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S1 Ion and water dynamics

In this section, we expand on the dynamics data shown in Figs. 3b and 4d. The plots in the main paper showed data
for a single q = qz value, picked to show the trends in dynamics with � and D, and here we include the data for all q

values for the di↵erent � and D considered (with evenly spaced values of q ranging from q = 2⇡/D to q = 10 Å
�1

).
We also take this opportunity to explain in more detail the comparisons with experimental measurements.

At large separations, most of the water is not associated with ions. For water that is bound in hydration shells
at time t = 0 (plotted in Fig. S1a), we observe a complete decay in correlations over the simulation–albeit at a
slightly slower rate than with the free water (Fig. S1b). While energetically favorable, Calcium hydration shells
are highly dynamic with residence times tres ' 7 · 105 fs [38], and we observe significant decay in Fs(qz, t), even for
bound water, indicating that the water can move back and forth between free and bound states and does not stay
closely attached to the ions, which are instead clearly localized. In confinement, the ions become highly localized
in the z direction, as demonstrated by plateaus in Fs(qz, t) (Fig. S1c). Due to the formation of hydration shells
and geometric/packing constraints in confinement, this localization extends to the water, as seen by the relatively
slow decays in Fig. S1d (quite slower when compared to the dynamics shown in Fig. S1b). Water-ion bond lifetimes
measured from bond correlations are found on the order of O(105fs), indicating that correlations in water dynamics
should still decrease faster then for ions, as we indeed observe. In addition, we find that for specific q values (4⇡/D,
8⇡/D) the correlations exhibit a larger decrease, suggesting that these length scales correspond to specific distances
at which elementary rearrangements of the water molecules can occur in confinement.

Upon increasing surface charge to � = 3e�/nm2, which would correspond to the end of hydration, we discover a
drastic change in the dynamics. Fs(qz, t) for the ions (plotted in Fig. S2a) exhibits even stronger localization with very

high plateaus in the correlation. As this e↵ect persists at q = 10 Å
�1

, this localization holds for length scales smaller
than an angstrom, and we infer that this signal corresponds to the localization of the ions near the surfaces, consistent
with the density profiles averaged over time shown in Fig. 2. The plot shown is for a separation of D = 10 Å, but
Fs(qz, t) for the ions is very similar up to D = 40 Å—the highest separation simulated.

Starting at low separation (Fig. S2b), we see that the water behavior closely follows the ion dynamics. The
correlations drops o↵to a lower valued plateau, meaning the localization is not quite as strong as for the ions, but it
is clearly there for the water as well. The oscillations in Fig. S2b also mirror those exhibited by the ions, showing how
strongly the water dynamics are coupled to those of the ions. These strong and long-lasting dynamical correlations
are evidence of the formation of strongly correlated ion-water assemblies. While similar structures are observed at
lower surface charges, the residence time of water molecules in the hydration shells is much lower, and thus the water
correlations are not as long-lived. Instead, at high �, the ion-water assemblies persist through the simulation time
and the bound water remains highly localized even for t > 105 fs.

The same picture persists even at larger separations (Fig. S2c). However, while at lower separations most of the
water is bound to ions, at D = 40 Å we observe drastically di↵erent behavior for bound and free water. The bound
water, i.e. the water in the ion hydration shells, behaves exactly the same at D = 40 Å as at D = 10 Å. This water
is strongly coupled to the ions and they move (or rather do not move) in unison. Instead, the dynamics of free water
(Fig. S2d) is substantially uncorrelated from the ions. This “free” water is, of course, still confined by the C-S-H walls
and exhibits relaxation times comparable to those measured via experiments on water in cement pores [63]. However,
the fact that there is no localization in the free water, indicates that the dynamical behavior of the bound water is
largely determined by electrostatic interactions with ions and thermodynamics of n-mers rather than the confinement
e↵ects.

This clear separation of dynamics has been documented extensively in experiments on hydrating cement. Quasi-
elastic neutron scattering (QENS) and nuclear magnetic resonance (NMR) experiments demonstrate that, as hydration



FIG. S1. Self intermediate scattering function at � = 1e�/nm2 in the z direction (normal to surface plane), for ions or water.

Color indicates q from q = 2⇡/D for black to q = 10 Å
�1

for red. Results for bound (a) and free (b) water at D = 40 Å,
classified by whether they are bound to an ion at t = 0, exhibit significant decays in correlation over simulation times: though
slightly slower for bound water than free water. The water dynamics diverge from that of the ions due to the finite ion-water
bond lifetime. However, upon increasing confinement, the situation changes. Ions (c) at D = 10 Å exhibit plateaus due to the
formation of layers and limited mobility. This partially extends to the water (d) which exhibits much slower decays compared
to the water at D = 40 Å (ion correlations are relatively una↵ected by changes in D). Additionally, we find that for specific
q values (4⇡/D, 8⇡/D) the correlations exhibit a larger decrease, suggesting that these length scales correspond to specific
distances at which elementary rearrangements of the water molecules can occur in confinement. Note that such q-dependent
features are erased at larger separations where water mobility is less limited.

progresses and C-S-H stoichiometry evolves while it progressively aggregates into a porous structure, an increasing
fraction of water becomes significantly slower and is considered as physically bound [25–27]. Hence in hydrating
cement there exist three populations of water: chemically bound, constrained (i.e. physically bound), and unbound.
While our model does not resolve the chemically bound water, the characterization we provide of the “bound” and
“free” water is, in fact, in good agreement with the QENS and NMR experimental characterization of constrained
and unbound water. The intermediate scattering functions we compute are, in fact, directly related to the time
correlations of the scattering intensity measured in QENS experiments (with the caveat that here we are computing
the signal from the incoherent scattering, but the same signature would be seen in the coherent one).

Not only do our data confirm the experimental observations on the physically bound water, but they also provide
the insight that such water is the one corresponding to the hydrated (or partially hydrated) ions, which constitute
our ion-water interlocked structures. Our simulations show that this e↵ect is dependent on the surface charge density
�, and at low � the water bound to ions is dynamically similar to the free water (Fig. S1). Additionally, at fixed
�, an increase in confinement also raises the fraction of bound water (Fig. 4e). Both e↵ects are consistent with the



FIG. S2. Self intermediate scattering function at � = 3e�/nm2 in the z direction (normal to surface plane), for ions or water.

Color indicates q from q = 2⇡/D for black to q = 10 Å
�1

for red. (a) Ions in confinement exhibit strong localization near
the surfaces. Notably, this does not change when considering larger separations. (b) Same quantity for water. Its dynamics
are highly coupled to ion dynamics in confinement. At larger separations, water is split into two populations. The bound
water (c), which is close to ions at t = 0, follows the ion dynamics, while free water (d) is much more mobile. The dynamical
signature of the ions appearing in this bound water demonstrates the stability of ion-water structure and its persistence at
larger separations.

experimentally observed increase in physically bound water as a function of hydration time in cement. Changes in
the bound water fraction due to C-S-H stoichiometry, including the Ca/Si ratio, can be understood through the e↵ect
those changes have on surface charge densities and interlayer distances (i.e. confinement), which in our picture indeed
control the ion-water structures. The combined experimental/modeling work of Geng et al [21], for example, shows
that the Ca/Si ratio controls the interlayer spacing of C-S-H. As a side note, they also report that decreasing interlayer
spacing and an increase in calcium ions is responsible for a rise in the bulk modulus of C-S-H, which is consistent
with our results on the cohesion strength.

S2 Strong coupling theory for high surface charge density

At strong confinement, water destructuring heavily alters its electrostatic screening properties. This is due to the
presence of solvation shells around Ca2+ ions: as shown in Fig. 2 for � = 3e�/nm2, indeed, ions tend to stick to
the walls. We observed that up to a certain distance D between the walls, practically all available water molecules



are used by the system to hydrate Ca2+ ions and none is free to move. Figure 4e shows that more than 70% of
water molecules are bound to an ion for separations shorter than 10 Å. The hydration of ions results in a huge energy
decrease. Albeit associated with a conspicuous entropy reduction, due to positional and orientational localization of
water molecules, they are generally favorable in terms of free energy, as we will show in SM section S2.1. This is why,
at strong confinement no water molecule is free to move between the two double layers and therefore electrostatic
interactions between hydrated ions are not screened. Hydrated, or “dressed” ions (n-mers) behave as e↵ective charged
objects, interacting in vacuum: this is referred to in the main paper and in the following as the “locked water” picture.

As a consequence, the relevant Bjerrum length is not lB = �e2

4⇡"0"r
(with �

�1 = kBT ), as in bulk water: it is rather

close to lB0 = �e2

4⇡"0
, the Bjerrum length in vacuum, that is a factor "r ' 78 times larger. The e↵ect of this is twofold:

1) the minimum pressure predicted by the contact theorem [64] increases (in absolute value) by a factor 78 from
2⇡lB�2 to around 2⇡lB0�

2, due to unscreened Coulombic interaction; 2) the coupling parameter⌅, defined in the
Methods, increases from 2⇡q3l2B� ' 75 to around 2⇡q3l2B0� ' 480 000 for � = 3e�/nm2, thus amply justifying the use
of strong coupling theory in the following. These two factors determine a pressure two orders of magnitude higher,
in absolute value, than what predicted by primitive models treating water as a dielectric continuum (see SM section
S2.2). Our simplification with a drastic decrease of the dielectric permittivity of water, due to confinement, is backed
up by a numerical estimate of "r based on simulations and the related observations presented in SM section S3.2.

Staggered Wigner crystals have been observed in the literature [65, 66] for coupling higher than 31 000. Our
large value of the coupling parameter explains then the perfect staggered square crystal observed in Figure 4 for
high � at distance D = 8 Å, referred to in the literature [46, 67] as phase III. Due to Lennard-Jones repulsion, the
e↵ective distance between the two ionic layers is indeed De↵ ' 3.5 Å: this corresponds to a dimensionless distance

⌘ = De↵

q
�
q ' 0.43, at which phase III is expected [46, 67]. In addition, only such a strong coupling can explain

the ionic density in Figure 5a, which is strongly peaked close to the walls and vanishes in the whole central region
(strong coupling theory does not forbid a uniform ion density, but such a profile appears only at distances De↵ ten
times smaller).

S2.1 Ion hydration

Energy

We focus here on the mechanism by which water molecules tend to bind to ions and study the energy gain associated
to the formation of an n-mer. In simulations, cations tend to lie on parallel planes, at a distance from the closer
wall given by the balance between Lennard-Jones interaction and electrostatic attraction. In doing so, they place
themselves as close as possible to the walls, so that they expose only a half of their surface for binding with water.
This allows us to consider the hydration shell around each ion a hemisphere, around which no more than 6 water
molecules can fit. A good estimate of the energy scale at stake is the single dipole-ion interaction energy; in purely
electrostatic terms, it can be estimated, in units of kBT , to �

q�lB0

�2
LJ,eff

' �70, where e� = 0.375 eÅ is the dipole moment

of water, lB0 is the already mentioned Bjerrum length in vacuum and �LJ,e↵ ' 2.5 Å is the e↵ective distance between
the centers of an ion and a water molecule bound to it. The typical dipole-ion interaction energy is much larger,

in absolute value, than the typical dipole-dipole interaction energy, which amounts to �
�2lB

�3
LJ,eff

' �5. Adding the

Lennard-Jones repulsion, the energy gain per water molecule amounts to 64 kBT , so that the formation energy un of
an n-mer can be eventually estimated to �64nkBT (turquoise line in Figure 4c).

In order to improve this energy estimate, we take into account also dipole-dipole electrostatic and steric interactions.
To do so, we consider an ion and n water molecules, fix the ion position at the origin and look for the minimum-
energy configuration. We forbid water molecules to assume negative z coordinates in space, i.e. to go beyond the wall.
Minimizing through simulated annealing confirms that water prefers to stay close to the ion, with dipoles oriented
radially and directed outwards. The so formed n-mers, for n = 4, 5 or 6 are depicted in Figure 4c, together with the
single-n-mer energies (dark cyan squares). In the following, we refer to water molecules whose dipole moments are
parallel to the plane as “coplanar” molecules, and to the water molecule lying on top of the ion, with dipole moment
perpendicular to the wall, as the “top” molecule.

Assuming these minimum-energy structures to be the lattice units of an infinite 2D crystal of n-mers, one can
eventually compute the energy per n-mer associated to the formation of such crystal, starting from a crystal of ions
only. The procedure is non trivial, mainly because of the long range of Coulombic forces: interactions among dipoles
and ions were summed discretely up to a su�ciently large distance, from which a continuous approximation was used.



lazim,n
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FIG. S3. Top view of two 5-mers (the charged wall lies below the page). On the left, we show the typical fluctuation lengths
lrad in the radial direction (closer or further from the ion) and lazim,n in the azimuthal direction (around the ion). On the right,
we show the typical solid angle ! spanned by a dipole due to thermal fluctuations. The length of the two arrows and the size
of the cone are not to scale.

The resulting energies un (green circles in Figure 4c) allow to derive the energy gain in adsorbing a water molecule
onto an n-mer to form an (n+1)-mer. Notice that un/n, i.e. the formation energy of an n-mer per unit dipole, is, in
absolute value, more than one order of magnitude higher than thermal energy.

Free energy and n-mer distribution

To confirm the locked-water picture proposed in the previous section, we need to compute the free energy gain
�Fn!n+1 in adsorbing a water molecule from the bulk on an n-mer, to form an (n+1)-mer. We will then check that
at strong confinement it is always more favorable for a water molecule to be adsorbed on an ion than to stay in the
bulk. The mentioned free energy gain can be calculated as

�Fn!n+1 = Un+1 � Un � T (Sn+1 � Sn)� µ, (S10)

where Un is the average potential energy of water molecules in an n-mer, Sn is their entropy, and µ is the chemical
potential of water, i.e. the increase in free energy when a water molecule is moved from the reservoir to the system.
What we call here free energy, by an abuse of terminology, is properly speaking the grand-potential, i.e. the thermo-
dynamic potential associated with the grand-canonical ensemble, by which we describe water. Since the situation is
grand canonical for water, and canonical for ions (fixed by electro-neutrality), one sometimes uses the terminology of
semi-grand-canonical ensemble.

The average energy of an n-mer is Un = un + 5
2 nkBT : un is for the minimum-energy configuration (green circles

in Figure 4c, at our best estimate), plus a contribution per water molecule of 1
2kBT for each degree of freedom (3 in

real space and 2 in the dipole moment space), assuming that the Hamiltonian can be expanded quadratically around
its minimum.

The entropic term Sn can be estimated by considering that a water molecule on an n-mer is confined within a volume
vn = lrad l

2
azim,n and that its dipole moment is also confined within a solid angle ! (see Fig. S3). lrad is the small radial

distance a water molecule can travel further or closer to the ion with a variation in potential energy of the order of kBT ;
it can be estimated within a single water molecule approximation as lrad '

p
⇡ [� 1

2U
00
LJ,cd(�LJ,e↵)+3qlB��

�4
LJ,e↵ ]

�1/2
'

0.17 Å, where ULJ,cd is the charge-dipole (ion-water) Lennard-Jones interaction. In turn, lazim,n is the distance
measuring fluctuations of a water molecule along the azimuthal direction around the ion. It can be estimated by
fixing positions and dipole moments of all water molecules within the n-mer as in the minimum-energy configuration,
except for one probe molecule, which is let free to move on the sphere at constant distance �LJ,e↵ from the central
ion. If our probe is a coplanar molecule we have lazim,4 = 3.1 Å, lazim,5 = 1.0 Å and lazim,6 = 0.30 Å (of course,
azimuthal confinement grows with n). Lastly, fluctuations in the orientation of the dipole can be estimated by
considering that a deviation of the dipole moment of an angle �✓ from the equilibrium position produces an increase
qlB�

�2
LJ,eff

(1� cos(�✓)) in the dimensionless charge-dipole energy, so the solid angle ! corresponding to an energy increase
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FIG. S4. Minimal energy configuration of an n-mer and the e↵ective field felt by n-mers. (a) Side view of the minimum-energy
configuration of 5-mer, interacting with the wall through Lennard-Jones and electrostatic potentials. zc is the distance of the
ion from the wall and zd is the distance of a coplanar water molecule from the wall. (b) E↵ective field  as a function of the
dimensionless distance between ion layers De↵

p
�/q, according to Eq. (S14). This corresponds to the field felt by an ion at

contact with the wall, due to the presence of all the surrounding ions. It tends to zero at vanishing distance, when a uniform
ion distribution is expected; it tends to unity (i.e. to the single bare wall field) at infinite distance, when correlation with the
opposite ion layer is lost.

kBT is ! =
2⇡�2

LJ,eff

qlB� ' 0.087.

Eventually, estimating entropy Sn as kB ln
⇥�

vn
⇤3

�n
!
⇤
, where µ,

Eq. (S10) can be finally rewritten as

�Fn!n+1 = un+1 � un +
5

2
kBT � kBT ln

 
v
n+1
n+1

⇤3vnn

!

!
� µ , (S11)

which is independent from , as it should. While ��F3!4 and ��F4!5 are several tens below zero (< �30 in our
estimates), ��F5!6 nearly vanishes (�1.1 in our estimate). This suggests that available water molecules must be
adsorbed on ions until every ion has 5 water molecules; beyond that point, it becomes in practice equally favourable
for water molecules to be adsorbed on a 5-mer and form a 6-mer or to remain in the bulk. This is indeed shown by
an analysis of the composition of n-mers as a function of distance D (Figure 4b).

Thermal fluctuations of bound water

An suggested by the relatively high energies involved in the process, the n-mer formation significantly impacts the
orientational mobility of water, that is strongly localized close to the ion. At finite temperature, however, water is
not completely locked in its ground state configuration and acquires some freedom to move around its equilibrium
position. Starting from minimum-energy configurations for n-mers that include interactions with the wall, we analyze
the importance of these fluctuations, by computing the probability distribution of the orientation angle of dipoles
within the same n-mer. We are thus scrutinizing a fine property, reflecting the e↵ect of temperature on mutual
interactions among ions, water molecules and wall altogether.

We fix n � 1 water molecules to their minimum-energy positions and orientations, and let the remaining one free
to move and rotate. Marginalizing numerically with respect to the three spatial degrees of freedom and one of the
rotational degrees of freedom, one obtains a probability distribution p(✓) for the angle ✓ formed by the dipole moment
with respect to the normal of the plane (see Fig. S4a). This can be done using as probe any of the n � 1 coplanar
molecules or the top molecule, for di↵erent n.

In Fig. S5 we compare the result of this analysis with simulations using only the dipole interactions for water (as
discussed in Methods) for D = 40 Å. Indeed, the minimum-energy n-mer configuration is computed at  = 1 (i.e.
De↵ �

p
q/�, see Fig. S4b), but results seem to be robust with decreasing D. The theoretical distribution shown is

a weighted sum of the distributions computed for coplanar and top dipoles, at n = 5 and 6, using the fact that the

 ⇤ is the De Broglie thermal wavelength used in

 ⇤



FIG. S5. The probability distribution of the angle between the dipole moment of water in an n-mer and the surface normal at
D = 40 Å. The angle ✓ is with respect to the nearest surface: ✓ = 0� pointing at the surface on which the n-mer resides and
✓ = 180� pointing directly away (see Fig. S4a). Contrary to bulk liquid water, the dipole moment is not free and is limited to
specific orientations. Due to non-zero temperature, the dipoles fluctuate around these minimum energy positions. The peak at
✓ ' 80� represents coplanar water molecules, and the one at ✓ = 180� top water molecules (see Fig. S4a). At this distance, the
former are ⇠ 4.5 times as many as the former, which would be evidenced by a plot of p(✓) sin ✓.

fraction of 5-mer and 6-mers is known (Figure 4b). Since this calculation does not allow for cooperative fluctuations
away from the ground state, it predicts a distribution that is more sharply peaked, but the result still matches the
simulation closely.

Limited resources argument

Supposing all water molecules to bind to Ca2+ ions at small D, one can define precise distances Dn at which all ions
are bound to exactly n water molecules. At such distances, the following limited-resources equation holds, expressing
the fact that the number of water molecules in the pore per unit surface (l.h.s) should equal n times the number of
ions per unit surface on both sides (r.h.s.):

⇢w Dn = 2n
�

q
. (S12)

Here, ⇢w is the total number of water molecules divided by the total simulation volume (D times the surface), so
that ⇢w D is the surface density of water. ⇢w is a measurable function of D, but it can also be estimated supposing
that in the volume e↵ectively available to water (the region at least a Lennard-Jones unit far from walls and ions)
the water density is constant (this is true within a 17% error for the considered D range). Anyway, using Eq. (S12)
and measured values of ⇢w, one obtains D3 = 5.9 Å, D4 = 6.8 Å and D5 = 7.6 Å. These values are in quantitative
agreement with peaks in the observed number of 3-mers, 4-mers and 5-mers as a function of distance (Figure S6).

An interesting observable to look at is the fraction of water molecules bound to ions f(D), shown in Figure 4e. In
light of our present discussion, we can provide an analytical description of such curve:

f(D) =

8
<

:

1 if D  D5

10

10 + q
�⇢b(D �D5)

if D > D5
, (S13)

where ⇢b is the density of bulk water. The factor 10 emerges from the fact that, in a surface q/� hosting one
ion per wall, no more than 10 water molecules (5 on each ion) can be bound. This approximation discards the
di↵erences between 5-mers and 6-mers, a valid approximation for our purposes. Also neglected is the presence of
a few water molecules, bound to the walls. Nonetheless, this limited resources argument seems to capture all the
physical ingredients relevant to explain the numerical curve.



FIG. S6. Equivalent of Figure 4b for simulations with only dipolar water interactions, showing for distances D, percentage of
3-, 4-, 5- and 6-mers observed. Arrows show analytical predictions for Dn, given by Eq. (S13): these correspond to the peaks
of the curves shown.

S2.2 Equation of state

Ion densities

In order to compute the density profile and eventually the equation of state, we refined the n-mer minimum-energy
configurations discussed in S2.1 by introducing Lennard-Jones and electrostatic interactions with the wall, for the
ion and the n water molecules. A numerical minimization of the same kind as the one in SM section S2.1 allows
to identify the distances from the wall zc and zd at which, respectively, ion (charge) and coplanar water molecules
(d ipole) prefer to stay. These are better defined by Fig. S4a. The shape of n-mers is qualitatively unchanged, were
it not for the fact that 1) ions, charged and slightly smaller, penetrate closer to the wall than water molecules and 2)
the dipole moments of coplanar molecules are now slightly tilted toward the wall (✓ < 90� in the Figure). For n = 5,
zc = 2.25 Å and zd = 2.72 Å and these quantities vary of only a few percent with n. The importance of zc lies in that
it defines the e↵ective distance De↵ = D � 2zc between the two planes where ions are positioned.

In order to retrieve ion densities, we treat n-mers in their just described minimum-energy configuration as e↵ective
charged objects and we use a modified version of the correlation-hole theory described in [14], where we introduce a
soft potential ULJ,w between charges and wall. This potential is the sum of the ion-wall Lennard-Jones potential and
of n� 1 water-wall Lennard-Jones potentials.

The theory [14] is based on the fact that the e↵ective electric field /(�qeµ0) felt by ions lying on one wall is due to
the presence of a staggered equal arrangement of ions on the opposite wall (from this perspective, the fields exerted by
the two bare walls cancel out exactly). Here, µ0 = (2⇡qlB0�)�1 is the Gouy-Chapman length in vacuum, while , the
dimensionless e↵ective field, is a monotonic function of the distance between the two planes where ions lie. It is useful
to recall that  must be 1 at infinite distance, when ions lying, say, on the left wall feel the presence of the left wall
only: since the right wall and its counterions are indeed infinitely far, inter-layer correlation disappears and the right
and left half-systems are electroneutral and do not interact. Also,  must go to 0 at distances De↵ ⌧

p
q/� ' 8 Å,

when ions tend to the uniform distribution along z and are strongly correlated along xy to form a single Wigner crystal
[67, 68]. For intermediate distances, the function (De↵) we use is based on a correlation-hole approach (so-called ch2
in [14]), that has been shown to yield very good results for the liquid (⌅ . 31 000) and the crystal phase (⌅ & 31 000)
in the case of point-like ions interacting with hard walls. Within this approximation, the dimensionless e↵ective field,
plotted in Figure S4b, is given by

(De↵) =
De↵

q
�
q

r
�
qD

2
e↵ + 1

2⇡
⇣
Deff

p
�
q +1

⌘
. (S14)



Now, if we account for Lennard-Jones interactions with the wall, the density ⇢ of e↵ective charges as a function of
distance z between wall and central ion (which is nothing but the ionic density), is given by

⇢(z)

2⇡lB�2
= N (D)(e�(Deff )

z
µ0

��ULJ,w(z,D)) + e
�(Deff )

D�z
µ0

��ULJ,w(D�z,D)), (S15)

where N (D) is a normalization constant, ensuring electroneutrality.

Results of Eq. (S15) are compared with simulations in Figure 5a for D = 8 Å and in Figure 5b for D = 12 Å. Notice
that this approximation considers n-mers to be rigid objects and neglects the fact that a  6= 1 can (slightly) modify
the n-mer’s configuration, namely zc and zd. For simplicity, top water molecules (the top dipole in an n-mer) are
not considered in ULJ,w. Most importantly, this approximation is not valid at large distances (see SM section S3.2),
where free water fills the pore and screens electrostatic interactions – in other words, the Bjerrum and Gouy-Chapman
lengths are not constant with D.

Pressure

Once densities are known, one can compute the pressure using the contact theorem, an exact result relating pressure
with the ion density at contact with a hard charged wall [64, 69]. We extend this equality in the following way, to
account for soft interaction with the wall:

P (D) = �
e
2
�
2

2"0
+

Z D
2

0
FLJ,w(z)⇢(z) dz . (S16)

Here, FLJ,w(z) is the force exerted on both walls by an n-mer in z and corresponds to the derivative of ULJ,w(z). The
sign convention is that positive contributions represent repulsion and negative ones attraction.

The first term in Eq. (S16) represents the minimum pressure attainable due to electrostatic interactions, while the
second one, always positive, is due to ions pushing against the walls. The predicted pressure is represented in Fig. 5c
and has a minimum at Dmin close to 6 Å, corresponding to P = �6.5GPa. For smaller distances, the Lennard-Jones
repulsion with the wall starts to play a crucial role: pressure increases and eventually becomes positive. This increase
must not be mistaken by the pressure increase observed in the hard-wall point-like-ion situation [14], in which case
pressure would continue to drop down to a value twice as negative and then increase much more abruptly upon
decreasing further the distance. For distances D > Dmin, the curve is given by:

�P (D)

2⇡lB�2
= �1 + (De↵)

0

@1 + e
(Deff )

Deff
µ0

1� e
(Deff )

Deff
µ0

1

A . (S17)

This model does not account for solvent layering, which is probably responsible for the non-monotonicity of the
curves extracted from numerical simulations. These are plotted in Fig. S7, together with the theoretical prediction
from Eq. (S16) and with atomistic simulations of Tobermorite [29]. Atomistic studies that use a more specific C-S-H
model have, typically, a higher surface charge density, which should correspond to a higher strength, but this e↵ect
could be limited by the presence of surface heterogeneities and other ion types [16]. The good agreement with the
atomistic simulations of Ref. [29] is noteworthy, especially remembering that the pressure curve reported there was
rationalized by a 7-parameter fit. This is at variance with our theoretical approach, that does not involve any fitting
parameter. In Figure 5c of the main text, the theoretical curve is also compared to primitive model simulations run in
vacuum. The latter data obey a fortiori Eq. (S17), with De↵ = D� 2zc and zc ' 2.2 Å, as given by a simple balance
between electrostatic attraction to the wall and Lennard-Jones repulsion from it.

Using the saddle point method to estimate N (D) and the integral in Eq. (S16), it is possible to write the pressure
as

�P (D) = �2⇡lB0�
2 +

�

q
�FLJ,w(z0) , (S18)

where z0 is the extremum point of the function appearing to exponential in the Boltmzann factor, that is 
z
µ0

+

�ULJ,w(z). Since  and FLJ,w depend on D, z0 does too. The interpretation of this formula is straightforward: since
n-mers are concentrated at a distance ' z0 from the closest wall (z0 = zc at large D), the pressure they exert on the
walls is the force FLJ,w divided by the surface q

� pertaining to each of them. Agreement with the curve calculated
from (S16), in black in Fig. S7, is perfect.



FIG. S7. Pressure P as a function of bare distance between walls D. The theoretical curve, computed from Eq. (S16) and
obeying Eq. (S17) for D > 6 Å is compared to SPC/E simulations (as in the main text) and to atomistic simulations of a
Tobermorite crystal taken from [29]. Pressure data are given in [29] as a function of the distance between the centers of mass
of the two solid crystalline walls, also modelled at atomistic level: in order to be presented on this graph, they were shifted to
the left by 6.7 Å, which makes the e↵ective distance between ion layers approximately equal to our De↵ .

S3 Water properties

S3.1 Water model

Despite significant advances in the past century, water remains a challenging material to model, as evidenced by
the plethora of di↵erent models developed during that time. In this study, we have opted to use a relatively simple
representation of water: the SPC/E model [57]. This model treats water as a rigid molecule, with 3 partial charges and
one Lennard-Jones site, which is the minimum degree of complexity needed for hydrogen bonding and a tetrahedral
structuring. Nonetheless, it is known that the SPC/E water model e↵ective at capturing the structure and dynamics
of bulk water [70].

One weakness of the SPC/E model is that starts to deviate from experimental results in confined or high pressure
situations, where the TIP4P/2005 model performs better [58, 71]. Having understood that the phenomena of interest
here are related to water-ion structuring and are prevalent when ion-water correlations become dominant on water-
water correlations, significant changes in our picture would require dramatic di↵erences in the water model, well
beyond the range of the most used ones. Hence we do not expect that our results are qualitatively changed by
the more accurate water description of TIP4P/2005. To verify this, we performed additional simulations using the
TIP4P/2005 water model, for � = 3e/nm2 and separations D = 6, 8, and 12Å and the same procedure (with due
di↵erences in terms of longer simulation times required) for preparation and equilibration of the samples. These
simulations showed that the structuring of the ions and the resultant net cohesion between the C-S-H surfaces with
the TIP4P/2005 model was very similar to what was obtained with the SPC/E model (Fig. S8).

A final consideration is the e↵ect of polarizability in the water molecule. While one might question whether the
interlocked and nearly solid ion-water structure we observe would disappear once polarizability is accounted for,
recent studies with polarizable water models for clays have, in fact, demonstrated that the polarizability enhances
the slowing down of the water molecule dynamics, indicating that these e↵ects would rather work to confirm our
picture [72]. Another study comparing common polarizable and non-polarizable water models confined between MgO
surfaces showed that interfacial water structure and orientational patterns were similar, but the polarizable models
exhibit more constrained degrees of freedom and longer-ranged water layering—again indicating that polarizability
would enhance the e↵ects discussed in our work [73]. To summarize, in the interests of developing a coarse-grained,
semi-atomistic approach, the SPC/E water model is overall a reasonable choice.



FIG. S8. Comparison between results with SPC/E and TIP4P/2005 models for water at � = 3e/nm2. The pair correlation
g(r) calculated at D = 8 Å shows that di↵erences in the water model only slightly alter ion structuring, and the net pressure
between the confining surfaces is approximately the same.

S3.2 Dielectric constant

The dielectric response of a material can be quite complex at the atomic level. While the relative dielectric constant
"r is a macroscopic quantity, it arises from this complex microscopic behavior. Even ignoring how the confinement in
our system would change the macroscopic "r, trying to use this "r for interactions at the nanoscale (as in the PM)
has a host of problems. With numerous charges enclosed in a small volume, the polarization of the solvent would
depend non-trivially on the arrangement of all the ions and solvent molecules, so taking it to behave the same as in
the macroscopic material exposed to an external field is a very strong assumption.

Explicit inclusion of the solvent allows one to directly incorporate this as a microscopic phenomenon. Unfortunately,
this is a feature that is actually quite di�cult to capture correctly, and many water models that give otherwise similar
results produce drastically di↵erent values for the dielectric constant [74]. However, while it is di�cult to be confident
in a precise value, general trends can be informative. In MD simulations, a standard way to compute "r is from
the total dipole moment, M [75]. "r can be related to M through the fluctuation-dissipation theorem. Specifically,
"r = 1 + �, where � is the electric susceptibility, and the fluctuations in M are related to its dissipation through �.
For an isotropic system, hMi = 0 and the variance of M is simply hM

2
i, giving
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1
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The behavior of the dielectric constant under confinement is not fully understood. The anisotropy introduced by
the slab geometry leads to di↵ering behaviors for "xy and "z. "xy can be computed in the same way as the bulk
calculation except only considering the x and y components of M , while "z needs to be reformulated for the very
di↵erent boundary conditions [76]:
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Using this, we calculate an e↵ective dielectric constant from our simulations (Fig. S9). Though the precise values
obtained depend on the model for water, the relative decrease of dielectric constant in confinement is revealing. When
all the water is bound to ions, it is highly localized and unable to reorient, leading to a drastically lower dielectric



FIG. S9. The transverse (left) and perpendicular (right) relative dielectric constant of water in our simulations, as a function
of D. This is computed from the fluctuations of the total water dipole moment. Due to the large coupling between ions and
water at small separation, the e↵ective dielectric screening is far lower than the bulk value. The dielectric tensor remains
anisotropic even for largest separations considered, which is consistent with experimental measurements of a slow decay in
dielectric properties with distance [37].

constant than at larger separations [77]. This lends credence to the locked water picture in which the water is unable
to screen electrostatic interactions and helps explain the large increase in net attraction.

The calculation of a dielectric constant is useful to understand, at a qualitative level, how the screening is altered
by confinement. However, it is important to note that the e↵ects of water structure and dynamics at a microscopic
level cannot be fully captured in a single number in many cases. While it has been proposed that, with
a few tens, the results of explicit solvent simulations could be matched by rescaling the bulk dielectric constant in
the PM [78], here we find a very di↵erent picture, at higher surface charges and for more confined systems, because
strong water structuring e↵ects arise. This is seen in the D-dependent, anisotropic dielectric properties and increased
cohesion we observe, as well as the hydration-related pressure oscillations (see the pressure spike at D = 8 Å and
� = 1e/nm2) which have also been reported in a wide array of studies [41, 79, 80]. What the locked water picture
shows is that, in the appropriate limit, a new ground state gains relevance, and water becomes so structured that its
e↵ect on the cohesion is minimal—an e↵ect obtained not by partially rescaling the dielectric constant but by assuming
that water is not free to screen electrostatic interactions at all.

S4 A bit of history

De caementorum natura, or the invention of C–A–S–H

The invention of modern cement cannot prescind from the discovery of natural cements. These are naturally
available sands or mixtures whose mortars feature stronger adhesion than regular lime-based mortars, and, most
importantly, hydraulicity: the possibility to set in (sea)-water. While lime mortars seem to have been used by many
civilizations millennia BCE in Mesopotamia, Egypt, China and Greece, the first examples of hydraulic natural concrete
(sometimes called hydraulic lime) date to 700 BCE. The Nabateans, a bedouin population living between present-day
Syria and Jordan, used it to build underground water-proof tanks; their extensive water system (reservoirs, cisterns,
aqueduct) allowed them to survive and found settlements in the desert.

The most intense and, at the same time, documented use of natural cement before the modern era is with no doubts
to be ascribed to Ancient Romans. Archaeological findings and subsequent scientific analyses [81–83] clearly show
that roman harbours had docks and submarine breakwaters built in natural cement. Scientific research has focused
on Roman harbours of the west coast of the Italian peninsula, from present-day Southern Tuscany down to the Naples
area, but the one of Caesarea, now in Israel, also features huge perfectly preserved concrete blocks that have resisted
underwater for two millennia. Archaeologists have conjectured that the naval power Romans had conquered over the
Mediterranean by the 2nd century CE was due to a large extent to the fact that their harbours were not only cleverly
built, but also built with concrete.

 ⌅ of order



Hydraulicity was not the only property of cement Romans were interested in. They had discovered that concrete
was also much stronger than common mortars and started using it for public architecture. The most famous example
is undoubtedly the dome of Rome’s Pantheon, built by emperor Hadrian in the fist quarter of the 2nd century CE.
With its 5 t and 43m of diameter, it is still the biggest unreinforced concrete dome in the world [84].

What were Romans using to make their concrete? In Roman architect Vitruvius’ De Architectura, written in the
second half of the 1st century BCE, a whole book is devoted to building materials. After describing lime and the
proper way to make a mortar out of it, Vitruvius talks about a “powder”, that under water suddenly absorbs liquid
and quickly hardens, emphasizing heat release. The substance Romans were using, called by Seneca Puteolanus pulvis

in Quaestiones Naturales, goes nowadays by the name pozzolan, in Italian pozzolana, from the name of the town where
it was quarried (Pozzuoli, ancient Puteoli, in the Naples region). It is a natural ash of volcanic origin: it works in
a very similar manner as modern cement, in that it undergoes a hydration reaction producing C–A–S–H (Calcium
Aluminum Silicate Hydrates), a variety of C–S–H where some silicon has been substituted by aluminum.

It is interesting to note that the word cement, and its translation in most European and many non-European
modern languages, derives from Latin caementum (in turn from caedere, to cut), referring to rubble and smashed
stone, mostly tu↵, that had to be mixed to pozzolana and calcium hydroxide to form concrete.

Romans’ astonishment for the fact that “dust, the most insignificant part of the Earth”, could “become a single
stone, impregnable to the waves, the moment of its immersion, and increase in hardness from day to day” (Pliny the
Elder, Naturalis Historia) did not lead them to understanding much more about its nature. They only knew, and
this was enough for any practical purpose, that it was of volcanic origin and that it must have something to do with
high temperature environments (‘fire’). This is maybe why the description Vitruvius, in De Architectura, makes of
the exothermic hydration reactions (echoed by Saint Augustine four centuries later in De Civitate Dei) appears so
amusingly and surprisingly accurate: “the urgent need of moisture suddenly satiated by water seethes with the latent
heat [calor latens] in these substances and causes them to gather into a unified mass and gain solidity quickly.”

The modern era

After the fall of the Western Roman Empire, cement went back to being practically unknown to architects and
builders. To meet cement again in (documented) History, we need to fast-forward to the beginning of the 15th century.
Louis XII is king of France and needs to build a bridge over the river Seine in Paris. He asks Venetian architect and
clergyman Giovanni Giocondo to develop the project. A man of letters, Giocondo is probably the best living expert
of Vitruvius’ texts and decides to make use of Neapolitan pozzolan. According to some sources, the then Pont Notre
Dasme, inaugurated in 1515 and then completely destroyed and rebuilt through the centuries, presented foundations
in natural cement: for the first time after a millennium, pozzolan was being used again for a large-scale work.

Pozzolan is not the only natural earth that produces hydraulic mortars. We know that Dutch builders, at the
beginning of the modern era, were using a powder coming from the Ei↵el region, between present-day Germany and
Belgium. They called it trass. Trass (also referred to as terras) had no fortune in commercial exchanges. It would be
interesting to understand why, but we will limit ourselves to noticing, as in [85], that its name lacked any appeal: to
British it sounded too much like trash, and to French it resembled the word travers, a flaw.

In the 18th century, people finally started to look for a scientific explanation for the fact that, at first, lime could
transform from powder to solid rock, upon addition and consequent evaporation of water. The first attempts were not
much closer to reality than the Romans’. Réaumur, Macquer, Becher speak either of some sort of gravity e↵ect or of
fire hidden in the stones. Among these fuzzy chemical theories, the documented tips on how to make better mortars
flourished: engineer Giovanni Antonio Borgnis suggested to dilute quicklime in wine and add lard or fig juice, while
some of his colleagues recommended rather ox blood and urine [86]. In 1783 Antoine-Laurent de Lavoisier finally
brought order to this babel of outlandish theories, by discovering oxygen and hydrogen and giving water its chemical
formula. This was the birth of modern Chemistry.

If somebody has to be considered the inventor of cement, it should be British engineer John Smeaton (1724-1792)
and his baker. The first user of the word “horsepower”, before James Watt, and of the expression “civil engineer”,
as opposed to “military engineer”, Smeaton was the designer of a series of bridges, harbours and canals, and, last
but not least, of the famous lighthouse of Eddystone. There existed, and still exists, a dangerous stack of rocks,
the Eddystone rocks, south of Plymouth, in the English Channel. Throughout history, many ships had sunk there
during tempests and since the end of the 17th century people had tried to build a lighthouse to warn sailors of their
presence. The first two attempts were taken down due to the strength of storms and to fires. When Smeaton was
asked to build the third lighthouse, he started experimenting new kinds of mortars that could resist storms. One day
he prepared a mixture of limestone and ordinary clay and took it to the bakery asking that it be baked in the oven



at high temperature. When the result of his experiment came back, he noticed that the substance he had produced
could harden in water and solidify to form a rock of the same kind as portlandite (from where the modern name of
Portland cement). Using this substance, together with pozzolan coming from Italy, that for some reason he seemed
to still trust unconditionally, he built a new lighthouse between 1756 and 1759, also known as the Smeaton tower.
Had it not been for the underlying rocks, that were eroded by water, the lighthouse would still stand firmly where it
was. It was actually removed in 1877.

Smeaton’s studies were published right before his death and were probably read by James Parker, who filed a patent
of dubious originality in 1796 and started the first business producing “Roman cement” – this was its commercial
name – together with John Bazley White. Meanwhile in France, Louis Vicat was also studying hydraulicity: probably
also influenced by Smeaton’s work he published in 1818 the result of his Recherches expérimentales sur les chaux de

contruction, les bétons et les mortiers ordinaires, that was translated and read all over Europe. Also a civil engineer,
he completed in 1824 the first bridge ever built with artificial cement, in Souillac, Southern France.

John Apsdin’s patent, filed in 1824, and similar to Maurice Saint-Léger’s, filed some years before with Vicat’s
contribution, marked the birth of another cement-producing company. Most importantly, it gave the opportunity to
Apsdin’s son, William, to apply his rebellious temperament to experimenting new techniques for making cement. One
day he overcooked a sample, to the point that it had vitrified. Before throwing it away, he had the idea to pulverize
what appeared as a block of burnt rock: he then noticed that, upon hydration, this magic powder formed a much
stronger concrete than what he was used to. He had just invented clinker and modern Portland cement. Aspdin’s
recipe was then improved by his competitor Isaac Charles Johnson in the 1850’s and, besides minor changes, is the
one still in use in cement factories nowadays.

The fortune of cement in the following two centuries is there for all to see. Starting with the tunnel under river
Thames, completed by Marc Brunel in 1843, cement has gained a leading position in infrastructure, public and
residential building, and, with a bit more di�culty, in design and architecture. This was a long process that would
not have been possible without the mechanization and centralization of the productive chain, initially motivated
by entrepreneurs’ necessity to get rid of the corporations of stone cutters. It was the 19th century and the second
industrial revolution had just begun.
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