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Electroosmosis as a probe for
electrostatic correlations

Ivan Palaia, ab Igor M. Telles,c Alexandre P. dos Santos c and Emmanuel Trizacd

We study the role of ionic correlations on the electroosmotic flow in planar double-slit channels, without

salt. We propose an analytical theory, based on recent advances in the understanding of correlated systems.

We compare the theory with mean-field results and validate it by means of dissipative particle dynamics

simulations. Interestingly, for some surface separations, correlated systems exhibit a larger flow than

predicted by mean-field. We conclude that the electroosmotic properties of a charged system can be used,

in general, to infer and weight the importance of electrostatic correlations therein.

1 Introduction

The proof that natural colloids bear a surface charge in aqueous
conditions dates back to 1809, with the electrokinetic experi-
ments of Reus: he observed electrophoresis of clays, together
with electroosmosis of water through sand.1 These two effects,
driven by an electric field, can be viewed as describing the same
phenomenon in different frames: while electrophoresis refers
to the motion of charged macromolecules in a fluid at rest,
electroosmosis is for the displacement of liquid when a solid
interface (such as a capillary) is fixed.2,3 The external electric
field applies a force on the ions of the electric double layer,
that in turn transfer it to the surrounding solvent by means of
viscous interactions. Applications abound in micro or nano-
fluidics, from pumping devices to blue energy and biological
systems.4–6

While the validity of hydrodynamic continuum approaches
is challenged by downsizing,4 electrokinetic phenomena at
small scale are usually described at a continuum mean-field
(MF) level when it comes to coulombic effects, with neglect
of ionic correlations.1–11 Due account of these effects has
prompted only few theoretical attempts.12,13 In the vast body
of computational simulations as well, from lattice-Boltzmann
approaches14–16 to explicit water molecular dynamics
simulations17,18 or dissipative particle dynamics (DPD),14,19

the question remains somewhat overlooked.

The study of ionic correlations, that eludes the Poisson–
Boltzmann (PB) framework, has focused on static systems.20

Different types of approaches have been put forward, from
field theoretic21–24 to more heuristic works.20,25–28 We proceed
along the latter angle of attack, to address the question of
electroosmotic transport. We make use of the recent approach
developed in ref. 28 to present a theory of electroosmosis in
salt-free systems, that naturally includes coulombic correlations.
Explicit dynamical quantities can be worked out, and we present
as well DPD simulations that validate the theoretical analysis.

We study in particular the double-slit geometry represented
in Fig. 1: two parallel planar surfaces of surface charge density
s are placed at distance d from each other and delimit a
solution containing ions of opposite charge. In Section 2 we
solve the electroosmotic profile in the PB MF limit and in the
correlated regime. In Section 3 we compare theory and DPD
simulations, showing ionic density profiles, velocity profiles
and integrated flow. This comparison validates the theory in the
strongly correlated regime and defines its limits of application
for weekly correlated systems. Results are discussed in Section 4.

Fig. 1 Sketch of the system. Counterions are confined between two
charged planar surfaces at distance d. An external electric field E8 is
applied in the direction parallel to the surfaces.
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We will show that there is a range of widths d, for which
correlations enhance electroosmosis, when compared to the MF
expectation. This is an interesting phenomenon, that can play a
role in situations of high confinement (e.g. nano-/subnanofluidic
devices, membrane porins), where solvent destructuring close to
the charged surfaces can boost ionic correlations,29,30 with yet
unexplored effects on the electroosmotic flow.

2 Theoretical model

The solvent is assumed to be a structureless dielectric medium
with relative permittivity er and dynamic viscosity Z. Under
steady state conditions, the velocity profile of the fluid u(z)
obeys the following Stokes equation:

@2u

@z2
¼ �

qeEk
Z

nðzÞ: (1)

where n(z) is the average density of counterions, q their valence,
and e the elementary charge. The solvent obeys no-slip bound-
ary conditions

u(0) = u(d) = 0. (2)

When substituting the velocity field u for the electric
potential f, eqn (1) yields the Poisson equation; f and u are
thus linearly related.2 A second key observation which stems
from the planar geometry, where the fluid flows parallel to the
plates and thus perpendicular to the charged interface, is that
ion migration does not influence the equilibrium density
profile.2 Characterising the flow thus simply requires the
knowledge of the equilibrium behaviour of the ionic density:
in this sense, the ionic flow is enslaved to the equilibrium
density profile. We solve below the Stokes equation using for
the (equilibrium) ionic density profile n(z) either the MF
(uncorrelated) form, or the strong coupling (SC) (correlated)
regime.

2.1 Mean-field regime

In MF, the density of counterions is31

nðzÞ ¼ sK

q tan
Kd

2

1

cos2 K z� d

2

� �� �: (3)

K is given by the solution of the following equation

Kd tan
Kd

2
¼ d

m
; (4)

where m = (2plBqs)�1 is the Gouy–Chapman length, lB =
e2/(4pe0erkBT) is the Bjerrum length and T is temperature.

Plugging eqn (3) into eqn (1) and imposing conditions (2),
one gets the steady-state electroosmotic profile in MF. Defining
the convenient dimensionless velocity ũ

uðzÞ ¼
eEk

2plBZq
~uðzÞ; (5)

one gets

~uðzÞ ¼ ln

cos K z� d

2

� �� �
cos

Kd

2

: (6)

By symmetry, the flow is maximum at z ¼ d

2
. With

~um ¼ ~u
d

2

� �
, we have

~um ¼ � ln cos
Kd

2
’

d

4m
if d � m

ln
d

pm
if d � m

8>><>>: : (7)

If d c m, ũm diverges logarithmically with the distance, as does
the electrostatic potential f. This is the fingerprint of rather
inefficient screening by counterions only, as opposed to sys-
tems where both types of microions are present, cations and
anions (added salt).31 Indeed, the equilibrium density ionic
profile decays like a power-law (z�2) far from a single charged
plate, as opposed to exponentially with salt. This corresponds
to a slower convergence to neutrality, and there is thus a
residual charge on which the applied electric field pulls. There
is no similar mechanism at work under SC. Yet, it is possible to
observe an enhanced flow at intermediate interplate distances,
as we will discuss.

By integrating eqn (6) for z between 0 and d, we get Q, the
volume flow rate of fluid per unit width length (with dimen-
sions of surface divided by time). In the following units

Q ¼
eEkm
2plBZq

~Q; (8)

this is:

eQ ¼ Cl2ðp� KdÞ � Cl2ðpþ KdÞ
2Km

� d

m
ln 2 cos

Kd

2

� �
; (9)

where Cl2ðxÞ ¼ �
Ð x
0 ln 2 sin

t

2

� �
dt ¼ i

2
Li2ðe�ixÞ � Li2ðeixÞ½ � is the

Clausen integral, or Clausen function of second order, or
log-sine integral, and Li2 represents the dilogarithm function.
Q̃ goes as d2 for d { m, and as d ln(d) for d c m. This reflects the
behaviour of the maximum velocity ũm, from eqn (7).

2.2 Strong coupling analysis

We quantify the importance of ionic correlations by means of
the so-called electrostatic coupling parameter,32,33 as routinely
used in plasma physics:

X ¼ q2lB

m
¼ 2pq3lB2s: (10)

The MF regime corresponds to X - 0 (low charges, high
permittivity), whereas higher X values correspond to more energy-
dominated systems, with X - N representing the ground state
(formally, the behaviour at T = 0, assuming er does not depend
on T). In practice, deviations from PB become appreciable when X
exceeds a couple of units. At room temperature in water (er = 80),
this means s 4 1/q3 nm�2. With monovalent ions q = 1, this
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condition is hardly met in practice, while it becomes more
standard when q Z 2, with divalent or trivalent counterions.

As proposed in ref. 28, the density of counterions can be
approximated by introducing an effective field k. In the ground
state, this is the total electric field felt by an ion leaned to a
charged surface: this includes the contributions of both charged
walls and, most importantly, of all the other ions. In practice it is
defined by the energetic cost kDz of moving such ion away from
the surface by a small distance Dz. In the ground state (X - N),
k can be computed analytically and varies with d on a scale

a ¼
ffiffiffiffiffiffiffiffi
q=s

p
/ m

ffiffiffiffi
X
p

, the typical ‘‘in-plane’’ distance between ions.
At finite coupling X, a situation where fluctuations are present,
this picture can be retained with very satisfactory results, as long
as X stays c1;28 the effective field, that from now on we express in
units of kBT/m, can be approximated by the following expression:

k
d

a

� �
¼

d

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

a

� �2

þ 1

2p

s : (11)

Note that for d - 0, ions are delocalised along z and k goes to 0; for
d -N, one of the walls together with half of the ions are too distant
to matter and k goes to 1, the electric field of a bare wall in our units.

The effective field is a useful tool to determine the average
ion density, that can be written28 as

nðzÞ ¼ 2plBs2k
1� e�kd=m

e
kz�dm þ e

�kzm
� �

: (12)

The solution of eqn (1) and (2) for density (12) is

euðzÞ ¼ 1þ e
�kdm � e

kz�dm � e
�kzm

k 1� e
�kdm

� � ; (13)

where we used the same units as in eqn (5).
At the midpoint z = d/2, solvent flows with the maximum velocity

eum ¼ 1� e
�k d

2m

� �2

k 1� e
�kdm

� � : (14)

Asymptotically, this gives

eum ’ d

4m
if d � mX1=4

1 if d �4 mX1=2

8<: : (15)

In Fig. 2, ũm is plotted as a function of d/m, for different
values of X. Interestingly, ũm is non-monotonic: it increases
linearly (faster than the MF logarithmic solution) until a dis-
tance BmX1/4, then it peaks, decays (recrossing the MF curve),
and eventually sets to a plateau for distances larger than
a p mX1/2. The initial correlation-driven boost of the electro-
osmotic velocity, compared to MF, is due to the fact that
correlations are more efficient than MF at delocalising ions at
small distances: a more uniform distribution is then rewarded

by eqn (1) with a higher electroosmotic flow. On the contrary, at
large distances, the SC density (12) decays to zero faster than
the MF one (3): this corresponds to a constant mid-plane
velocity for SC (no ion is present to supply a velocity gradient
within distances 4m from the walls) and, conversely, to a
virtually diverging velocity far from the charged surfaces for
MF (due to the aforementioned algebraic tail).

It is also worth noticing how the addition of a new length
scale, a, through the expression of the effective field (11) affects
ũ: the system goes from a velocity (6) or (7), where the relevant
length scale is m, to a velocity (14) or (15), where the relevant

length scales are a and the geometrical average
ffiffiffiffiffiffi
ma
p / mX1=4.

Indeed, in a strongly correlated system, mX1/4 (cm) is the length
scale over which ions transition from an entropy-favored state
with uniform distribution along z, to a state where half of the
ions are adsorbed on either wall.34 Note that upon increasing
the coupling parameter X, the length scale a can feature
different behaviours, depending on which parameter is mod-
ified: it may increase if only q is modified, it may decrease if
correlations are enhanced through an increase of the surface
charge, or it may stay constant if temperature is modified. The
latter T-based view provides a convenient way to envision the
role of correlations (decreasing T increases X at fixed geome-
trical length a), but one should keep in mind that it is
experimentally almost impossible to change T significantly, at
least with a water solvent.

We now look at the position of the peaks in Fig. 2. The spacing
dmax at which ũm is the largest, for a given X, can be computed
by imposing that the derivative of ũm, from eqn (14), with respect
to d̃ = d/m, vanish. This amounts to solving the equation

~d4 þ 2 ~d2X� 2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ X

q
sinh

~d2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ X

p !
¼ 0: (16)

Making the assumption that d̃2 { X, for X sufficiently large,
this reduces to

sinh
~d2

2
ffiffiffiffi
X
p

 !
’

~d2ffiffiffiffi
X
p : (17)

Fig. 2 Maximum fluid speed ũm as a function of dimensionless distance
d/m. MF (PB) is represented by a black dashed line and SC by solid lines.
To get the MF curve, eqn (4) is solved numerically and its result plugged
into eqn (6). To get the SC curves, eqn (14) is closed with formula (11).
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The equation sinh(y/2) = y has only one real positive

solution: y0 = 4.3546. . .. By equating ~d2=
ffiffiffiffi
X
p

to y0, one gets

~dmax ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:3546
p

X1=4; (18)

which satisfies the underlying assumption d̃2
c X for large X

and is consistent with eqn (15). Eqn (18) agrees with numerical
calculations of d̃max from eqn (14). Eqn (15) and (18) together
indicate that the maximum attainable velocity ũm,max, i.e. ũm at
dmax, also scales as X1/4. Compared to eqn (7), this indicates
enhanced flow with respect to the MF prediction.

A dmax scaling as mX1/4 confirms our previous interpretation.
Increasing the inter-plate distance when ions are uniformly
distributed, i.e. when d o mX1/4, increases linearly the electro-
osmotic speed at the midplane: indeed, the uniform ion density
scales as 1/d, so does the curvature of the electroosmotic
profile, and therefore ũm = ũ(d/2) grows as d. Increasing
the distance beyond mX1/4, though, destroys uniformity and
gradually favors an ionic distribution decaying rapidly away

from the walls: at constant total applied force (
Ð d
0
nðzÞdz is fixed

by electroneutrality), this configuration gives a lower ũm than
the uniform distribution configuration.

This non-monotonic effect of correlations is visible in inte-
grated quantities, too. To see this, we compute the volume flow
rate Q, as we did for the MF case. By integrating eqn (13) for
z between 0 and d, we get

~Q ¼ � 2X
~d2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ X

q
coth

~d2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ X

p !
� 2

¼

d2

6m2
if d � mX1=4

d

m
if d �4 mX1=4

8>>><>>>:
(19)

where we used the same units as in eqn (8). Fig. 3 represents Q̃
for different values of X, and for MF (eqn (9)).

To better understand the effect of correlations, we look at Q
in real units, that do not involve lB. We fix the separation d, in
units of the purely geometrical parameter a, and imagine to
gradually increase coupling by increasing lB only. As mentioned
above, this provides us with a theoretical tool to gradually

switch on correlations at constant separation and assess their
effect. Fig. 4 shows that a correlated system exhibits in general
a smaller flow than the uncorrelated one. This is also evident
from the fact that the maximum attainable velocity ũm,max

scales as X1/4; when phrased in terms of the original unscaled
velocity from definition (5), this translates to um,max p lB

�1/2:
increasing correlation effects at constant charge thus leads to a
net decrease of transport. However, a correlated system, well
described by the SC theory, exhibits at small separations a
stronger flow than predicted by applying MF theory to the same
system (Fig. 4, left). In this sense and in this regime, correla-
tions enhance electroosmosis.

Finally, yet another way to assess the role of correlations is to
observe how the flux changes as a function of ion valence q,
keeping constant lB and s. This amounts to increasing X only
through q. Fig. 5 shows the same qualitative behaviour as Fig. 4:
it exhibits at small separation d an enhancement and at large
separation a suppression of the electroosmotic flow, compared
to the MF prediction.

3 Computational model
3.1 Simulation setup

The DPD simulations are performed in a box of size Lxy � Lxy �
Lz with periodic boundary conditions in the x and y directions.
The charged planes with charge density s are located at z = 0
and z = d, as above. Nc counterions and Ns DPD particles
(modeling solvent) are confined in region 0 o z o d, with
d r Lz/2 and Lz Z Lxy/2. The vacuum region in the z direction is
defined according to a recently developed Ewald sum
method.35 The Ns solvent particles correspond to a solvent
number density ns. The Nc counterions are considered as
DPD particles with a centered charge qe. The parameters and
method of integration used in our DPD simulations, widely
used in the literature, are given in ref. 36. The same mass m is
used for ions and DPD solvent particles. Besides m, the thermal

Fig. 3 Integrated flow divided by distance, as a function of d/m = d̃, in
log–log scale. The situation is analogous to that of Fig. 2.

Fig. 4 Integrated flow Q2pZ/(qeE8) = Q̃/X, as a function of coupling. Two
values of separation d are shown. In both cases, as correlations are
switched on, the SC flow (accurate for large X) decreases compared to
the correlation-free value (PB curve, X - 0). However, at small separation
(d/a = 0.1, left), the SC theory predicts a stronger flow than PB. At large
separations (d/a = 10, right), this is not true and the effect shown in the
large-d part of Fig. 3 dominates.
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energy b = 1/kBT and the Gouy–Chapman length m are the
natural units in our calculations. Considering the level of
coarse graining in our method and the focus on hydrodynamic
phenomena, important properties of water in confinement
such as dielectric response and water molecules alignment30

are not taken into account.
The dynamic viscosity of the DPD system is determined from

the fitting of the velocity profile up(z) of a pure system (solvent
particles only), in a Poiseuille–Hagen flow configuration: con-
stant and uniform flow force F8, parallel to the surfaces, under
no-slip boundary conditions. The velocity profile parallel to the
surfaces then reads

upðzÞ ¼ g
d2

4
� z� d

2

� �2
" #

: (20)

The viscosity expression is well studied in ref. 14 and 37. It is
given by

Z ¼
nsFk
2g

: (21)

In Fig. 6 we show the results for one of the pure systems
considered. The dimensionless particle concentration is m3rs

and the temperature profile is given by hv2imb, where hv2i is the
average quadratic velocity. The parallel velocity up(z) and the
fitting curve are also shown. Following the fitting procedure, we
find g = 0.033(mb)�1/2m�2 and Z = 1.21(m/b)1/2m�2.

In order to induce the electroosmotic flow in DPD simula-
tions with counterions, the dynamics is performed with a
constant electric field E8 = 1(bmqe)�1 parallel to the surfaces,
as in Fig. 1. The lateral side size of the simulation box is chosen
as Lxy=m ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pXNc

p
, so as to maintain charge neutrality. For

higher coupling parameters X, in order to keep charge neu-
trality, the size of the simulation box can be very high. This
means that a typical concentration of DPD particles, such as
m3ns = 4, would give a huge number of particles. To circumvent
this issue, we decrease the concentration (until we get a
computationally reasonable number of particles, around 4 � 104)
and increase the DPD interaction cut-off radius to obtain the
desired hydrodynamic properties. We concomitantly increase

the level of coarse graining. As a consequence we must obtain
the viscosity for each set of parameters. No-slip boundary
conditions are applied. The electrostatic part of molecular
dynamics is also derived from the modified Ewald sum method
in ref. 35. The fraction of number of ions/solvent particles in
simulations goes approximately from 0.01 to 0.001, depending
on the coupling parameter.

3.2 Results

First, we compare the ionic density profiles obtained from the
PB and SC theories with the profiles obtained from the present
DPD simulations. Results are represented in Fig. 7. We sample
four values of X, ranging from 1 to 100, and three values of d,
from 5 to 30m. The profiles are not affected by the flow, in line
with the discussion in Section 2. For low coupling parameters
(first and, to a lesser extent, second line) the PB framework
describes our density profiles. As coupling increases, the
profiles depart from the PB result and approach their SC
counterpart. At X = 100, the effective-field SC theory accurately
describes the numerical density profiles. Unfortunately we
could not probe larger X values, as this would require to
increase substantially the number of particles in simulations.
Our results are consistent with the validity limit of the effective
field theory, probed with Monte Carlo simulations and better
discussed in ref. 28; we point out that such limit reaches down
to X values that are surprisingly low, given how the theory
stems mainly from low-temperature arguments.

As discussed in Section 2, at small d, ions are rather
localised on the walls for low values of X, while they are almost
uniformly distributed for high values of X. This is why ionic
correlations enhance electroosmotic flow at small channel
widths, as per Fig. 2 and 3. Such an effect appears in Fig. 8,
where fluid velocity profiles ũ(z) are shown for the same X and
d values as in Fig. 7.

Fig. 5 Integrated flow Q2pZ/(eE8), as a function of valence q. Here,
2plB

2s = 1 is kept fixed, so that the horizontal axis can also be read as
X1/3. Two values of separation d are shown.

Fig. 6 Example of pure DPD solvent particles simulations (uncharged
system). The concentration and temperature profiles are represented by
solid lines. Temperature is measured locally from the particles’ velocity
variance. Symbols are the parallel velocity profile up, while the dashed line
is the fitting curve. The parameters are m3ns = 4, bmF8 = 0.02 and d/m = 10.
Depending on X, different parameters are used in order to reduce the total
number of particles.
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We summarise these observations by analyzing the two
scalar quantities we have focused on in Section 2: the peak
velocity ũm and the volume flow rate Q̃. These are represented,
together with their analytical MF and SC predictions, in Fig. 9
and 10a. The theoretical curves are the same as in Fig. 2 and 3,
respectively.

In general, the higher the coupling, the better our theory
is at describing simulation results: in Fig. 7 and 8, agreement
with the SC curves increases from top to bottom, gradually
subtracting credence to the MF results. By the time X reaches

100, the SC curves practically coincide with simulation results.
However, it is worth noticing that the accuracy of the SC theory
depends not only on X, but also on d: at X = 10, for instance, the
velocity profile deviates from the SC theory one only at d = 30m
(Fig. 8, second row). Additional insight comes from the com-
parison of X = 50 to X = 100, at d = 30m, in Fig. 7 and 8: for
X = 50, the density only deviates from the SC curve in the
middle of the channel – when its value is hundreds of times
smaller than close to the walls – but this causes a conspicuous
deviation in the velocity profile; for X = 100, at the same d/m, the

Fig. 7 Counterions density profiles for coupling parameters X = 1, X = 10, X = 50 and X = 100 in first, second, third and fourth lines, respectively. The
separations are d/m = 5, 10 and 30, first, second and third columns, respectively. Symbols are DPD simulation data, whereas lines are for PB and SC
theories.
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agreement with SC is complete. This phenomenon is due to the
high sensitivity of the electroosmotic flow to the decaying beha-
viour of the ionic density away from the charged surfaces (alge-
braic for MF, exponential for SC). The question of a potential
crossover to MF and in particular of the recovery of an algebraic
tail, for arbitrary coupling and very large separations, is presum-
ably not relevant for the values of d we probe here.22,38

4 Discussion and conclusion

Quantifying the role of ionic correlations in charged solutions
is a challenging task. While static problems have been tackled

through continuous21,22,24,39 and discrete25,27,28 approaches,
comparatively little effort has been devoted to understanding
the signature of beyond mean-field (MF) correlations on
electrokinetics.13 We have addressed here this question within
planar electrosmosis, for a salt-free system. The theory is
simple and gives closed formulas for the relevant observables
(e.g. the velocity profile) for any X, making use of no fitting
parameter and no arbitrary correlation length scale (a common
feature of many functional-based theories). Our findings are
backed up by DPD. These simulations establish the regimes in
which the theory is successful and those, limited to moderately
small coupling parameters, in which MF is more accurate.

Fig. 8 Velocity profiles for the same parameters as indicated in Fig. 7.
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We showed that ionic correlations can have two effects on
electroosmotic properties, as compared to the MF expectation.
On the one hand, they can boost the flow: this happens in
the regime where they promote ionic delocalisation. Indeed,
a uniform ionic distribution corresponds to a stronger flow.
A correlated system exhibits an approximately uniform distri-
bution up to inter-plane separations of order mX1/4, where m is
the Gouy–Chapman length; such delocalisation of the ions is
more efficient than in MF theory and happens on a wider range
of separations (mX1/4

c m). On the other hand, correlations
decrease the flow at much larger separations: in this regime,
correlated ions exhibit a short-range distribution as a function
of distance from the wall, and are therefore more confined than
in an uncorrelated system, where the distribution is long-range.

In systems where the solvent has a high dielectric permit-
tivity, the Gouy–Chapman length m is usually very small under
strong coupling regime, because of the large surface charge
required for a large X. The separations at which electroosmotic
boost would be possible are rather small and interfere with
molecular scales, so that, in these systems, it might only
be possible to observe flow suppression. In low-permittivity
solvents, often apolar, fewer systems reach surface charges for
which X is large enough, but, in such cases, m is larger. The left
part of the Q(d) diagram (Fig. 3 or Fig. 10b for instance)
becomes then meaningful. In these systems, flow boost could
be observable at distances of the order of tens of nanometres,
while flow suppression will be seen at larger distances. In this
regard, it is fair to point out that recent works29,30,40 highlight a
decrease of the permittivity of water under nanometric con-
finement: this might open up the boosted-flow regime to water
based systems.

Having identified the signature of electrostatic correlations, it
appears that electroosmotic flow may be used to probe the
coupling parameter X in salt-free systems. Although well defined
a priori, this quantity can indeed be elusive from an experimental
point of view, through the measure of the wall surface charge. To
this end, Fig. 9 and 10 may serve as a calibration reference to
assess the importance of ionic correlations in an experimental
system, or even in atomistic simulations.

Finally, perspectives include accounting for refined effects
that may prove relevant under high surface charges, such as
charge-induced thickening of the electrolyte, where the
solution viscosity increases with charge density.12
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