr
; r.Rc

(8)

where w ¼ 3 ~Z1/(kRc)
2. As a consequence, the geometrical

constant that enters into the electrostatic potential at large

distances (5) is:

QðkRcÞ ¼ 3

ðkRcÞ2
�
kRc coshðkRcÞ � sinhðkRcÞ

�
: (9)

Our results for a charged polyelectrolyte complex in the

presence of salt can be compared with the salt-free regime.39 In

this case, it is essential to enclose the complete system in

a confining boundary, otherwise the counterions ‘‘evaporate’’

–their energy loss upon leaving the globule vicinity is out-beaten

by the entropy gain of exploring a large volume– and the

problem becomes trivial. We therefore define RWS, the Wigner–

Seitz radius38 of a large sphere containing the system. We note

that the ratio h ¼ (Rc/RWS)
3 defines the volume fraction of

globules in our system. In the present case where counterions

only are present, the density of charges is:

rðrÞ ¼ 3Z1

4pR3
c

HðRc � rÞ � c0 e
bq4ðrÞ; (10)

where c0 is a normalization parameter to ensure total electro-

neutrality (it does not have any physical significance as such,

unless a particular ‘‘gauge’’ or reference has been chosen for the

potential). A possible choice among others is 4pc0R
3
WS/3 ¼ Z1.

The corresponding dimensionless PB equation reads:8><
>:

u00ðxÞ þ 2

x
u0ðxÞ ¼ �3 ~Z1

�
Hð1� xÞ � heuðxÞ

�
u0ð0Þ ¼ 0

u0ðRWS=RcÞ ¼ 0

(11)

with re-scaled distance x ¼ r/Rc. The dimensionless charge ~Z1 ¼
Z1lB/Rc and h are here independent control parameters.

2.3 Results

The solutions of the PB eqn (7) for different dimensionless bare

charge ~Z1 ¼ Z1lB/Rc are presented in Fig. 2a. The comparison
Soft Matter, 2012, 8, 6755–6766 | 6757
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with DH approximation (8) shows as expected that this

approximation is valid for weakly charged objects. Such

a comparison is a test for the numerical procedure used to solve

eqn (4), and of course, strong deviations are observed between

DH and PB solutions for ~Z1 larger than a few units. It is note-

worthy in Fig. 2 that the electric potential inside the core tends to

a plateau when Z1 is high enough. The corresponding labile ion

local charge indeed tends to compensate for the background

charge, resulting in a vanishing total local charge density. This

requirement implies that one has:

u / arcsinh[3 ~Z1/(kRc)
2], (12)

which gives u / 3.91 in Fig. 2a for ~Z1 ¼ 26, and likewise u /

8.48 in Fig. 2b for kRc ¼ 0.18, as can be seen.

The solution of the salt-free eqn (11) is shown by a dotted line

in Fig. 2a. The absolute value of the corresponding electric

potential u cannot be compared to its counterpart found with

salt, but the variations of u can be. It can be seen on the figure,

panel a, that the amplitude of u is as expected larger without salt

(for the same value of ~Z1). This illustrates the weaker screening

without salt. In addition, panel b shows that the small kRc limit

coincides with the salt-free limit, as it should (here, the salt-free

solution has been shifted by the constant required to have the

same potential at r ¼ 0 as in the kRc ¼ 0.02 case). The salt-free

results reported here depend very weakly only on packing

fraction.

The solution of the PB equation provides also the distribu-

tion of small ions around the core of the complex r�(r) ¼
cNe�u(r). It is shown for different charges of the core ~Z1 in

Fig. 3a and fixed salt concentration cN in Fig. 3b. As the charge

is increased the concentration of small ions of opposite charge

inside the core increases inducing stronger screening effect. The

concentration of ions of both signs in the core increases with

increase of the bulk concentration of salt. This is shown in

Fig. 3b, where the bare charge of the core ~Z1 is fixed, while the
Fig. 2 (a) Dimensionless electrostatic potential u as a function of the charge o

(b) Electrostatic potential u as a function of salt concentration. The charge of t

salt, solid lines are the solutions of the non-linear PB eqn (7), black dashed line

solve the salt-free problem is h ¼ (Rc/RWS)
3 ¼ 0.000125.

6758 | Soft Matter, 2012, 8, 6755–6766
concentration of salt in the solution is changed. If the salt

concentration is low, the redistribution of small ions around the

core is almost due to counterions and the concentration profile

of small ions obtained from eqn (7) approaches the corre-

sponding salt free solution given by eqn (11). In addition, the

increase of salt concentration results in higher concentration

and induces stronger redistribution of the small ions around

the core.

The presence of small ions inside the complex impinges on the

radial distribution of charges r(r). The background ‘‘core’’

contribution to this quantity is a step function, while due to the

penetration of labile ions, r(r) is small in the globule center,

where charge neutralization is most efficient, and increases upon

increasing r (see Fig. 4). In addition, the charge density in the

center of the core vanishes at high concentrations but also for

large enough ~Z1.

The screening of the bare charge by small ions penetrating into

the core can be measured by the charge of the ’’dressed’’ core, Z2

introduced above in eqn (2). The analytical expression for Z2 can

be obtained within the DH approximation: r(r) ¼ 3Z1/(4pR
3
c) �

2cNuDH(kr), where uDH(kr) is given by eqn (8). Thus,

rðrÞ ¼ 3Z1

4pR3
c

ð1þ kRcÞe�kRc
sinhðkrÞ

kr
; r\Rc (13)

from which it follows that:

Z2DH

Z1

¼ 3
1þ kRc

ðkRcÞ3
ðkRc coshðkRcÞ � sinhðkRcÞÞe�kRc : (14)

It can be checked that this relation is consistent with the more

familiar DH result for the potential of a spherical colloid having

bare charge Z2 and radius Rc:
33

4ðrÞ ¼ Z2

ekRc

1þ kRc

e�kr

r
; (15)

which imposes that:
f the core ~Z1, for a fixed salt concentration corresponding to kRc ¼ 1.77.

he core is fixed, ~Z1¼ 26. The dashed line is the solution of eqn (11) with no

is the solution of the DH eqn (8), and the value of the packing fraction to

This journal is ª The Royal Society of Chemistry 2012
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Fig. 3 Reduced density (up to a factor of two) of small ions around the core r� ¼ cNeHu(x) (a) for different charges of the core ~Z1 and fixed salt

concentration (kRc ¼ 1.77) (b) for different salt concentrations and fixed charge of the core ( ~Z1 ¼ 26). For the no salt case, h ¼ 0.000125.

Fig. 4 Charge density rR2
clB as a distance from the core for different

charges of the core and fixed salt concentration kRc ¼ 1.77. Here, h ¼
0.000125 for the no-salt result.
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Z2DH

Z1

¼ QðkRcÞ 1þ kRc

kRc

e�kRc (16)

From eqn (14), we have that Z2 f Z1 within DH approxi-

mation, up to a salt-dependent prefactor. However, upon

increasing Z1, non-linear effects become prevalent and invalidate

the DH approach, see Fig. 5, obtained by solving the non-linear

PB theory. The corresponding slower than linear increase of Z2

with Z1 is illustrated in Fig. 5a and b, see also panel c for the salt-

free case. Increasing salt concentration screens out the charge, i.e.

it leads to a decrease of Z2, and flattens the curves in panel a,

where the DH prediction (14) holds for low ~Z1. In essence,

increasing salt concentration ultimately leads to the DH limit

where ~Z2/ ~Z1 is Z1 independent, as can be inferred from eqn (8),

where u(0) is seen to decay with the increase of k. A similar

conclusion is drawn from expression (12): the DH limit is reached

in the high salt limit. This trend is clearly seen in Fig. 5b, where

all curves tend to collapse onto the DH behaviour for kRc > 10.

On the other hand, ~Z2/ ~Z1 is a strongly nonlinear function for

large ~Z1 in the no-salt case. More precisely, it has been shown in

ref. 39 that in the strongly non-linear salt-free regime, one has Z2

f Z1/2
1 (or equivalently ~Z2 f ~Z1/2

1 ). This prediction is successfully
This journal is ª The Royal Society of Chemistry 2012
put to the test in Fig. 5c, which also shows that a change in the

packing fraction h ¼ (Rc/RWS)
3 does not affect the features

discussed.

Finally, the behavior of the charged globule at large distances

is encoded in the effective charge Z3, defined in eqn (6), and

therefore extracted from the far-field of the numerical solution to

the non-linear eqn (7). Such a quantity would rule the interac-

tions between two distant globules. The corresponding plots of
~Z3 are shown in Fig. 6a as a function of the globule charge for

fixed salt concentration, and as a function of salt density for fixed

background charge in Fig. 6b and c. As is invariably the case in

such mean-field approaches, the effective, or renormalized,

charge increases upon increasing the bare charge.33,38 It also

increases with salt concentration33 and as imposed by the very

definition of Z3, we find that Z3/Z1 / 1 in the DH limit

(enforced either from considering low ~Z1 or large kRc). In

addition, Fig. 6b shows that the ratio Z3/Z2 ¼ ~Z3/ ~Z2 is inde-

pendent of bare charge Z1, except at very small salt concentra-

tions. This reflects the fact that even for large Z1, counterion

uptake is such that Z2 is significantly reduced, and such that the

colloid included internal salt ions can be treated by linearized

mean-field theory. Indeed, it can be seen in Fig. 6b that ~Z3/ ~Z2 is

close to its DH counterpart, given by ~Z1/ ~Z2DH, see eqn (14).
3 Charged core surrounded by charged corona (case
B)

Thermodynamically stable polyelectrolyte complexes can also be

formed by the complexation of two linear polyelectrolytes of

opposite charge with a large asymmetry of the distances between

the charges D ¼ n�/n+ [ 1, which can form flower-like struc-

tures.24 The core of such complexes with a partially compensated

charges is surrounded by a corona of long loops of a polymer

with a longer distance between the charges (Fig. 1B). The loops

of size n�, are neutral, but some larger loops and the tails can be

charged.

Thus, we can generalize the discussion of the previous section

to the case where the charged core is surrounded by a charged

corona. We assume spherical symmetry in the distribution of the
Soft Matter, 2012, 8, 6755–6766 | 6759

http://dx.doi.org/10.1039/c2sm25423a


Fig. 5 Charge of the dressed core ~Z2 (uptake charge) as defined in eqn (2), as a function of (a) bare charge for different salt concentrations, (b) salt for

different values of bare charge ~Z1 and (c) bare charge in the salt-free case, on a log–log scale. The arrows in panel a show the Debye–H€uckel prediction,

eqn (14), that provides the correct limiting behaviour at small charges. Note that in panel b, the Debye–H€uckel prediction does not depend on ~Z1. The

no-salt solution in panel a corresponds to h ¼ 0.01 (which means Rc/RWS x 0.21).
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charges around the core, i.e. the charge in the corona depends

only on the distance from the center of the core r. Since the

charges in the loops and tails are attached to the core by polymer

chains, the electrostatic interaction of those charges with the core

is balanced by a weak entropic force due to polymer chain

extension. If the electrostatic force is not very strong, a polymer

chain carrying the charge can be envisioned as a Gaussian coil

and the probability of radial distribution of charges is given by:

PðrÞ � exp

�
� 3

2na2
ðRc � rÞ2

�
;

where n is the length of the polymer chain in the corona and a is

the Kuhn segment length. This approximation is valid for small

charges that do not perturb significantly the statistics of the

chains. The resulting density of charges is the sum of three terms:

the bare charge of the core, the charge of the counterions plus salt

molecules, and the charge of the corona:

rðrÞ ¼ 3Z1

4pR3
ccN

HðRc � rÞ þ cNe�bq4ðrÞ � cNebq4ðrÞ

þ rcPðrÞe�abq4ðrÞHðr� RcÞ (17)

where rc, positive or negative, is a parameter controlling the total

charge of the corona and a¼� is the sign of this charge (+ when

rc > 0 and – when rc < 0). It was assumed here that all loops have

the same length n and that ions in the corona are monovalent.
Fig. 6 (a) Renormalized charge ~Z3 of a globule as seen from large distances, a

(c) show eitherZ3/Z2 orZ3/Z1 as a function of salt kRc, for different bare charg

approximation, which is thus the inverse of eqn (14).

6760 | Soft Matter, 2012, 8, 6755–6766
This expression for r(r) leads to a Poisson equation similar to

eqn (7).

Solution of Poisson’s equation gives the radial distribution of

the potential which is shown in Fig. 7a and b for different charges

of the corona. The charged corona influences the distribution of

small ions around the core, a quantity that is displayed in Fig. 7c

and d. Weakly charged coronas clearly do not modify the

monotonous decrease of u with distance that was observed in

Fig. 2, but this is no longer the case when rc is increased. Indeed,

a point where u reaches an extremum (maximum in panel a and

minimum in panel b) can be observed. From Gauss theorem, this

coincides with the point where the total integrated charge over

a sphere having the corresponding radius vanishes. The physical

phenomenon occurring in panel a where the charges in the

corona are of the same sign as the bare core (assumed positive), is

that the positive corona induces a migration of negative micro-

ions inside the core and its vicinity, that change the sign of the

uptake charge Z2, which is now negative. Adding the corona

charge toZ2, though, leads to a positive charge. Hence the charge

inversion evidenced by the potential extremum. The density peak

of negative micro-ions is clearly visible in panel c. On the other

hand, when the bare core and the corona bear charges of

opposite signs (panels b and d), a conjugate mechanism takes

place: small labile cations are ‘‘sucked’’ inside by the core, which

leads to an integrated charge in a running sphere that is positive

for small spheres, and becomes negative once it includes the
s a function of the bare charge ~Z1 for different salt concentrations. (b) and

es. In panel b, the continuous curve is for the ratioZ1/Z2 found within DH

This journal is ª The Royal Society of Chemistry 2012
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Fig. 7 Electrostatic potential u(r) of the aggregate with a charged core ~Z1 ¼ 2, and (a) a positively charged and (b) a negatively charged corona.

Distribution of small ions (kRc)
2e�u around the positively charged core, ~Z1 ¼ 2, surrounded by (c) positively charged and (d) negative charged corona.

Here kRc ¼ 1.77, Rc ¼ 5a and n ¼ 5.
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corona. In all cases, the mechanism can be viewed as a corona

induced local charge inversion.

We do not repeat the full analysis of the difference between

bare, uptake, and effective charge in the present case, but we

show how the total charge of the corona,

Zcorona ¼
ðN
Rc

r2 drarcPðrÞe�abq4ðrÞHðr� RcÞ, depends on the

parameter rc in Fig. 8.
4 Complexation of oppositely charged polymers

The previous sections, devoted to the electrostatics of poly-

electrolyte complexes, have left aside the energetical aspects, to

which we turn our attention hereafter. Once the total free energy

of a given complex is known, it becomes possible to study the

equilibrium behaviour, in particular the size distribution, of an

initial ‘‘soup’’ of individual polycations and polyanions.
4.1 The total free energy and equilibrium complex size

distribution

The size of the thermodynamically stable complexes of oppo-

sitely charged polymers is determined by the interplay of the
This journal is ª The Royal Society of Chemistry 2012
steric repulsion of the chains in the corona and electrostatic

attraction in the core. Thus, the formation of stable aggregates

requires either long neutral blocks at least in one of the poly-

electrolytes or a large asymmetry in the distances between the

charges along the chain, e.g. D ¼ n�/n+ [ 1. If the corona is

composed of neutral blocks, the blocks should be long enough to

stabilize the attraction in the core, if the corona is composed of

loops between the charges, the segment n� should be long and

flexible enough to form a loop in the corona in the micelle.

Consider then a spherical polyion complex made up of two

polyelectrolytes of opposite charge. Each complex is defined by

the number of polycations, m+, and the number of polyanions,

m�. If we assume dense packing of the monomers in the core, the

radius of the core Rc can be expressed in terms of the number of

chainsm+ andm� as Rc ¼ a[(3/4p)(N+m+ +N�m�)]1/3, where a is
the Kuhn segment, N� ¼ n�q� are the lengths of the charged

blocks (in units of a). The bare charge of the core Z1 is then also

expressed in terms of m+ and m�, see eqn (1).

The distribution function of the polyion complexes cm+,m� is

the number concentration of the aggregates with given aggre-

gation numbers m+ and m�. The total free energy of the solution
of polyelectrolytes of opposite charge, their counterions and salt

molecules is:
Soft Matter, 2012, 8, 6755–6766 | 6761

http://dx.doi.org/10.1039/c2sm25423a


Fig. 8 Total charge of the corona ~Zcorona/ ~Z1 as a function of rcR
2
clB; (a) the salt concentration is fixed, kRc ¼ 2.5, (b) the bare charge of the core is fixed,

~Z1 ¼ 2.
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F

VkT
¼

XN
mþ ;m�¼0

ðcmþ;m� ln½cmþ ;m�v� � cmþ ;m� þ cmþ ;m�Fmþ ;m�Þ (18)

where V is the volume of the system, Fm+,m� is the free energy of

the complex expressed in units of kT, v is a molecular volume

associated with the de Broglie length. Minimization of this free

energy29,30 with respect to cm+,m� along with two conservation of

mass conditions, fixing the total concentrations of polyanions,

f�, and polycations, f+,

f� ¼
XN
m�¼0

m�cmþ ;m� (19)

gives the equilibrium distribution of the aggregates by their

size:32

vcm+,m� ¼ (vc1,0)
m+(vc0,1)

m�exp[�(Fm+,m� � m+F1,0 � m�F0,1)].(20)

The free energy of the complex Fm+m� can be written as the sum

of an electrostatic contribution, and a term accounting for the

steric repulsion of tails/loops in the corona:

Fm+,m� ¼ Uel + Fcorona. (21)

These two contributions are detailed below.

4.2 The electrostatic contribution

The electrostatic contribution Uel is related to the semi-grand

potential U0
el, relevant to discuss the present situation which is

canonical for the colloids (polymers), and grand-canonical for

the salt entities (in osmotic equilibrium with a salt reservoir of

density cN). The semi-grand potential accounts for electrostatic

attraction between polyelectrolytes and small ions in the system

as well as the entropic contribution of small ions around the

complexes. We have:40

U0
el ¼

ð
dr

(
1

2
qrðrÞ4ðrÞ þ kT

X
a¼�

raðrÞ
�
ln

�
raðrÞ
cN

�
� 1

�)
(22)
6762 | Soft Matter, 2012, 8, 6755–6766
where the first term is the electrostatic energy of the ionic

distribution, and the second term is the entropy associated with

the translational movements of small ions. We note that the

integral in eqn (22) diverges for large systems (as it would also for

neutral systems), so that we consider in the following the excess

semi-grand potential with respect to reservoir:

Uel ¼ U
0
el � Ureservoir

el ¼ U
0
el +

Ð
dr 2cN (23)

Thus, the excess potential Uel finally takes the form:

Uel ¼
ð
dr

(
1

2
qrðrÞ4ðrÞ þ kT

X
a

raðrÞln
raðrÞ
cN

� kT
X
a

raðrÞ þ 2cN

) (24)

For a spherical globule, this equation can be written in the

dimensionless form as:

Uel

kT
¼ 4pR2

c lB

ðN
0

x2 dx

	
1

2
rðxÞuðxÞ þ rþðxÞ½�uðxÞ � 1�

þ r�ðxÞ½uðxÞ � 1� þ 2cN



(25)

where x¼ r/Rc is the rescaled distance and we used the equality ln

(r�(x)/cN) ¼ Hu(x). The analysis of the free energy of the

charged complexes suggests that the complexes with charged

corona of the same sign as the bare core have larger free energy

than their neutral counterparts, and thus, are less favorable

(Fig. 9a). However, if the charges of the core and the corona are

opposite, the electrostatic energy can be lower (Fig. 9b).

The above applies for spherical globules, but leaves aside the

particular cases (m+ ¼ 0, m� ¼ 1) and conversely (m+ ¼ 1, m� ¼
0), where the object to be considered is no longer a complex, but

a polyanion or polycation respectively. We then need to adapt

the previous arguments to these cases of an isolated charged

chain in a salt solution. The polyelectrolyte chain is approxi-

mated as a cylinder of radius awith uniform linear charge density

l� f 1/n�, again treated within Poisson–Boltzmann theory.
This journal is ª The Royal Society of Chemistry 2012
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Introducing dimensionless distance ~r ¼ kr, where k2 ¼ 8plBcN,

the corresponding PB equation in cylindrical coordinates yields,

for an infinite cylinder:

1

~r

d

d~r

�
~r
d

d~r

�
u ¼ sinhu

du

d~r

����
~r¼ka

¼ �2x

ka

uð~r/NÞ ¼ 0

8>>>><
>>>>:

(26)

Here x¼ lBl� is the so-called Manning parameter (dimensionless

line charge41). Once this equation has been solved, the electro-

static contribution to F1,0 and F0,1 for isolated chains of both

signs follows from a similar calculation as that of eqn (25):

U0
el;�

kTN�
¼ 1

2
uð0Þxþ 1

4

ðN
ka

~r d~ru
�
~r
�
sinh

�
u
�
~r
��

� 1

2

ðN
ka

~r d~ru
�
~r
��
cosh

�
u
�
~r
��� 1

�
(27)

which was calculated per chain lengthN� expressed in units of lB.

In the following we assume that the Kuhn segment length of the

polymer a is of the order of lB. Upon using the free energy of the

infinite cylindrical macro-ion configuration, we neglect end

effects, the consideration of which would be technically more

involved.

Isolated chains, corresponding to m+ ¼ 0, m� ¼ 1 and m+ ¼ 1,

m� ¼ 0 configurations are penalized by a large electrostatic

energy U0
el,+ (see Fig. 10). Indeed, these quantities bear a large

self-term, notwithstanding the solvation phenomenon, that

manifests itself in the fact that U0
el,+ decrease, for fixed charge x,

upon addition of salt (i.e. increase of ka).

4.3 Steric repulsion of loops and tails

In the following, we consider a neutral and spherical poly-

electrolyte complex made up of the charged core formed by

oppositely charged polyelectrolytes and surrounded by the

corona. We consider long tails and large loops in the corona,

thus, the corona of the complex is then approximated by a star

polymer (Fig. 1A) or a flower structure (Fig. 1B).
Fig. 9 Electrostatic excess energy Uel of a PIC with (a) positively charged cor

core, ~Z1, for a fixed salt concentration, kRc ¼ 7.93.

This journal is ª The Royal Society of Chemistry 2012
The electrostatic contribution (28) is balanced by the steric

repulsion between the tails or loops in the corona. If the corona

consists of long neutral blocks (star polymer, case A), this

contribution is approximated by the free energy of a star polymer

containing m� arms of length N, which is the length of a neutral

block. This approximation is valid when the core is much smaller

than the corona and the arms are long enough to use the scaling

expression:42

Fcorona � �lnNsm�+m�s1 (28)

In this expression, si are the universal exponents of the star

polymers and their numerical values are calculated in ref. 43.

If the corona consist of long neutral loops and tails (flower

structure, case B), the free energy contribution is similar to (28),

but the exponent is different,

Fcorona � �lnNgc�1 (29)

This exponent is calculated as follows. If the loops are formed

by a single chain with p stickers joined together, gc � 1 ¼ s2p +

2s1 � (p � 1)dn, where the first term is the contribution of the

center with 2p vertices, the second term is the contribution of the

two tails and the last term is the contribution of p� 1 loops. Each

loop contributes with the Flory exponent n in the dimension of

the space d and is known numerically.44 If the loops are formed

by m+ chains with z+ stickers and m� chains with z� stickers and

all stickers are condensed on the core, the exponent is given by:

gc � 1 ¼ s2z+m++2z�m�+ 2s1(m+ + m�) � m+(z+ � 1)dv

� m�(z� � 1)dv (30)

Isolated non-aggregated polycations and polyanions are linear

polymers, thus their entropy contribution is Fcorona � �lnN2s1.

Here we neglect the surface tension and hydrophobic interactions

between polycations and polyanions in the core of the complexes,

thereby assuming that the electrostatic attraction of opposite

charges is the leading contribution; hydrophobic interactions

may however be dominant for neutral complexes.
ona and (b) negatively charged corona, as a function of the charge of the

Soft Matter, 2012, 8, 6755–6766 | 6763
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Fig. 10 Electrostatic energy U0
el,� of the rod (eqn (28)) for the length lB as a function of (a) the Manning parameter x (dimensionless linear charge) and

(b) salt concentration ka.
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4.4 Results

Eqn (20) defines the equilibrium distribution function of the

complexes cm+,m� as a function of the geometry of the chains,

asymmetry of the charges along the chain and salt concentration.

We assume that the conformation of the polyelectrolyte complex

is a spherical aggregate with a core formed by charged blocks

surrounded by neutral corona (Fig. 1A). Since the electrostatic

contribution of the core and isolated chains in the solution is the

main contribution to the free energy, one might expect that the

thermodynamically stable complexes would be narrowly

distributed in size and have the minimal possible charge. Thus,

the equilibrium of the free energy would require the compensa-

tion of the charges inside the core, such that the formed PIC

micelles are almost neutral. However, in our description we allow

for deviations from zero charge, because other contributions to

the total free energy, the entropy of mixing, the salt concentration

and the steric repulsion in the corona, may shift the equilibrium.

The distribution function of the complexes, eqn (20) is calcu-

lated for each combination of (m+,m�) and the results are shown

in Fig. 11a. As an example, we plot the normalized vcm+,m� for

a mixture of a linear polymer with the charge z+ ¼ 18 and

oppositely charged diblock copolymer with a charged block, z�
¼ 78, and neutral block of length N ¼ 200 (case A). The two

polymers share the same distance between the charges along the

chain: n+ ¼ n� ¼ 1/x ¼ 4. It can be noted that two distributions

reported lie around the ‘‘electroneutrality line’’ z+m+ – z�m�. In
the vicinity of that line, the precise location of the support of the

distribution function stems from a subtle balance of effects, as

embodied in the free energy (18). We observe in Fig. 11b that

upon increasing the salt concentration, the equilibrium size

distribution is shifted towards smaller complex sizes and

becomes more peaked. A similar trend is observed while

changing the length of the neutral block, which controls the

repulsion in the corona. Long tails in the corona favor smaller

complexes, and shift the equilibrium accordingly. Since the

complexes are close to neutrality, the salt concentration mostly

affects the electrostatic energy of free chains [eqn (28)], and the

shift of the aggregation numbers along the electroneutrality line

is mainly due to the chains in the solution. In addition, increasing
6764 | Soft Matter, 2012, 8, 6755–6766
the bulk concentration of polymers, vc1,0 and vc0,1, increases the

aggregation numbers, see Fig. 12.

Fig. 13 shows the size distribution function of the complexes

formed by equally charged (’’matched’’ in terms of ref. 8) poly-

mers (18,18), (44,44) and (78,78) and ’’unmatched’’ polymers,

(18,78) and (78,18). The polymer concentrations are chosen in

such a way that the complexes are formed close to the origin,

which may indicate the onset of aggregation. Aggregation of

long polymers, (78,78), occurs at smaller concentrations than

aggregation of short polymers, (18,18), due to the entropy of

mixing, which strongly depends on the total length of polymers.

We find that unmatched complexes [see the cases (18,78) and

(78,18)], can also be formed if the aggregation numbers are close

to the electroneutrality line (the opposite charges are compen-

sated). On the other hand, has put forward a chain recognition

mechanism where matched cases are more prone to form large

complexes, but the system considered there is somewhat

different, involving the equilibrium between three types of indi-

vidual chains together with two and three component complexes.
5 Discussion and conclusions

We have developed a framework to study the formation of

polyelectrolyte complexes from an initial arbitrary mixture of

charged polymers, where both polycations and polyanions are

present in an electrolyte solution. Two situations were addressed,

as sketched in Fig. 1: for a given polycation type, the polyanion is

either a diblock copolymer with a long neutral tail (case A), or

a polyanion having a different intercharge spacing along the

backbone (case B). Coulombic attraction between oppositely

charged polymers leads to the formation of complexes, with an

a priori unknown composition. The numbers of chains of both

types in a given complex were denoted m+ and m�. These

complexes were envisioned as forming hairy structures, where the

hair/corona is either made up of dangling neutral chains (case A)

or of loops (case B), while the core of much smaller spatial

extension contains most of the charges of the polymeric back-

bones.We started by focusing on the electrostatic aspects, treated

at the level of Poisson–Boltzmann theory. This part of the work
This journal is ª The Royal Society of Chemistry 2012
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Fig. 11 Case A. (a) Probability distribution function (normalized vcm+,m�) for asymmetric block copolymers of opposite charge, z+ ¼ 18 and z� ¼ 78

with the same distance between the charges, and Manning parameter x ¼ 0.25. The length of neutral block (stabilizing corona) is N ¼ 200, the salt

concentration is ka ¼ 0.2, and the concentrations of individual chains is vc1,0 ¼ 10�4 and vc0,1 ¼ 10�9. (b) Projection of the same function on the plane

(m+,m�) for two different salt concentrations.

Fig. 12 Projections of the probability distribution function (normalized

vcm+,m�) on the plane (m+,m�) for the equally charged copolymers of

opposite charges, z+ ¼ 78 and z� ¼ 78 as a function of polymer

concentrations, vc1,0 and vc0,1. Manning parameter, x ¼ 0.25 and salt

concentration ka ¼ 0.2. The inset shows the points of electroneutrality of

the complexes (black disks) together with a zoom onto the vc1,0 ¼ vc0,1 ¼
10�13 case. The complexes are not completely neutral due to the entropic

contribution of the corona.

Fig. 13 Projections of the probability distribution function (normalized

vcm+,m�) on the plane (m+,m�) for different lengths of block copolymers of

opposite charge with the same distance between the charges, x¼ 0.25 and

ka ¼ 0.2. Increasing concentrations of individual chains, vc1,0 and vc0,1,

increases the aggregation numbers, which move along the electro-

neutrality lines.
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thereby extends a previous study performed for salt-free

systems.39 In a second step, the resulting electrostatic free energy

of the complexes was used, together with the entropic repulsion

between tails/loops in the corona, to provide us with a free energy

functional for an arbitrary mixture of complexes having a given

size distribution cm+,m�. Upon minimizing this functional under

the appropriate constraints of mass conservation for both poly-

cationic and polyanionic species, we obtained the equilibrium

composition of our mixture. Whereas this optimal distribution

turns out to give a negligible weight to configurations that depart

from complex global charge neutrality – a property that may have
This journal is ª The Royal Society of Chemistry 2012
been anticipated – it exhibits the non-trivial feature of a high

selectivity: out of an initial random soup of polycations and

polyanions, well defined complexes with precise composition (m+,

m�) may emerge, particularly when the salt density is increased.

The problem under study here is characterized by a large

number of dimensionless parameters, and we furthermore made

simplifying assumptions in the description, such as equating the

Kuhn lengths for both positively and negatively charged poly-

mers. We chiefly focused on the effect of changing the salt

concentration, which is an experimentally simple control

parameter. The pH dependence of the core charge of the

complexes has not been addressed, but it can be incorporated for

instance via the Henderson–Hasselbalch equation.45 In addition,
Soft Matter, 2012, 8, 6755–6766 | 6765
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the Coulombic aspects were treated at mean-field level, which is

adequate provided the bare charge of the complex core, Z1, is

smaller than a bound of order [Rc/(z
2lB)]

3,46which decreases when

increasing the valence z of the mobile micro-ions (assumed here

monovalent, i.e. z ¼ 1). Finally, we have neglected the structure

of the core, by homogeneously smearing out its charge. This

certainly leads to overestimate their free energy, due to the

neglect of the corresponding negative correlation energy.36

Summary of main notations used
q

6766 | Soft Matter
elementary charge
a
 Kuhn length, assumed equal for both

polycationic and polyanionic chains
z�
 total charge of a chain, in units of �q
n�
 distance between �q charges along a linear

polymer, in units of Kuhn length
N
 length of a neutral polymer block, in units of

the Kuhn length
m�
 number of positive/negative chains in an

aggregate (core)
lB
 Bjerrum length q2/(3kT) defined from

temperature and solvent dielectric permittivity
Rc
 radius of a spherical aggregate/core
Z1
 bare charge of a spherical core (due to

polymers)
Z2
 ‘‘uptake’’ charge of a core (due to polymers

and salt ions inside the core)
Z3
 effective (or renormalized) charge of

a spherical core, relevant at large distances

from the core center

~Z
 reduced charge, defined as ~Z ¼ ZlB/Rc
cN
 salt density in the reservoir
k�1
 Debye length, defined through k2 ¼ 8plBcN

r(r)
 total density of charge at a distance r from core

center
rc
 parameter controlling the charge of the corona

(case B)
x
 Manning parameter defined as l�lB f lB/n�,
where l� is the linear charge of a linear

polymer
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