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Quasi-universality in mixed salt-free counterion systems
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Abstract – The screening of plate-plate interactions by counterions is an age-old problem. We
revisit this classic question when counterions exhibit a distribution of charges. While it is expected
that the long-distance regime of interactions is universal, the behaviour of the inter-plate pressure
at smaller distances should a priori depend rather severely on the nature of the ionic mixture
screening the plate charges. We show that this is not the case, and that for comparable Coulombic
couplings, different systems exhibit a quasi-universal equation of state.
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Introduction. – Colloidal suspensions are made up
of macromolecules in a more or less polar solvent. The
presence of charged groups at the surface of the macro-
molecules may lead to repulsive interactions, providing a
mechanism to counteract ubiquitous van der Waals at-
tractions, that would otherwise lead to aggregation, and
an instability of the suspension [1]. It is however possi-
ble to minimize and sometime cancel these van der Waals
forces, e.g., by refractive index matching [2]. Integrating
over microscopic degrees of freedom (solvent, microions),
one obtains the free energy for any given fixed configura-
tion of macromolecules, from which the equilibrium force
felt by each macroion derives [3,4]. The resulting so-called
effective potential is the object of central interest in the
present paper. We focus on the simplest possible setting
where two charged planar macromolecules confine the sol-
vent and charge-compensating counterions in a slab in an
otherwise salt-free environment. More specifically, we are
interested in the effect of counterion polydispersity, in the
sense that they may bear different charges. Understand-
ing such setups has importance for systems such as, e.g.,
mixed Na/Ca-bentonite clay systems [5] or lamellar sur-
factant systems with mixed counterions [6]. A central
result reported is that of a certain universality of the effec-
tive plate-plate potential. To illustrate the statement, we
will consider rather extreme counterion charge distribu-
tion n(q): while counterions naturally bear a multiple of
the elementary charge (q = 1 for monovalent ions, q = 2
for divalent ions, etc.), and, therefore, have a n(q) with

discrete support, we will address cases in which n(q) is
continuous, to maximize the effect of non-monodispersity.

It is known that the effective plate-plate potential (or
equivalently in the present case, the pressure), turns from
all-distance repulsive under small Coulombic couplings, to
a more complex dependence under larger coupling, with
repulsion at small distances, attraction in some interme-
diate range, and repulsion again at large distances. When
all ions have the same elementary charge −e, quantifica-
tion of coupling is operated by a dimensionless parameter
Ξ, which is a measure of inverse temperature β or, equiv-
alently, of the plate surface charge σe. In a solvent of
permittivity ε, we have Ξ ∝ σ�2B, where �B = βe2/ε is the
Bjerrum length. This dimensionless quantity measures the
relative strengths of the ion-ion to ion-surface interactions
and tells us how well the ions can correlate with each other
(and tells us how far from a mean-field description we are).
As a rule of thumb, the mean field holds for Ξ < 1 [7] and
the Wigner crystallization occurs at Ξ > 104 [8]. Whereas
the prototypical problem with a unique type of counte-
rions (referred to as the monodisperse case with q = 1)
is well documented [7,9–11], we present here a combina-
tion of analytical and numerical results for polydisperse
systems. Counterions have charge −qe with a density
distribution n(q). We seek several types of universal fea-
tures: a) within a given family of polydisperse distribu-
tion n(q), a rather down-to-earth type amounts to finding
the proper set of reduced variables, making, if possible,
the reduced pressure independent of the polydispersity;
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b) we are interested in changing the type of polydisper-
sity, considering distinct families of functions n(q). Given
the qualitatively distinct behavior at small and large cou-
plings, it is certainly essential here to keep track of this
coupling in the description.

Yet, it should be clear from the outset that there is an-
other and broader level of universality in the large-distance
(d) behavior of the pressure. Indeed, irrespectively of the
coupling parameter, the two plates interact weakly at large
d. There, one can expect counterions to effectively “dress”
the plates, modifying their effective charge (that it is not
necessary to define in a more rigorous manner), with in
between the plates, a weak density of ions remaining, only
those with smallest valence qmin. Thus, we expect the
physics of interactions to fall at large d in the mean-field
category, which has the remarkable property to be inde-
pendent of the macroion charge [12]. This is a consequence
of the (�Bd2)−1 dependence of pressure, which does not
leave room for any dependence on σ, for dimensional rea-
sons. We expect this result to be valid as long as one
can define a Bjerrum length (q2

min�B) associated to the
population of smallest valence, which means as long as
qmin > 0 (see foonote 1).

As alluded to, we consider a system of two plates at
distance d, both having uniform surface charge σe, and
neutralized by counterions in the slab −d/2 ≤ x ≤ d/2.
Denoting the maximum valence by qmax, electroneutrality
requires that ∫ qmax

qmin

n(q) q dq = 2σ, (1)

where n(q) is the total (surface) density of ions having
valence q.

Monte Carlo simulations. – We have performed
Monte Carlo simulations in a quasi-2D geometry in the
canonical ensemble of a salt-free system. Long-ranged
electrostatic interactions are handled with Ewald summa-
tion techniques corrected for quasi–2-dimensionality by in-
troducing a vacuum slab in the z-direction perpendicular
to the surfaces [13,14]. We verified that our vacuum slab
is sufficiently wide not to influence the results. All simu-
lations consisted of 512 point charges while the surfaces
are modeled as structureless uniformly charged infinite
plates, in agreement with the following analytical treat-
ment, which addresses some limiting cases. Simulations
were performed both for equimolar binary mixtures with
charge ratios 2:1, 3:1, and 10:1 (the first two due to their
relevance for realistic ionic systems, and the last one to
probe the system in an extreme situation2) as well as for
a continuous flat distribution of charges, q ∈ [0, qmax] (and
thus 〈q〉 = qmax/2). Figure 1 shows the pressure curves

1When qmin → 0, we thus get a diverging pressure, which is
indicative of the fact that the pressure, in those cases, ceases to
exhibit a power in distance with exponent −2, but can be longer-
ranged.

2A situation in which the relevance of the mean-field picture
would be somewhat questionable.

Table 1: Comparison between the different moments of the
valence for the studied counterion mixtures.

Counterion mixture 〈1/q〉〈q〉 〈q2〉/〈q〉2 〈q3〉/〈q〉3
Mono 1 1 1
Mix 50/50 2:1 9/8 10/9 4/3
Mix 50/50 3:1 4/3 5/4 7/4
Mix 50/50 10:1 � 3.03 � 1.67 � 3.01
Flat ∞ 4/3 2

P̃ ≡ βP/(2π�Bσ2) as a function of the reduced plate-plate
separation d̃ ≡ d/μ, with μ defined as the inverse ion
averaged Gouy-Chapman length μ = [2π�Bσ〈q〉]−1 and
〈q〉 is the mean charge of the ions. Density profiles ρ̃ ≡
ρ/(2π�Bσ2) are also shown at d̃ � 7.9 for three different
coupling parameters Ξ = 2π〈q〉3�2Bσ. The pressure curves
reasonably collapse onto each other at small plate-plate
separations. This feature is however not an exact property,
and for this reason, it is referred to as “quasi-universal”3.
For the larger coupling parameters (Ξ = 17.5 and 158)
one sees the well-documented although counterintuitive
like-charge attraction, driven by ion-ion correlations. Im-
pressively enough, even the attractive minima do coincide
fairly well, both in magnitude and width, for the same cou-
pling parameter, irrespectively of the mixture type. We
want to stress that there exist other ways to define cou-
pling parameters (e.g., Ξ ∼ 〈q3〉 rather than Ξ ∼ 〈q〉3) in
mixed systems, but only by using 〈q〉3 do we find a good
enough collapse. A table of moments corresponding to the
various cases investigated in the present work, and also
useful for the analytical treatment, is given in table 1. At
Ξ = 17.5, one does however observe small discrepancies,
even at small separations, between the different mixtures
of ions. These small discrepancies are more pronounced
at intermediate and long separations, where the (modest)
repulsive barrier seems to be stronger (more repulsive) as
the charge ratio of the binary mixture increases; the “flat”
charge distribution case appears intermediate between the
binary systems with charge ratios 3:1 and 10:1. The vio-
lations to quasi-universality appear maximal on the 10:1
case, but even there, the location of the attractive mini-
mum is well predicted by the proposed rescaling. Also, the
other coupling parameters (1.58 and 158) exhibit minor
discrepancies from intermediate to larger separations, but
the variation induced by ionic composition is small com-
pared to the absolute values (note the different pressure
scales in the figures). Note further that density profiles
themselves do exhibit a similar “quasi-universal” property.
With the present model, it is known that the inter-plate
pressure is directly related to ionic density at contact with
the plates (this is the contact theorem, used below). Thus,

3A simple means to see that full universality cannot hold is to
restrict to those polydisperse situations having qmin > 0, for which
the asymptotic large-distance pressure can be advocated to scale like
(qmind)−2.
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Fig. 1: (Colour online) (a), (c), (e): normalized pressure vs. normalized separation for three different coupling parameters
Ξ = 1.58, 17.5 and 158. Symbols: Monte Carlo results; lines: analytic expressions. (b), (d), (f): density profiles between the
two charged surfaces (data obtained from Monte Carlo simulations) at d̃ � 7.9 at the three coupling parameters.

two systems showing similar pressures should also have
similar contact densities. Yet, nothing guarantees that the
whole profiles will collapse. In particular, one can scruti-
nize mid-plate features, that allow for another (equivalent)
calculation of the pressure, that can be decomposed into
three terms in the primitive model: P̃conc, P̃corr, and P̃hc.
The first stems from the mid-plane concentration (momen-
tum flux over the mid-plane), the second is an energetic

correlation pressure (and absent in mean-field treatments)
and the third is a collisional hard-core term (here strictly
zero as we do not use any hard-core radii). The fact that
mid-plane concentrations and the pressures are the same
irrespectively of the mixture as soon as the reduced vari-
ables are the same (d̃ and Ξ) shows us that the value of
the correlation term is the same irrespectively of the mix-
ture. Overall, the results show a decent agreement, and
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the proposed reduced parameter set (i.e., Ξ, P̃ , and d̃)
captures well the dominant quasi-universal behavior.

Analytic treatment. – We start by weakly coupled
systems, where the Poisson-Boltzmann mean-field treat-
ment should hold [4,7]. Introducing the dimensionless elec-
trostatic potential φ, one has to solve

d2φ

dx2
= 4π�B

∫ qmax

qmin

f(q)qeqφ(x) dq (2)

which appears in the form of an implicit formulation.
Indeed, the volume density of species q can be writ-
ten f(q) exp(qφ), and the normalization function f(q) is
a priori unknown. It relates to the chosen n(q) through

n(q) =
∫ d/2

−d/2

f(q) eqφ(x) dx. (3)

Therefore, starting from n(q), f(q) is not known before
eq. (2) has been solved, this equation itself requiring the
knowledge of f(q). Since the large-d asymptotics is con-
strained by the argument presented above, we focus on
short-d features. It is for that purpose useful to choose
φ(0) = 0, where the symmetry and Gauss theorem further
impose φ′(0) = 0 and φ′(d/2) = 4π�B σ. Taylor-expanding
φ, which is even, we have

φ(x) ∼ a1x
2 + a2x

4 + . . . (4)

with a1 = 2π�B

∫
q f(q) dq (5)

a2 =
2
3

(π�B)2
[∫

q f(q)dq

] [∫
q2 f(q) dq

]
, (6)

where the last two lines are obtained by inserting the ex-
pansion into eq. (2). Restricting to the quadratic term
gives the dominant contribution to the pressure, that reads

βP =
∫

f(q) dq, (7)

meaning that within the present mean-field description,
it is given by the mid-plane ionic density, a classic result
stemming from the fact that the electric field vanishes at
this point. Making use of eq. (3) allows us to write

βP =
1
d

∫
n(q)dq − π�B

6

[∫
qn(q)dq

]2

. (8)

Remembering electroneutrality, and defining a (Gouy-
Chapman) length as above μ = [2π�Bσ〈q〉]−1, where 〈q〉
is the mean valence of the distribution4, we introduce the
reduced separation d̃ = d/μ and obtain

P̃ ≡ βP

2π�Bσ2
=

2

d̃
− 1

3
, (9)

which appears in a polydispersity independent form. Note
that the term in 2/d̃ is nothing but the ideal-gas entropy,

4Note that 〈q〉 =
R

q n(q)dq/
R

n(q)dq = 2σ/
R

n(q)dq.

necessarily dominant at very small separations where the
entropy of confinement overwhelms other contributions to
the equation of state. This suggests to use μ defined from
〈q〉 as the relevant length and consider P̃ , as was done for
our numerical results. Comparing the expression with the
Monte Carlo results, see fig. 1(a), we see that this approxi-
mation seems to be valid up to d̃ � 3. It is also instructive
to push the expansion one order higher in distance. After
some algebra, this yields

P̃ =
2

d̃
− 1

3
+

2
45

〈q2〉
〈q3〉 d̃, (10)

where it is seen that the linear contribution in d̃ is n(q)-
dependent, and in this sense non-universal. Thus, even
within the mean field, we should not expect full univer-
sality. However, we have shown above by simulations that
for practical purposes, the equation of state P̃ (d̃) is re-
markably insensitive to the details of the polydispersity
function n(q).

Before presenting our conclusion, we show that the same
rescaling as in (9) leads to a universal small-distance be-
havior under strong coupling (i.e., beyond mean field).
There, the discrete nature of counterions is essential and
every such ion appears far from its neighbors, in the sense
that the corresponding distance is larger than the slab
width d [15]. As a consequence, the problem is reducible
to a single-particle picture, where all species adopt a flat
(x-independent) profile with density n(q)/d, given that
the plates create a vanishing electric field in the slab
−d/2 ≤ x ≤ d/2. The contact theorem [16–18] then im-
mediately leads to the pressure, in the form

βP = −2π�Bσ2 +
1
d

∫
n(q) dq, (11)

so that we have
P̃ =

2

d̃
− 1. (12)

The proximity with eq. (9), with the same dominant order,
simply stems from the ideal-gas dominant entropy cost of
confinement5. This result shows that also from the view-
point of the strong coupling the proposed reduced units d̃
and P̃ are indeed reasonable choices, hence suggesting that
also intermediate coupling parameters should be rescaled
equivalently. However, unlike eq. (12), eq. (9) is unable
to predict like-charge attraction (i.e., P < 0). Indeed,
such a phenomenon would occur for d̃ > 6 from (9), a
distance range where our expansion no longer holds. The
bottom line is that the mean-field pressure is always repul-
sive [19–21]. On the other hand, eq. (12) indicates attrac-
tion for d̃ > 2, which is validated by numerical simulations.
Thus, all the above results, numerics and analytics, indi-
cate that the dimensionless quantities d̃ and P̃ are useful

5Under strong coupling, computing the next-order contribution
in distance is a difficult task, which requires knowledge of (at least)
the local structure of the counterion system [11].
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rescalings also for mixed counterion systems. It would be
interesting to perform the strong-coupling expansion one
order higher, but such a task is beyond the scope of the
present paper.

Conclusion. – We have shown that the short-distance
effective interactions between two equally charged surfaces
exhibit a robust quasi-universal equation of state, irrespec-
tively of the type of mixture of counterions. This requires
to introduce suitably defined reduced variables, where the
inter-plate distance is measured in units of length, the
inverse of which can be viewed as the mean inverse Gouy-
Chapman length (1/μ = 2π�B σ〈q〉), where the average is
taken over the counterion distribution n(q). In addition, it
is of course essential to keep track of Coulombic coupling.
While there is no clear-cut definition of a coupling param-
eter in the present polydisperse situation, we have shown
that the parameter Ξ = 2π〈q〉3�2Bσ allows for suitable
rescaling. We furthermore see that the collapse extends
at separations beyond the validity of our analytic expan-
sion results. Deviations, from the mono-disperse case, at
short separations are, however, seen to grow as the charge
moments are increased (i.e., the polydispersity) and if one
is “close” enough to the onset of attraction, roughly at
Ξ � 5. However, for realistic mixtures (i.e., charge ratios
of 2:1 and 3:1) the collapse works remarkably well. Our
approach holds for a salt-free system (counterions only)
without any possibility of ion exchange. In an open system
(e.g., in contact with a salt reservoir), the mixture compo-
sition would vary as a function of the plate separation. At
short separations, co-ions would be expelled from the slab,
to be released in the reservoir, and one would be left with
a salt-free system favoring the high-valence counterions.
A complication for such a system is that the distribution
might change as a function of separation and hence 〈q〉.
This would result in a change in both μ and Ξ, whereby
continuously or discontinuously (e.g., in the case of a phase
separation [22]) having a crossover between the different
pressure curves. To produce such a curve one would hence
need to know how such a distribution varies as a function
of separation. In that limiting distance regime, our ap-
proach would be applicable accounting for the changed
composition of the counterions.

Finally, we note that our results can be viewed as
an (approximate) law of corresponding states, where the
mean counterion valence 〈q〉 plays a privileged role over
a range of relevant coupling parameters. On the other
hand, in the Deby-Hückel treatment of electrolytic systems
(where thus microscopic ions of both signs are present),
the key quantity is the Debye length, which involves a
different moment, 〈q2〉. As a first approximation, one

could include the salt in our treatment, in a dressed mul-
tivalent ion formulation [23]6. This is left as an open
question.
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