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Strong-coupling theory of counterions between
symmetrically charged walls: from crystal to fluid
phases†

Ladislav Šamaj,a Martin Trulssonb and Emmanuel Trizac c

We study thermal equilibrium of classical pointlike counterions confined between symmetrically charged

walls at distance d. At very large couplings when the counterion system is in its crystal phase, a

harmonic expansion of particle deviations is made around the bilayer positions, with a free lattice

parameter determined from a variational approach. For each of the two walls, the harmonic expansion

implies an effective one-body potential at the root of all observables of interest in our Wigner strong-

coupling expansion. Analytical results for the particle density profile and the pressure are in good

agreement with numerical Monte Carlo data, for small as well as intermediate values of d comparable

with the Wigner lattice spacing. While the strong-coupling theory is extended to the fluid regime by

using the concept of a correlation hole, the Wigner calculations appear trustworthy for all electrostatic

couplings investigated. Our results significantly extend the range of accuracy of analytical equations of

state for strongly interacting charged planar interfaces.

I. Introduction

Large macromolecules such as colloids, immersed in polar
solvents, are endowed with a surface density due to the release
of bound ions, or the uptake of charged species. This exchange
with the solution, together with the auto-protolysis of water in
the case of aqueous solvents leads to a solution containing
micro-ions of both signs. However, it is possible to approach
the deionized limit where in addition to the colloids, the
only charged species are counterions of opposite charge. The
corresponding idealized ‘‘counterions only’’ (salt-free) case does
describe well some experiments (see e.g. ref. 1), and furthermore,
it is a useful and often advocated workbench for theoretical
purposes, be they analytical or computational. In thermal equili-
brium, the equation of state of salt-free models that we concentrate
on in this work depends on the only free parameter, namely the
coupling constant X to be defined below. Such simplified
models help us to understand the limiting weak-coupling (WC)
and strong-coupling (SC) regimes of general Coulomb systems,
and can be useful as a starting point in specific approaches to
charged systems with salt.

The curved surface of large macromolecules can be replaced
by an infinite plane in the first approximation. The counterions

can be considered as identical classical (i.e., non-quantum)
pointlike particles interacting via the three-dimensional
Coulomb potential. The charged surface and surrounding
counterions form in thermal equilibrium a neutral electric
double layer, see reviews.2–5 The geometry of two parallel
equivalently-charged walls with counterions in between provides
the prototypical study of the effective interaction between like-
charged macromolecules. At large enough electrostatic coupling,
like-charged colloids can attract each other, as was shown
in experiments6–11 as well as in numerical simulations.12–17

Like-charge attraction explains phenomena like the formation
of DNA condensates18 and colloidal aggregates.16 On the other
hand, like-charge attraction is precluded at small couplings,
unless the microions acquire an internal structure.19,20

The WC limit of Coulomb fluids is described by the Poisson–
Boltzmann (PB) mean-field theory.21,22 For systems with counter-
ions only, the PB theory can be viewed as the leading term in a
systematic loop-expansion.23 The characteristic inverse-power-law
form of mean-field results should hold exactly for the particle
density profile at asymptotically large distances from one wall
or the pressure for parallel walls at large distances.24–26

In the opposite SC limit, one needs to make a distinction
between the crystal and fluid regimes. For infinite and extremely
large couplings X, the counterions organize themselves into a
crystal phase.27 In the absence of dielectric wall images, according
to Earnshaw’s theorem28 the counterions stick on the wall
surfaces in the ground state (infinite coupling). For one-wall
geometry, they form a two-dimensional (2D) hexagonal, or
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equilateral triangular, Wigner crystal. In the case of two parallel
walls, five distinct (staggered) Wigner bilayers were detected as the
distance between the walls increases from zero to infinity.29–35

The controversial aspects of the topic and the critical properties of
the second-order phase transitions were revisited in ref. 36 by
using an analytic approach based on an expansion of the energy
of the five structures in generalized Misra functions.37 The same
problem, with asymmetrically charged walls, displays baffling
complexity.38 In the presence of repulsive dielectric images, the
ground-state Wigner layers (in the one-wall problem) and bilayers
(in the two-walls problem) are localized at specific distances from
the walls.39 The ground-state bilayer Wigner crystal played a key
role in the first theoretical attempts to construct a SC theory valid
for large couplings.24,40,41

The classical bilayer Wigner crystal is stable only at extre-
mely large couplings. The problem of its melting to a fluid was
studied within the harmonic approximation in ref. 31 and 32
where the charged particles were allowed to deviate around
their ground-state positions only along the 2D Wigner planes.
To describe the SC limit of the fluid phase, a field-theoretic
treatment was proposed in ref. 42–44, in the form of a virial
(fugacity) expansion. While this approach yields the correct
leading SC order in the form of a single-particle result, it does
not capture the right correction to leading behavior.45,46 The
single-particle SC theory was extended to general dielectric
walls,47 asymmetrically charged walls,48,49 and Coulomb
models with salt.50 For the one-wall geometry, an attempt was
made in ref. 51 to construct a universal theory which is
operational for an arbitrary coupling. The theory is based on
a mean-field approach to the response of counterions to the
presence of a test charge. Other attempts were put forward
in ref. 25, 40, 45, 52 and 53, discriminating short and long
distance components of Coulomb forces. These interesting
approaches do not yield analytical and explicit results, which
are our core interest in this paper.

On the analytical side, a strong-coupling theory dwelling on
the Wigner crystallization was proposed in ref. 46, hereafter
referred to as the Wigner strong-coupling (WSC) approach. It is
based on the harmonic approximation for particle deviations
from their ground-state positions in the Wigner layer or bilayer
crystal, along all directions. The leading order turns out to be
identical to the virial single-particle theory. The first correction
to the particle density profile is much stronger than within the
virial view, and in excellent agreement with Monte Carlo (MC)
data.46 Although the method starts from the existence of a
Wigner crystal, it works surprisingly well also for intermediate
and relatively small couplings when the counterion system is in
its fluid phase.46 The rationale behind such an agreement is
that the precise structure of ions at the plate is not essential,
except from the fact that it is strongly modulated. Hence
the success of simplifying theories relying on a correlation
hole, that can lead to accurate density profiles, up to relatively
small coupling constants.54 The idea can even be formulated
in conjunction with a test-particle approach, to yield a self-
consistent theory that has the property to be exact at both
vanishing and infinite couplings.55

In this paper, we restrict ourselves to the geometry of two
parallel symmetrically charged walls with no image charges, at
distance d. Our main goal is to derive the equation of state of the
system (inter-plate pressure), significantly extending the d-range
where analytical results are known. Indeed, the virial route of
ref. 42–44 yields the dominant small-d pressure, and holds at
small distances (less than the so-called Gouy–Chapman length).
The subleading correction was computed in ref. 46, with still a
resulting domain of validity limited to very small d. Here, we
show that the definition of an effective one-body potential for
each of the two walls allows to extend the affordable d range up
to the typical counterion-counterion separation. This represents

a gain of a factor
ffiffiffiffi
X
p

in the distance-range, an appreciable
improvement. To this end, structural vibrations are taken in full
in the present WSC approach, without any restriction on the
distance between the two walls. Here, it should be kept in mind
that at even larger distances, the mean-field PB theory takes over
and inter-plate pressures are described accordingly.24,25,43

Our technique is first put to work for very large values of the
coupling constant, when the system stays in its crystal phase.
The original approaches considering only vibrations along the
Wigner surfaces31,32 were based on the harmonic expansions
around the ground-state Wigner structure. Here, we leave the
characteristic lattice parameter of the Wigner structure (around
which the harmonic expansion is made) as free; it is deter-
mined variationally at the end of the calculations, minimizing
the free energy. Thus the form of the Wigner bilayer depends
not only on d, but also on the coupling constant X; such a
scenario is confirmed qualitatively as well as quantitatively by
numerical simulations. As concerns the fluid phase at large and
intermediate values of the coupling constant, and following
similar lines as ref. 54, we relinquish the crystal to invoke a
correlation hole when calculating the effective one-body potential
acting on particles close to each of the two walls. As before, the
analytic results for the particle density profile and the pressure
agree with numerical data up to intermediate inter-wall distances.

The paper is organized as follows. The definition of the
model and a review of its ground-state features are presented in
Section II. The numerical Monte Carlo method is discussed in
Section III. Section IV concerns the large-coupling description
of the crystal phase. We start by the harmonic expansion of
deviations from the crystal positions in IV A, continue by the
leading WSC order and the first correction of the corresponding
thermodynamics (IV B) and then consider the particle density
profile (IV C). The pressure is obtained in two ways: from
the thermodynamic route and by using the contact theorem.
Comparison with the numerical results is given in Section IV D.
The correlation-hole SC approach to the fluid phase is con-
structed in Section V. We conclude in Section VI with a short
summary and future plans.

II. Model and its ground state

In 3D space of points r = (x,y,z), we consider two parallel walls
(plates) at distance d, say plate S1 at z = 0 and plate S2 at z = d.
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The plate surfaces |S1| = |S2| = S along the (x,y) plane are taken
as infinite. The space between the plates will be denoted by
L = {r; 0 r z r d}. The plate surfaces carry the same fixed
homogeneous surface charge density se, where e is the elemen-
tary charge and say s 4 0. The electric field due to the charged
plates is equal to 0 in the space between the plates. There are N
mobile particles constrained to L, for simplicity with unit
charge �e, coined as ‘‘counterions’’. The system as a whole is
electro-neutral, i.e. N = 2sS. The particles are immersed in a
solution of dielectric constant e, the dielectric constant of the walls
is considered to be the same ew = e, so there are no image forces
acting on particles. In Gaussian units, the charged plates and
particles interact pairwisely by the 3D Coulomb potential 1/(er).

At zero temperature, the particles organize themselves into a
Wigner crystal structure with the minimal interaction energy.
According to the Earnshaw theorem,28 a classical system of
point charges in a domain, which is under the action of direct
(not image) electrostatic forces, cannot be in an equilibrium
position, i.e. the charges stick to the domain’s boundary. In
our symmetric case, taking N as an even number, N/2 particles
i = 1,. . .,N/2 stick on plate S1 and the remaining N/2 particles
i = N/2 + 1,. . .,N stick on plate S2.

Depending on the dimensionless distance between the plates

Z ¼ d
ffiffiffi
s
p

; (2.1)

five distinct bilayer Wigner structures were detected by numer-
ical simulations.29–35 In this paper, we study such intervals of
Z-values where the staggered rectangular structures I–III pre-
vail, see Fig. 1. A single layer of these structures corresponds
to a rectangular lattice with the aspect ratio D, defined by the
primitive translation vectors

a1 ¼ að1; 0Þ; a2 ¼ að0;DÞ; a ¼ 1ffiffiffiffiffiffi
sD
p : (2.2)

The lattice spacing a is determined by the electroneutrality
condition that the surface charge of a rectangle (es)a2D must
compensate the charge �e of just one particle per rectangle.
The identical structures on the two plates are shifted with
respect to one another by a half period (a1 + a2)/2. The position
vectors of the particles i = 1,. . .,N/2 on the Wigner rectangular
structure at plate S1 will be denoted by

r0
i = (aix,Daiy,0), (2.3)

where ix, iy run over all integers; the particle assignment
i - (ix, iy) is obvious. Similarly, the position vectors of the
particles i = N/2 + 1,. . .,N on the Wigner rectangular structure at
plate S2 are denoted by

r0i ¼ a ix �
1

2

� �
;Da iy �

1

2

� �
; d

� �
; (2.4)

where ix, iy run again over all integers. Structure I with D ¼
ffiffiffi
3
p

arises naturally in the single-layer limit Z - 0 which is known
to be characterized by a hexagonal (equilateral triangular)

lattice. The aspect ratio is from the interval 1oDo
ffiffiffi
3
p

for soft
structure II and D = 1 for structure III, i.e. the staggered square
lattice. The phase transformation I–II, which is not a phase
transition, takes place just at Z = 034,36 or, in other words,
structure I exists only at Z = 0. The phase transition between
structures II and III at Z B 0.263 is of second order, with
singularities of mean-field type.36 Phase III has the lowest
energy up to Z B 0.621.

For all three structures I–III, the energy per particle,
e0 = E0/N, is expressed as the lattice summation (S1) in Section
A of the ESI.† Writing

e0ðZ;DÞ ¼
e2

ffiffiffi
s
p

e
1

2
ffiffiffi
p
p SðZ;DÞ (2.5)

and using techniques introduced in ref. 36, the function S(Z,D)
can be written as an integral over certain products of Jacobi
theta functions, see eqn (S3) (ESI†), and subsequently as an
infinite series of the generalized Misra functions

znðx; yÞ ¼
ð1=p
0

dt

tn
e�xte�y=t; (2.6)

see eqn (S5) (ESI†). Note that the ordinary Misra functions
correspond to x = 0.37 The first few generalized Misra functions
zn(x,y) with half-integer n-indices are expressed in terms of the
complementary error function in eqn (S7) of Section B in the
ESI.† This permits us to use very effectively symbolic softwares.
The series in generalized Misra functions are rapidly converging;

for the well known Z = 0 case of the hexagonal lattice with D ¼
ffiffiffi
3
p

,
the truncation of the series over j, k at M = 1, 2, 3, 4 reproduces the
exact value of the Madelung constant up to 2, 5, 10, 17 decimal
digits, respectively.36 In the present calculations, to keep a high
accuracy of the results we truncate the series of the generalized
Misra functions at M = 6. The evaluation of a series takes a
fraction of second of CPU on a standard PC.

For a given dimensionless inter-plate distance Z, the actual
value of the aspect ratio D is determined by the energy mini-
mization condition

@

@D
e0ðZ;DÞ ¼ 0: (2.7)

This condition determines the dependence D0(Z) where the
lower index 0 means ‘‘in the ground-state’’ or, equivalently, at
infinite coupling.

Fig. 1 Ground-state structures I, II and III (corresponding to different lattice
vectors a1 and a2) of counterions on two equivalently charged plates. Open
and filled symbols correspond to rectangular positions of particles on the
opposite surfaces. The aspect ratio is defined as D = |a2|/|a1|.
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III. Monte Carlo simulations

Let the system be in thermal equilibrium at some inverse
temperature b = 1/(kBT). There are two relevant length scales
at nonzero temperature. The Bjerrum length cB = be2/e is the
distance at which two unit charges interact with thermal energy
kBT. The potential energy of a unit charge at distance z from an
isolated wall with the surface charge density es is equal to
2pe2sz/e. The unit charge has the potential energy equal to
thermal energy kBT at distance from the wall

m ¼ 1

2p‘Bs
; (3.1)

known as the Gouy–Chapman length. Since this length is the
relevant scale in the direction perpendicular to the surfaces of
the two walls, the coordinate z will be usually expressed in units of
m, z̃ = z/m. The dimensionless coupling parameter X, quantifying
the strength of electrostatic correlations, is defined as the ratio

X ¼ ‘B
m
¼ 2p‘B2s: (3.2)

The SC regime X c 1 corresponds to either ‘‘low temperatures’’,
large surface charge densities, or equivalently small dielectric
constant. The lattice spacing of the Wigner structure a, which is
the characteristic length scale in the longitudinal (x,y) plane, is

much larger than m in the SC regime, a=m /
ffiffiffiffi
X
p

.
MC simulations were carried out in a quasi-2D slab geo-

metry for coupling parameters ranging between X = 17.5 and
175 000, where 512 point charges were confined between two
uniformly charged and flat surfaces, each with a surface
charged density of se, at various fixed separations d. The system
was periodic in all directions with an extra vacuum slab in the
z-direction perpendicular to the surfaces and between the
slab images. This set-up allowed us to use standard 3D Ewald
summation techniques to handle the long-ranged electrostatic
interactions, with only minor re-adaptions to correct for the quasi-
2D-dimensionality and extra vacuum space.56,57 We verified that
our vacuum slab is sufficiently wide (typically much wider than
the separation d between the walls) so as not to influence
the results. New MC configurations were either generated by
trial displacement of the point charges or by volume preserving
floppy-box moves. Two floppy-box moves were utilized: shear or
combined biaxial compression/decompression (compression
along one axis and decompression along the other such to
preserve the box volume). Both deformations were performed in
the (x,y)-plane. All trial move parameters were set such that they
each had an acceptance ratio of around 25–40%.

Pressures were estimated across the mid-plane and were
collected over 4 � 105 Monte Carlo cycles for a given separation
and X. We applied block averaging of ten blocks to estimate the
errors in pressures. A Monte Carlo cycle consisted of either of
512 trial displacement of the point charges or a floppy-box
move. Crystal structures were identified both by single configu-
ration snapshots and ensemble averaged 2D-pair correlation
maps (of the whole space, of each individual half-space, and
across the half-spaces) in the (x,y)-plane.

We found by numerical simulations that at finite coupling
the particles form crystal of type I–III with the aspect-ratio
parameter D which depends on both the coupling constant X
and the interplate distance d, i.e., D(X,d). The lattice parameter
D was obtained by finding the positions of the first two peaks of
the 1D-pair correlation functions (ensured that they indeed
form crystal structures) where only nearest (x,y) neighbours,
identified by a Delaunay triangulation, been accounted for. The
lattice parameter was then taken as the ratio between these two
peak positions. Once the lattice parameter reaches unity it is
not possible to extract it by this method as the two peaks
coalesce to one peak, here we rely instead of inspection of both
the 2D- and 1D-pair correlation functions as well as single
configuration snapshots to indeed verify that we had square
structures (i.e., D = 1). Crystal structures could be identified for
all studied Z’s only for the largest X = 175 000. X = 17 500 only
gave crystal structures for Z { 0.01. This is consistent with
previous numerical results58–60 which predict 2D crystallization at
any d for coupling parameters above XE 31 000 and crystallization
at contact (d = 0) above XE 15 600. The factor of two between both
thresholds stems from the fact that at d = 0, the two layers merge
into one, with a double surface charge.

IV. Large-coupling description of the
crystal phase

For a bilayer Wigner crystal, experiments59 and simulations60

give the estimate X C 31 000 for melting. This behavior follows
from the restricted model in which counterions move only
within the 2D Wigner single-layers. In this part, we shall
consider X to be large enough to localize particles near their
Wigner-crystal positions. In our model, as soon as X is non
divergent (finite T), the particles are not constrained to the wall
surfaces and can move in the whole slab domain L. Within the
canonical ensemble, the relevant thermodynamic quantities are
the partition function ZN and the corresponding (dimensionless)
free energy per particle bf defined, up to some irrelevant
constants due to the background-charge density, as follows

ZN ¼
1

N!

ð
L

YN
i¼1

d3ri

l3
e�bE rif gð Þ; bf ¼ � 1

N
lnZN ; (4.1)

where E({ri}) is the Coulomb interaction energy of the particles
and l stands for the thermal de Broglie wavelength. We recall
that the electric potential induced by the symmetrically charged
plates is equal to 0 between the plates. The mean particle

number density at point r is defined as rðrÞ ¼
PN
i¼1

d r� rið Þ
� �

,

where h� � �i means the statistical average over the canonical
ensemble. It fulfills the sum rule

Ð
Ld

3rrðrÞ ¼ N. For our particle
density which depends only on the perpendicular z-coordinate,
r(r) � r(z), this sum rule reduces to the electro-neutrality
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condition
Ð d
0
dzrðzÞ ¼ N=S ¼ 2s. The particle number density

will be considered in a rescaled form

~rð~zÞ � rðm~zÞ
2p‘Bs2

; (4.2)

in terms of which the electro-neutrality condition takes the form

ð ~d

0

d~z~rð~zÞ ¼ 2: (4.3)

A. Harmonic expansion

The usual large-coupling approach to the counterion system
between symmetrically charged plates is to make a harmonic
expansion of particle coordinates around their Wigner bilayer
positions.31 We found by numerical simulations that such an
approach is not fully adequate and one should assume that at
non-infinite coupling, the particles form another reference
crystal of type I–III with the aspect-ratio parameter D depend-
ing, besides the inter-plate distance Z as it was in the ground
state, also on the coupling constant X: D(X,Z). In particular, the
previously calculated infinite-coupling result D0(Z) in ref. 31, 32,
34 and 36 corresponds to D(X - N,Z). We aim at performing
the harmonic expansion of particle coordinates around this
reference crystal, evaluate the corresponding free energy and
determine the D-parameter of the reference crystal subsequently
by minimizing the free energy with respect to D. At finite
coupling, the particles fluctuate around sites of the reference
Wigner crystal, but as soon as the system is in its crystal phase,
the particle are localized close to these sites and the reference
crystal is not an auxiliary theoretical construction, but its para-
meters are clearly visible in numerical experiments.

Performing an expansion of the Coulombic energy up to
quadratic order in particles displacements, we show in Section
C1 of the ESI† that

E rif gð Þ ¼ Ne0ðZ;DÞ þ dE; dE ¼
X
io j

dEij : (4.4)

with

�bdE ¼ � kðZ;DÞ
X
i2S1

~zi þ
X
i2S2

~d � ~zi

� �" #
þ 1ffiffiffiffi

X
p Sz

�
ffiffiffiffiffiffi
X
2p

r
s
2

X
io j

Bx
ij xi � xj
	 
2þBy

ij yi � yj
	 
2h i

þ � � � :

(4.5)

Here, the prefactor of the linear terms in z̃i or (d̃ � z̃i) reads

kðZ;DÞ ¼ Z
2p

X
ix ;iy

D3=2

ix � 1=2ð Þ2þD2 iy � 1=2
	 
2þDZ2h i3=2

¼ Z
p3=2

ð1
0

dt
ffiffi
t
p

e�Z
2ty2 e�tD
	 


y2 e�t=D
� �

¼ � 1

2p3=2
@

@Z
SðZ;DÞ þ 1:

(4.6)

The quantities Sz and Bij are given by eqn (S16)–(S18) (ESI†),

while the Jacobi theta function y2 is defined as y2ðqÞ ¼
P
j

q j�1
2

	 
2
(see the ESI† where y3ðqÞ ¼

P
j

q j2 is also required).

The particle coordinates {xi}, {yi} and {zi} are decoupled
within the harmonic expansion of the energy change (4.5).
Within the present formalism, the particles have a well defined
appurtenance to plate S1 or S2 in the Wigner bilayer. The
leading term in the z-subspace is linear in z̃i for particles i A S1

and in (d̃ � z̃i) for particles i A S2, with the prefactor function k
depending on Z and D. This effective electric one-body potential
subsumes the effects of the uniform surface charges on the
two plates and the particle layer on the opposite plate, while
particles on the same plate contribute to higher-order quadratic
terms. In the limit of small inter-plate distance Z - 0, we have

lim
Z!0

kðZ;DÞ ¼ 0; (4.7)

i.e. each particle feels the zero potential coming from the uniform
surface charge densities on the two plates while the effect of the
opposite particle layer with the lattice spacing a c d is negligible;
this description coincides with the standard one-body SC
fugacity approach for two symmetrically charged plates at small
distances.42–44 In the large distance limit Z - N we have

lim
Z!1

kðZ;DÞ ¼ 1; (4.8)

i.e. each particle feels the linear electrostatic potential, z̃ or (d̃� z̃),
coming from the surface charge at its own plate; at large distances
the discrete counterion structure on the opposite plate is seen as a
charge continuum neutralized by the opposite background charge
on that plate. In this way the k-function describes correctly a
continuous interpolation from a two-plate picture at Z - 0 to a
one-plate picture at Z - N. The contribution of quadratic terms

in Sz=
ffiffiffiffi
X
p

, which becomes negligible in comparison with the one-
body ones in the SC limit X - N, will be treated perturbatively
for large X. The quadratic terms in the (x,y)-plane reflect strong
particle correlations/repulsions in this plane. Due to the strong
particle repulsions, it is reasonable to constrain the particle
coordinates within one elementary cell, i.e.

�a
2
oxi o

a

2
; �aD

2
o yi o

aD
2
: (4.9)

The partition function (4.1), with the particle interaction
energy given by eqn (4.4) and (4.5), factorizes into

ZN ¼
1

N!

m
l

� �N
exp �bNe0½ �QzQxQy; (4.10)

where

QzðZ;DÞ ¼
ð ~d

0

Y
i2S1

d~zie
�k~zi

ð ~d

0

Y
i2S2

d~zie
�k ~d�~zið Þ exp Szð Þ; (4.11)

QxðZ;DÞ ¼
ða=2
�a=2

Y
i2S1[S2

dxi

l
exp �

ffiffiffiffiffiffi
X
2p

r
s
2

X
io j

Bx
ij xi � xj
	 
2" #

;

(4.12)
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QyðZ;DÞ ¼
ðDa=2
�Da=2

Y
i2S1[S2

dyi

l
exp �

ffiffiffiffiffiffi
X
2p

r
s
2

X
io j

B
y
ij yi � yj
	 
2" #

:

(4.13)

From now on we shall automatically neglect irrelevant terms
which do not depend on Z and D. The free energy per particle is
given in the harmonic approximation by

bf ðZ;DÞ ¼
ffiffiffiffi
X
p

23=2p
SðZ;DÞ � 1

N
lnQz �

1

N
lnQx �

1

N
lnQy: (4.14)

B. Thermodynamics

Obtaining the partial partition functions Qx, Qy and Qz is a
non-trivial task, performed in Section C2 in the ESI.† It relies
on the diagonalization of the inverse variance–covariance
matrices of fluctuations in the x, y, and z coordinates, which
is achieved by means of a 2D Fourier transform. The resulting
free energy per particle f is expressible in the harmonic
approximation as

bf ðZ;DÞ ¼ bf ð0ÞðZ;DÞ þ 1ffiffiffiffi
X
p bf ð1ÞðZ;DÞ þO

1

X

� �
: (4.15)

The leading WSC term reads as

bf ð0ÞðZ;DÞ ¼
ffiffiffiffi
X
p

23=2p
SðZ;DÞ � ln

1� e�kðZ;DÞ
~d

k

 !

þ 1

4

ð1
0

dqx

ð2
0

dqy ln Cxð0; 0Þ � Cx qx; qy � qx
	 
� �


� Cyð0; 0Þ � Cy qx; qy � qx
	 
� ��

;

(4.16)

where the functions Cx(q) and Cy(q) are given by eqn (S40) and
(S45) (ESI†). The prefactor function to the first correction
bf (1)(Z,D) = �hSzi0/N is given by eqn (S23) and (S24) (ESI†).
All quantities in the above formulas are expressed as fast
converging series of generalized Misra functions. This means
that the thermodynamics can be treated on the same footing
as the ground-state energy, at least in the harmonic
approximation.

According to the principle of minimum free energy, the
aspect ratio of the rectangular lattice D is fixed by the condition

@

@D
bf ðZ;DÞ ¼ 0 (4.17)

which provides the explicit dependence of D on the coupling
constant X and the plate distance Z, D(X,Z). Compare this
relation with its ground-state counterpart eqn (2.7) which
reflects an analogous minimization of the interaction energy.

The pressure exerted on the plates can be obtained via the
thermodynamic route as follows

bPth ¼ �
@

@d

bF
S

� �
¼ �2s3=2@ðbf Þ

@Z
: (4.18)

Rescaling the pressure in the same way as the particle density
in (4.2), we get

~Pth �
bPth

2p‘Bs2
¼ �

ffiffiffiffiffiffi
2

pX

r
@

@Z
bf ðZ;DÞ½ �: (4.19)

The positive/negative sign of the pressure means an effective
repulsion/attraction between the charged walls.

C. Particle density profile and pressure

To find the particle density, we add to each particle in the
Hamiltonian the generating (source) one-body potential u(r)
which will be set to 0 at the end of calculations. The partition
function (4.1) is then transformed to

ZN ½w� ¼
1

N!

ð
L

YN
i¼1

dri

l3
w rið Þe�bE rif gð Þ (4.20)

and it is a functional of the generating Boltzmann weight
w(r) = exp[�bu(r)]. The particle density at point r is then
obtained as the functional derivative:

rðrÞ ¼ d
dwðrÞ lnZN ½w�

����
wðrÞ¼1

: (4.21)

We show in the ESI,† that the (rescaled) particle density takes
the WSC expansion form

~rð~zÞ ¼ ~rð0Þð~zÞ þ 1ffiffiffiffi
X
p ~rð1Þð~zÞ þ � � � ; (4.22)

with the leading WSC order

~rð0Þð~zÞ ¼ k

1� e�k ~d
e�k~z þ e�kð

~d�~zÞ
h i

: (4.23)

This leading WSC particle density has the correct reflection
z̃ - (d̃ � z̃) symmetry and satisfies the expected normalization
condition ð ~d

0

d~z~rð0Þð~zÞ ¼ 2: (4.24)

The first correction to the particle density is given in eqn (S55)

(ESI†). Note that
Ð ~d
0d~z~rð1Þð~zÞ ¼ 0: The same property holds

also in higher WSC orders, so that the electroneutrality condi-
tion (4.3) is ensured on the leading WSC order (4.24).

Invoking the contact theorem for planar walls,61,62 we obtain
the pressure as

~Pc ¼ ~rð0Þ � 1 ¼ ~rð0Þð0Þ � 1
h i

þ 1ffiffiffiffi
X
p ~rð1Þð0Þ þ � � � : (4.25)

Writing the WSC expansion for the ‘‘contact’’ pressure as
~Pc ¼ ~P

ð0Þ
c þ ~P

ð1Þ
c =

ffiffiffiffi
X
p
þ � � �, we have in the leading order

~Pð0Þc ¼ k
1þ e�k

~d

1� e�k ~d

 !
� 1; (4.26)

The first correction is given in Section C3 of the ESI.†
Since k - 1 for d̃ - N it is simple to show that the

expansion coefficients P̃(0)
c and P̃(1)

c vanish in the asymptotic
large-distance limit, as they should. The thermodynamic P̃th
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and contact P̃c pressures must coincide in an exact theory. In an
approximate theory like ours, the difference between the two
pressures indicates the accuracy of the approach.

D. Comparison with numerical results

We compare the results of our WSC theory with MC data for two
values of the coupling constant, namely for large X = 175 000
when the system is in its crystal phase and small X = 1750 when
the system behaves as a fluid. The distance dependence of the
aspect ratio of the rectangular lattice D is pictured in Fig. 2. The
ground-state case (X - N) is represented by the blue curve.
The results of the WSC theory are shown by the black curve for
X = 175 000 and by the red curve for X = 1750; note that on the
scale of our graph the results of the leading order and the
leading order plus the first correction are indistinguishable. In

contrast to the ground state with phase I (D ¼
ffiffiffi
3
p

) occurring

only at Z = 0,34,36 phase I exists in a finite interval of Z: up to ZE
0.06 for X = 175 000 and up to Z E 0.21 for X = 1750. The
second-order phase transition between phases I and II is of

mean-field type, with
ffiffiffi
3
p
� D the order parameter. The MC data

for X = 175 000 are represented by open circles. They agree
qualitatively with our theoretical results, namely phase I is
dominant up to Z E 0.07. For the smaller coupling constant
X = 1750, the Z-range where the structures I–II (and also III)
prevail increases; in MC simulations, we did not identify any
crystal phase and the counterion system behaves as a fluid. In
the inset of Fig. 2, we plot the two theoretical curves and MC
data for D versus d̃; we see that the two theoretical curves differ
much from one another in this representation. We recall here

that the connexion between both scales reads ~d ¼ Z
ffiffiffiffiffiffiffiffiffi
2pX
p

.
The distance dependence of the pressure is presented in

Fig. 3 for the coupling constant X = 175 000. The left panel
corresponds to the leading WSC order, the right panel presents
the results of the leading WSC order plus the first correction.
The MC data are indicated by open circles. The WSC results
obtained by the thermodynamic route and by the contact
theorem are represented by the dashed and solid curves,
respectively. It is seen that data obtained by the two methods
are very close to one another, and to the MC measures. The
location and the value of the pressure minimum is determined
especially well by the WSC theory including the first SC correc-
tion (see the insets). A very good coincidence with the MC data
lasts up to extremely large values of d̃, corresponding to Z E 1,
well beyond the validity of the standard fugacity42–44 and
Wigner-crystal46 SC approaches. The analogous plots of P̃ versus
d̃ for the intermediate value of the coupling constant X = 1750
are presented in Fig. 4. In spite of the fact that the counterion
system is in the fluid state for this value of X, the analytic
results agree surprisingly well with MC data. A similar conclu-
sion holds at even smaller X values, see Section VI where we
present data at X = 50. This points to the fact that what is
relevant is not so much the detailed ionic configuration, but
that it is strongly modulated. This gives support to the idea of a
correlation hole, developed in Section V.

Fig. 2 Dependence on the dimensionless distance between the walls Z of
the aspect ratio D for structures I–III. The MC data for the coupling
constant X = 175 000 are indicated by open circles. The results of the
present WSC theory for X = 175 000 and X = 1750 are represented by black
and red curves, respectively. The ground-state plot, blue curve, is also
given as a reference. For comparison, the inset shows the plots of D versus
d̃ for X = 175 000 (black curve) and X = 1750 (red curve).

Fig. 3 Dependence of the (rescaled) pressure P̃ on the dimensionless distance d̃ at X = 175 000. The left panel corresponds to the leading WSC order,
the right panel to the leading WSC order plus the first correction. The MC data are indicated by open circles. The pressures obtained via the
thermodynamic route and by using the contact theorem are represented by dashed and solid curves, respectively. The insets magnify the regions around
the pressure minimum.
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At X = 175 000, some representative particle density profiles are
pictured in Fig. 5. The MC data are indicated by open circles. The
density profiles obtained in the leading WSC order, see eqn (4.23),
and with the first correction included, see eqn (4.22) and eqn (S55)
(ESI†), are represented by the dashed and solid curves, respectively.
The logarithmic plots in the insets illustrate that in the large
interval of Z = 0.1–0.5 the present WSC theory predicts contact
particle densities and the slopes of the density profile close to the
walls which are in excellent agreement with MC data. This shows
the relevance of the idea of an effective local field (an effective one-
body potential), embodied in k, which depends on the distance and
on the geometry of the ionic arrangement, together with the
accuracy of our approach for computing this non-trivial quantity.
Besides, it is noteworthy that for the considered extremely large

coupling constant, the inclusion of the correction to the leading
WSC order improves substantially the results. For small distances
Z = 0.01 and 0.05, the WSC density profiles agree with MC in the
whole inter-plate slab, but with increasing Z there is a discrepancy
between the WSC and MC results in the middle region between the
walls characterized by extremely small particle densities.

V. Strong-coupling theory for the fluid
phase

The Wigner bilayer is stable at very large values of the coupling
constant. For intermediate and small values of X, the counter-
ion system behaves as a fluid which is isotropic along the (x,y)

Fig. 4 Same as Fig. 3 for X = 1750.

Fig. 5 Rescaled particle density ~r versus the dimensionless coordinate z̃ for X = 175 000 and the (dimensionless) distance between the walls Z = 0.01,
0.05, 0.1 and 0.5. As before, the MC data are indicated by open circles. The density profiles obtained in the leading WSC order and in the leading WSC
order plus the first correction are represented by the dashed and solid curves, respectively. The logarithmic plots in the insets document the slopes of the
density profile close to the walls. The one-wall density profile (Z - N, red line) is pictured for illustration.
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plane. The strong Coulomb repulsion leads to a depletion
region around each particle, inaccessible to other particles,
known as the correlation hole.25,40,45,52–54

Within the WSC theory, the Wigner structure in the (x,y)
plane underlies the calculation of the crucial effective local field
k(Z,D), see eqn (4.6). It determines the slope of the density
profile close to the wall. To describe physically the fluid regime,
the idea is to substitute the lattice representation of k by
its continuum counterpart, with a radial cut of the lattice
summation at small distances R due to the correlation hole.
In particular, rewriting the lattice sum as

X
ix ;iy

D3=2

ix � 1=2ð Þ2þD2 iy � 1=2
	 
2þDZ2h i3=2

¼ 1

s3=2
X
ix ;iy

1

a2 ix � 1=2ð Þ2þD2a2 iy � 1=2
	 
2þDa2Z2h i3=2

(5.1)

and regarding that there is surface a2D = 1/s per site on the
Wigner lattice, we can express (5.1) as a continuum integral in
the following way

1

s3=2
1

1=s

ð1
R

dr2pr
1

r2 þ Z2

s

� �3=2
¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2 þ sR2
p : (5.2)

To estimate the short-distance cut R, i.e. the radius of the
correlation hole around the reference particle, one has to
realize that the reference particle on plate 1 is in the center
of an elementary cell of the particle crystal on plate 2. Let us
choose the symmetric D = 1 square lattice, and apply the
Voronoi construction of the Wigner–Seitz primitive cell which
has surface a2/2 = 1/(2s). Thus, pR2 = 1/(2s) and we end up with

kðZÞ ¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ 1

2p

r : (5.3)

This fluid version of the k-function has the correct limiting
values k = 0 for Z - 0 and k = 1 for Z - N. We shall refer to
this correlation-hole theory to as ch1.

Another phenomenological way to express the functional
dependence of k(Z) combines geometrical features, overall
electroneutrality together with space fluctuations of charged
particles in the fluid regime. We substitute the crystal bilayer
structure by a couple of correlation holes with respect to a
reference particle, which appertains say to plate 1. We thereby
obtain one disk of radius R1 at plate 1 and the other disk of
radius R2 at plate 2. Particles are smeared out on the plate
regions outside of the correlation-hole disks; the corresponding
‘‘punctuated’’ planes are therefore taken as neutral. The charge
of the reference particle must be compensated by the total
surface charge on the disks which implies the constraint

�e + se(pR1
2 + pR2

2) = 0. (5.4)

The disk radiuses depend on the distance between the plates,
R1 = R1(Z) and R2 = R2(Z). If the two walls touch each other, Z = 0,

the correlation holes around the reference particle are the same
on both sides, i.e.,

R1
2ðZ ¼ 0Þ ¼ R2

2ðZ ¼ 0Þ ¼ 1

2ps
: (5.5)

The plate-1 and plate-2 subspaces decouple at asymptotically large
distances Z-N. From the point of view of the reference particle
(attached to plate 1), the hole at plate 2 disappears due to thermal
fluctuations of charged particles at plate 2, R2(Z - N) = 0, while
the charge conservation rule �e + sepR1

2(Z - N) = 0 leads to an
increase of the radius of the hole at plate 1: R1

2(Z - N) = 1/(ps),
like in the one-plate geometry. Respecting the constraint (5.4),
the two limits are matched by the phenomenological interpola-
tion formulas

R1
2ðZÞ ¼ 1

2ps
þ 1

2ps
Z

cþ Z
; R2

2ðZÞ ¼ 1

2ps
� 1

2ps
Z

cþ Z
; (5.6)

where c defines a crossover scale. For simplicity we set c = 1. For
the reference particle at distance z from plate 1 and at distance
(d � z) from plate 2, the electrostatic energy E(z) yielded by the
two correlation holes is given by

�bEðzÞ ¼ s‘B

ðR1

0

dr2pr
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p þ

ðR2

0

dr2pr
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðd � zÞ2
p

" #

¼ 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1

2 þ z2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 þ ðd � zÞ2
q

� d

� �
:

(5.7)

Within the single-particle picture, we can take the whole one-
body Boltzmann factor exp[�bE(z)] or restrict ourselves to the
linear term in the energy, exp(�kz̃), with

kðZÞ ¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ sR2

2
p ¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2 þ 1

2pð1þ ZÞ

r : (5.8)

This k coincides with the geometrical one (5.3) at small
distances Z - 0; it furthermore shares with ch1 the correct
limiting value 1 at Z - N. We shall refer to this correlation-
hole theory to as ch2.

The dependences of different variants of the function k on Z
are pictured in Fig. 6. The crystal versions of k(Z,D) with the

extreme values of the aspect ratio D ¼
ffiffiffi
3
p

and D = 1 are
represented by the black solid and dashed curves, respectively.
The blue solid and dotted-dashed curves correspond to the
correlation-hole ch1 formula (5.3) and the ch2 formula (5.8),
respectively. Note that the four plots are relatively close to each
other, which documents the robustness of the method.

Having an expression for the fluid k(Z), the leading SC
estimate for the density profile is given by eqn (4.23) and the
pressure can be obtained by using the contact formula (4.26).
For an intermediate coupling constant X = 1750, the plot of the
rescaled pressure P̃ on d̃ is pictured in the left panel of Fig. 7.
We see that the results of our two correlation-hole approaches
ch1 and ch2, represented respectively by the dashed and solid
curves, are close to the MC data (open circle symbols). For the
relatively small value of the coupling constant X = 100, the
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analogous plot is presented in the right panel, with again a fair
agreement.

The density profiles for X = 1750 at the four distances
between the walls Z = 0.01, Z = 0.05, Z = 0.1 and Z = 0.5 are
pictured in Fig. 8. MC results are compared to the WSC predic-
tions (with and without the first correction) as well as to the two
correlation hole theories. A conclusion that emerges is that while
all approaches proposed yield acceptable quantitative results,
the Wigner SC method is the most accurate. This is somewhat
surprising since we sit here in a coupling-range where no crystal
is formed. Yet, accuracy requires that the correction is included,
and it stems from a rather demanding analytical work. Here, a
fair assessment of ch performance would be to compare to WSC
without correction, in which case ch is quite superior.

VI. Conclusion

The aim of this paper was to construct a strong-coupling theory
for thermal equilibrium of pointlike counterions between par-
allel and symmetrically charged plates. The goal was to extend
significantly the range of interplate distances d where a

trustworthy analytical effective force is available. This range
was hitherto reduced to d smaller than a couple of Gouy–Chapman
lengths,44,46 meaning d̃ of order unity. To this end, we studied
the counterion system in both the crystal phase at extremely
large Coulombic couplings and in the fluid phase, at large and
intermediate couplings.

A new type of the Wigner SC theory of the crystal phase is
proposed in Section IV, in a perturbative fashion. At infinite
coupling, the counterions stick to the plate surfaces and as d
increases from 0, they form successively bilayer Wigner crystals
of rectangular type with the aspect ratio D decreasing fromffiffiffi
3
p

(hexagonal monolayer coined I) to 1 (staggered square
structure III), see Fig. 1. At finite couplings, our MC simulations
indicate that counterions are still localized around sites of a
bilayer structure where D depends, besides distance d, also on

the coupling constant X. In particular, structure I with D ¼
ffiffiffi
3
p

,
which exists only at d = 0 in the ground state, prevails in a
nonzero interval of d values for finite couplings, see open
circles in Fig. 2. We thus constructed a Wigner-type SC theory
based on a harmonic expansion of particle coordinates around
the sites of the Wigner bilayer, with a free aspect ratio D, fixed
at the end of calculations by minimizing the free energy. Two
variants of the WSC expansion were obtained. The leading-
order one is characterized by an effective one-body potential kz̃
where the prefactor function k, which is D-dependent, vanishes
for d - 0 (two-plates problem at small distance) and goes to
unity for Z - N (two separated one-plate problems). The

second variant involves the first correction term / 1=
ffiffiffiffi
X
p

and,
in general, improves substantially the results of the leading-
order version, even for extremely large coupling constants. We
have reported a good agreement with Monte Carlo simulation
results, be it for the interplate pressure, or for the ionic density
profiles. This is the case, expectedly, at very large coupling
parameters, where the system becomes a (bilayer) Wigner
crystal as assumed in our treatment. Yet, the predicted pressures
and profiles also appear to be reliable at much smaller X values,
where crystals are completely melted. We illustrate this point in
Fig. 9, where X = 50 and X = 100, well below the coupling
constant of the crystal-fluid transition (X on the order of 30 000).

Fig. 6 Dependence of the effective local field k, on rescaled distance. The
black solid and dashed curves correspond to two extreme crystal versions
with D ¼

ffiffiffi
3
p

and D = 1, respectively. The blue solid and dotted-dashed
curves are for the correlation-hole ch1 and ch2 theories, respectively.

Fig. 7 Rescaled pressure P̃ versus the dimensionless distance d̃ for X = 1750 (left panel) and X = 100 (right panel). The blue dashed and solid curves
correspond to the correlation-hole ch1 and ch2 theories, respectively. The inset in the left panel magnifies the region around the pressure minimum.

Paper Soft Matter



4050 | Soft Matter, 2018, 14, 4040--4052 This journal is©The Royal Society of Chemistry 2018

Both WSC and ch approaches start to deteriorate at even smaller
coupling parameters, see Fig. 9 (right panel) for X = 17.5.

Guided by the structure of the WSC results, we also derived
a strong-coupling description of the fluid regime in Section V.
Here, the lattice representation of the effective field k is
replaced by the continuum one based on the idea of a correla-
tion hole, that has already proven useful in related contexts.54,55

We proposed two phenomenological constructions of k, with
the results (5.3) and (5.8); the corresponding correlation-hole
theories were coined as ch1 and ch2. As is seen in Fig. 6, the
approximate plot of k on distance depends only slightly on the

choice of the correlation-hole theory, and ends up close to
the WSC derivation. The correlation hole program leads to
observables like pressure and densities that fare reasonably
against numerical simulations. Fig. 9 shows that the ch2 form
(slightly better for the chosen couplings than ch1), performs as
well as the WSC method, while its effective field k is simpler to
compute (compare eqn (4.6) and (5.8)). This completes our
goal, since our approach allows to reach distances (in Gouy–

Chapman units) of order
ffiffiffiffi
X
p

, i.e. the typical scale of inter-ionic
distance. To put it differently, no analytical theory could
so far account for the increasing part of the pressure profile

Fig. 8 Rescaled particle density ~r versus the dimensionless coordinate z̃ for X = 1750, at the indicated four distances between the walls. The MC data are
shown by open circles. The density profiles obtained in the leading WSC order and in the leading WSC order plus the first correction are represented by
the black dashed and solid curves, respectively. The blue dashed/solid curves correspond to the correlation-hole ch1/ch2 theories.

Fig. 9 Testing the relevance of the WSC and correlation-hole calculations at X = 50 and X = 100. The leading ‘‘contact’’ pressure computed from the
Wigner SC approach is compared to Monte Carlo data and to the ch2 theory. The good agreement observed here deteriorates for X o 20, see the right
hand side plot where X = 17.5.
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(see e.g. Fig. 9, or the other pressure plots in this paper) after
the pressure minimum. Previous theories44,46 did only describe
well the decreasing branch of the pressure curve, located at
smaller separations. We recall that the large-distance regime
is accounted for by the PB mean-field theory. The latter is
repulsive, meaning that the pressure should vanish at a specific
large but finite distance, a phenomenon that is particularly
difficult to study analytically, and beyond our scope here.

In our treatment, we considered as eligible WSC structures
rectangle types of phases only. As is seen in Fig. 2, the decrease
of the coupling constant X increases the Z-range where the
structures I–II (and also III) prevail. In the ground state, at
intermediate to large distances, two different structures (staggered
rhombic, so-called structure IV, and staggered hexagonal, struc-
ture V) were also observed. These candidates a priori impinge on
the large-distance WSC calculations (i.e. for Z value of order unity
and beyond), but presumably in a modest way. Finally, future
plans include extending the present SC methods to asymmetri-
cally charged planes and to ions having some structure, starting
with a hard core. A difficulty for the former problem lies in the
extreme complexity of the ground-state phase diagram.38 Another
venue concerns the inclusion of salt (microions with charges of
both signs).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We would like to dedicate this work to the memory of Per Linse
who was a true expert in both electrostatics and computer
simulations. M. T. especially wants to honor Per Linse for having
been a great teacher and a dear colleague, who always showed a
genuine interest in other people’s work. This work was supported
by the Grant VEGA No. 2/0003/18 and by the European Union’s
Horizon 2020 research and innovation programme under ETN
grant 674979-NANOTRANS. M. T. acknowledges financial support
by the Swedish Research Council (621-2014-4387).

References

1 T. Palberg, M. Medebach, N. Garbow, M. Evers, A. Barreira
Fontecha, H. Reiber and E. Bartsch, J. Phys.: Condens.
Matter, 2004, 16, S4039.

2 Ph. Attard, Adv. Chem. Phys., 1996, 92, 1.
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47 M. Kanduč and R. Podgornik, Eur. Phys. J. E: Soft Matter Biol.
Phys., 2007, 23, 265; Y. S. Jho, M. Kanduč, A. Naji, R. Podgornik,
M. W. Kim and P. A. Pincus, Phys. Rev. Lett., 2008, 101, 188101.
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