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Abstract 

The electric double layer of co- and counterions around a finite, disc-shaped, uniformly charged 
clay platelet in a spherical or cylindrical Wigner-Seitz cell is studied within the linearized 
Poisson-Boltzmann theory. Explicit expressions are obtained for the density profiles, in the form 
of series in Legendre or Bessel functions. The quadrupole moment and the free energy of the 
charge distribution are calculated as functions of clay and salt concentrations. In cylindrical 
geometry, swelling is shown to be restricted under the action of electrostatic forces alone. 
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This paper is dedicated to Rudolf Klein on the occasion of  his 60th birthday 

1. Introduction 

Clay colloid suspensions are lamellar polyelectrolytes made up of  mesoscopic, thin 
crystalline platelets carrying structural charges (polyions) and microscopic co- and 

counterions (microions) dispersed in water [1]. In the initial stages of  swelling, the 
platelets are stacked parallel to each other, seperated by layers of  aqueous electrolyte 

solution. As long as the spacing of  the platelets is small compared to their lateral 
dimension (typically several hundred /~), the platelets may be modelled by infinite, 
uniformly charged planes, and the electrostatic problem reduces to a one-dimensional 
one. In this simple geometry, the non-linear Poisson-Boltzmann (PB) equation may be 
solved analytically in some specific situations (Gouy~Chapman theory [2]) and a large 
literature exits on electrostatically swollen lamellar phases (for some recent work, see 
e.g. [3, 4], and references therein). 
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However, in more dilute suspensions, the lamellar order is lost when the spacing 
between the platelets exceeds their lateral dimension. The finite size of the particles 
can no longer be ignored and the problem becomes fully three-dimensional. A com- 
plete statistical mechanics description of a system of arbitrarily oriented platelets and 
of much smaller microions constitutes a formidable challenge because: (a) the lack of 
spherical symmetry renders the electrostatic problem very complicated; (b) the consid- 
erable difference in length scales associated with polyions and microions precludes a 
symmetrical treatment of the two components. The latter diffÉculty may be overcome 
in simulations combining molecular dynamics (or Monte Carlo) methods and den- 
sity functional theory [5]. While such a hybrid approach has proved very fruitful for 
spherical polyions (like micellar or charge-stabilized colloids), its extension to lamellar 
polyions poses technical difficulties which are presently being investigated. 

In this paper, we examine the simpler problem of a single, circular platelet confined 
with its counterions and added salt to a Wigner-Seitz (WS) cell. The approximate 
mean-field-like reduction of the initial N-platelet problem to a one-platelet problem is 
based on the introduction of the WS cell, of  volume v equal to the volume per platelet 
V/N  in the suspension, which models in a very crude way the local environnement of 
any one clay particle (cage effect) [6]. The shape of the WS cell and the boundary 
conditions are dictated by physical considerations, and by the requirement of simplicity 
to allow analytic calculations to be pushed as far as possible. In the present paper, we 
consider the cases of spherical and cylindrical WS cells; a spherical cage corresponds, 
physically, to the limit of low platelet concentrations where the latter may rotate almost 
freely, while a cylindrical cage is better adapted to concentrated stacked configurations. 

2. Model 

The clay particle is modelled by an infinitely thin, rigid disc of radius r0 carrying Z 
elementary charges - e  assumed to be uniformly distributed over the surface. The 
charge density will be denoted by q = -Ze / ( r c r2 ) .  This is a reasonable representation 
of the synthetic laponite clay particles [7] which have a typical diameter of 250/k and 
a thickness of 10/~. The positive counterions and negative coions are assumed to be 
monovalent point ions, and water is assumed to be a continuum of dielectric constant e 
("primitive model"). 

The disc is placed at the centre of a Wigner-Seitz cell; the macroscopic concentration 
n = N / V  of clay particles determines the volume v = 1/n of the cell. For a spherical 
cage of radius R, the radius is then univocally determined. For a cylindrical cell of 
radius R and height 2h, only the product 2rcR2h = v is fixed. The aspect ratio R/h  is 
determined by minimizing a free energy as discussed later. 

For a suspension with a given global salt concentration ns, calculations are carried 
out in the canonical ensemble, where the numbers N+ and N_ = N÷ - Z  of counterions 
and coions in the WS cell are fixed by N _  = v ns and the charge neutrality constraint. 
For a suspension in osmotic equilibrium with a salt reservoir which fixes the chemical 
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potentials of the co- and counterions, the WS sample must be considered as an open 

system belonging to a grand canonical ensemble; the numbers of microscopic ions 
are determined by the condition that their chemical potentials match those in the salt 
reservoir. 

Due to the lack of spherical symmetry of the polyion, the question of the adequate 
boundary conditions (b.c.) to be imposed at the surface of the WS cell is a delicate 
one. In the simpler case of a spherical polyion in a WS sphere, the symmetry naturally 
imposes that the electric field vanish at the surface of the sphere, on the assumption 
that the mean distribution of neighbouring polyions is essentially isotropic. In the case 
of a cylindrical WS cell, the symmetry of which is compatible with a circular polyion, 
we impose that the normal component of the electric field vanish everywhere on the 
surface of the cylinder, as periodicity and symmetry would require in a crystal-like 
configuration. However, for a WS sphere the symmetries of the cell and the polyion 
do not match, and the choice of b.c. is somewhat more arbitrary. In most subsequent 
calculations, quadrupolar b.c. will be imposed, i.e. the electrostatic potential at the 
surface of the sphere is required to coincide with the potential due to a point quadrupole 
fixed at the centre of the sphere; its value is required to match that calculated from 
the complete charge distribution (disc plus co- and counterions) inside the WS cell 
(self-consistency constraint). To test the sensitivity of the results to the choice of b.c., 
some results will be quoted, based on the condition that the normal electric field vanish 
on the surface of the sphere. 

3. Solutions of the linearized Poisson-Boltzmann equation 

Let p+(r) and p - ( r )  denote the local densities of counterions and colons, and let 
pd(r) be the charge distribution on the surface of the polyion disc. The latter being 
assumed to be uniform, pal(r) reads: 

pal(r) = pd(r, 0) = q- 6(COS 0) O(r0 -- r)  (spherical coordinates), ( la)  
F 

pal(r) = pd ( r , z )  = q6(z) tg(ro  -- r )  (cylindrical coordinates), ( lb)  

where 6 and 69 are the Dirac and Heaviside distributions, respectively. The PB theory 
results from the combination of the exact Poisson equation relating the electrostatic 
potential ~0(r) to the local charge density: 

= _47z pd(r) -- 4~e[p*(r )  -- p - ( r ) ] ,  (2) V2~(r) 
g g 

with the mean-field assumption 

p+(r)  = p0 i exp{Tfle~o(r)}, (3) 

where ~ - -  1/kBT is the inverse temperature. 
While in the limit of infinite dilution of polyions, where the WS cell occupies all 

space, the potential is conventionally assumed to vanish at infinity; this is no longer true 
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for finite concentration where the microions are confined. The potential is determined 
only within an additive constant, which will of course affect the prefactors p0 ~ in Eq. 
(3). For a closed system (fixed salinity) the latter are determined by the normalization 
conditions 

1 
f l  exp{~zfle~o(r)} d3r n+ , (4) P°~ v 
V 

where n+ are the overall concentrations of monovalent counterions and coions, which 
are related to the overall concentration of polyions by the electroneutrality constraint 

n+ - n_ = nZ.  (5) 

With appropriate boundary conditions on the WS surface, the set of equations (2) - (4)  
may, in principle, be solved numerically. Such solutions have been obtained for the 
simple case of infinite polyion dilution (i.e. with the WS surface pushed to infinity) [8]. 
The numerical problem is more delicate to solve in a finite WS cell, and in this paper 
we seek an analytic solution of the linearized version of the PB equation; this is similar 
in spirit to the familiar Debye-Hfickel theory of common electrolytes. It is convenient 
to express Eq. (3) in a slightly different form: 

p±(r)  = p0 t exp{qzfle[tp(r) - ~]} ,  (6) 

where ~ is the mean potential in the WS cell: 

1 f ~o(r)d3r (7) 
~ : v  

and the preFactors p0 ~ are now in general different from those appearing in Eq. (3). 
In the perspective of linearization, it is reasonable to assume that q~ - ~ yields on an 
average a smaller exponent than qg(r). The linearized PB equation now reads: 

V2(p(r ) : _ 4__~ pd(r) -- t¢~?0 + tc~q~(r), (8) 
g 

where ~ = 4zrfleZ(p~ + po)/e = 1/22 is the squared inverse Debye length, and 
70 = 4zte(P + - P o  )/(eK2) + ~-Under  these circumstances, the linearized version of the 
normalization condition (4) implies p0 ~ = n±. 

3.1. Spherical coordinates 

If the WS cell is a sphere of radius R, it is natural to adopt spherical coordinates with 
the polar axis orthogonal to the disc. Due to azimuthal symmetry, ~o(r) = q~(r, 0), and 
a solution of Eq. (8) is sought in the form of an expansion in Legendre polynomials: 

OG 

~o(r, 0) = Z tpl(r) Pt(cos 0) ,  (9) 
/=0 
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where the sum is restricted to even values of l due to the symmetry r --~ - r .  The 
functions q~t(r) are solutions of the radial differential equations. Due to the discontinuity 
of the electric field on crossing the uniformly charged disc, separate solutions of these 
equations must be considered for r<<.ro and r > r0, and the two solutions must be 
matched at r = r0. In reduced units, the solutions q~t(x) = fleqgl(tcDr) may be combined 

in the form 

4)l(x ) = O ( x o  - x)¢f (x) + O ( x  - xo ) &  (x  ) , 

ebb(x) = fleTobt, o + a~ f l(x)  + b~ f_l (x)  + ¢[s,(x), 

c~  (x) = fleTobt, o + a~ f t(x)  + b~ f_ l (x ) ,  (10) 

where x0 = xDro, the fimctions f i t ( x )  = V/Zt/(2x)l~(l+l/2)(x) are the modified spherical 
Bessel functions of the first and second kind, (~ = (2l + 1 )Pt(O)/(~CDb), b = e/(2ztfsq) 
is the Gouy length (b < 0), (8 = fle2/e is the Bjerrum length and the functions st(x) 
are defined by 

sl(x) = Z t  x "+l'c~(nt) ~(0 t) = 1, %+2"(1) = ~t)tn( n + 1) - l(l + 1)] . (11) 

n = 0  
n even  

The coefficients a~,  b{,  a~, b?,  are determined by matching the functions (~bt < , qS? ) 
and their derivatives at x = x0, and by the boundary conditions at X = xDR. Two dif- 
ferent boundary conditions have been considered. In the first, the normal component of 
the electric field at the surface is set to zero, i.e. t?~0(r, cos O)/drlr=R = 0. The potential 
is defined within the arbitrary constant ~ which may be taken equal to zero. In the sec- 
ond, the potential is required to reduce, for r =R, to the potential of a point quadrupole 
moment situated at the centre of the sphere, i.e. q)o(R, cos 0) = Q P2(cos O)/(eR 3). The 
value Q of the quadrupole is matched self-consistently to that of the charge distribution 

inside the sphere (disc plus microions): 

2R2 [2Rq0~(R) - R 2 d~o~(R)] (12) 
Q = Qd + QP = - 5  - dR J" 

The coefficients (a~, a~)  depend parametrically on ~, whose value is univocally deter- 
mined by the second self-consistency constraint: (~o-  ~ )  = 0. The condition that the 
potential (p remain finite at the origin determines the coefficients b [ .  

3.2. Cylindrical coordinates 

For a cylindrical WS cell, one naturally uses cylindrical coordinates. The potential 
now depends on the coordinates (r,z), and is expanded in a Bessel-Dini series [9] 
which is well adapted to the boundary conditions given below: 

~o(r,z) = ~ An(z)Jo Y n  , 

n=[ 

(13) 
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where Yn is the nth root of J l (y )  = - d J o ( y ) / d y  = O, Jo and Jl are the Bessel functions 
of 0th and 1st order, and R is the radius of the cylinder. I f2h is its height, the boundary 
conditions which we have imposed are 

8~o(r,z) 
":R = 0,  (14a) 

Oqg(r,z) = 0. ( lab)  
Oz z=±h 

With these conditions, one may assume that ~ = 0, without loss of generality (q9 - 
is independent of ~). 

The differential equation for An(z)  is easily solved leading to the final result 

~b(r,z) -=- fle~o(r,z) = fleTo + ~ ~ f f h i  

2r0 °°~ AnJ,(knro)  cosh ( ~ n  ~z~ ) + Jo( knr ) , 
g R ~ Y,  s i n h ( h / a , ) J ~ ( y , )  

n=2 

(15) 

where An = R / V / y  2 + ~c2R 2 and kn = yn/R. The resulting density profiles 

p+(r)  -=- n±{1 qz fle[q~(r,z) - ~]} (16) 

are sensitive to the aspect ratio h/R for a given cell volume 27zR2h. The "optimum" 
aspect ratio is determined by minimizing the free energy (which will be written down 
in the next section) with respect to this ratio. 

In the limit r0 -- R --~ 2 ,  the disc goes over to an infinite, uniformly charged plane 
in a WS slab of width 2h, and the problem becomes one-dimensional: the potential 
depends only on z and the solution (15) reduces to 

cosh[~cD(h - Izl)] 
(a(z) --- fleqg(z) = fleTo + (b~CD) sinh(xDh) ' (17) 

which is precisely the solution of the linearized Gouy-Chapman problem. 
In the infinite dilution limit, the series in Eq. (15) goes over to an integral, and 

e v ~D+k21zl 
ro d k J o ( k r ) J l ( k r o )  V/~D D + k 2 4,( r ,z)  = ~- 

0 

This expression yields 

~ b ( r = 0 , z ) =  ~ e -'~z'l~l-e ~o 

(18) 

(19) 

which reduces to the familiar exponential solution of linearized Gouy-Chapman theory 
in the limit r0 -+ cxz. 
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The reduced potential at the origin, as calculated from Eq. (19), is ~b(0) = {1 -exp  
(-xoro)}/(tcob).  The same result is found in the spherical geometry, again in the 
infinite dilution limit (with the potential vanishing at infinity). From this result it is 
clear that linearization is justified provided Ib[ ,>2D (sufficient condition), i.e. in the 
limit of high salt concentration or low surface charge. A similar criterion is expected 
to apply for finite cells. Another sufficient, but rather academic, condition is that r0 ~ 2D 

and r0 ~ Ibl. 

4. Results 

The density profiles p+(r)  are highly anisotropic, particularly so in the near vicinity 
of the disc. For that reason, a large number of terms are required in both expansions (9) 
and (15) to ensure adequate convergence, especially in the plane of the disc (0 = ½7t 
or z = 0). Examples of the resulting charge density pc(r) = p + ( r ) - p - ( r )  are shown in 
Fig. 1 for a spherical WS cell. All figures correspond to Z = 100 elementary negative 
charges on the disc, eccs = 78 (water), and T = 300 K. 

An important characteristic of the electric double layer around the disc is the quad- 
rupole moment (i.e. the zz component of the traceless quadrupolar tensor calculated in 
Cartesian coordinates with the z-axis orthogonal to the disc). Q may be calculated from 
Eq. (12) and is expected to depend on the polyion concentration n (or equivalently 
on the volume of the WS cell), on the salt concentration ns, and on the geometry 
of the cell (sphere or cylinder). In the low-concentration limit n ~ 0, the quadrupole 
moment must vanish, independently of the salt concentration [ 10]. Representative results 
are shown in Fig. 2. After a rapid initial variation at low n, Q is seen to vary more 
slowly at high polyion concentration; in that region, Q is relatively insensitive to salt 
concentration. The weak n-dependence lends some credit to recent predictions of a 
model where Q was assumed to be state-independent [11]. 

The Helmholtz free energy may be calculated from the density profiles within the 
mean-field expression consistent with PB theory: 

F =  U -  TS, (20) 

where U is the electrostatic energy: 

lj 
U = ~ [pd(r) + epc(r)]~p(r)d3r = Uc + Ud, (21) 

U 

while the entropy reduces to its ideal part 

S = - k s  Z f p~(r){ln[A3p~(r)]- l}d3r"  (22) 

Use of the PB equation allows F to be cast in the form 

F = Ua - Uc + keT{N+[ln(A3p~)-  1] + N _ [ l n ( A 3 p o ) -  1]}. (23) 



264 J.-P. Hansen, E. Trizac/Physica A 235 (1997) 257-268 

5.0 

4.0 

:-~ 3.0 
Q.. 

,+ 
,:£ 

c~2.0 

1.0 

Spherical Geometry 
Quadrupolar b.c. 

. . . . .  i .... 

0.0 
0.0 4.0 

Plane of the disc 

~ . . . . . . . . . . . . . . . . . . . . .  

, l i i 

1.0 2.0 3.0 
Kbr 

Fig. 1. Charge density profiles p:./(p+ + Po ) as a function of  •Dlr[, for a salinity ns = 10 3 M and 
n = 5.10 -5  M (R = 200 .~., tCDR = 3.88). The WS cell is a sphere and the b.c. impose a quadrupolar 
potential on the sphere. The upper and lower curves represent the profile in the plane of  the disc (0 = ½n) 
and along the Oz-axis (0 = 0), respectively. The summation in Eq. (9) has been restricted to l = 12. 

The usual isothermal charging procedure [12,6], whereby the surface charge of the 
disc is varied from 0 to its final value q while N÷ is kept constant, allows the free 
energy to be reexpressed as 

q 

- F(q = O) = kBT / de  / ln[A 3pq,(r)]d2r, F (24) 

0 S,/ 

where Sa = nr~ is the area of the disc. On the other hand, if N is constant during 
the charging process, the resulting expression for F involves the surface integral of 
-ln[A3p~,]. Expression (24) is valid whenever the normal component of the electric 
field vanishes on the surface S of the WS cell; an additional surface term appears when 
this is not the case. Eq. (24) generalizes the well-known result from Gouy-Chapman 
theory for a uniformly charged infinite plane [12]. Note that the expression for the 
free energy is valid within non-linear PB theory, but for explicit calculation, we have 
used the density profile p - ( r )  resulting from the linearized version of the theory. In 
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n (c lay  c o n c e n t r a t i o n )  in 10 .4 M 

Fig. 2. Variations of the total normalized quadrupole moment Q/Qdisc with clay and salt concentration, for 
a spherical WS cell. The two lower curves (solid lines) correspond to the b.c. where the total electric field 
has no normal component to the WS sphere. The dashed curves correspond to quadrupolar b.c, 

particular, we have evaluated the free energy from Eq. (24) for a cylindrical WS cell, 
as a function of the aspect ratio h/ro for a fixed volume 2nR2h and for the two different 
charging processes (N+ or N_ constant) which are strictly equivalent only provided 

that linearization is justified. Examples are shown in Fig. 3 (large values of  h/ro can 
be associated with a tendency towards swelling). We then obtain the density profiles 
corresponding to the "optimum" WS cylinder shown in Fig.4. The equilibrium value of 

h/ro is such that R/ro > 1. Swelling is thus restricted under the action of electrostatic 
forces alone. 

Finally, Eq. (4) allows a rapid derivation of a lower bound to the Donnan effect. 
Indeed 

n+n_ 
P~ Po = [(l/v) fv exp(-flecp) d3r][(1/v) fv exp(fletp) d3r] " (25) 

By virtue of  the Schwartz inequality 

[! fexp(-t~eqg)d3' [!/exp(1~e~°)d3r (26) 
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Aspect ratio dependence of the free energy 
n r 

C o n s t a n t  N+ path  

", . . . . .  Constant N_ path 

i i i 
150.00. 3 1.3 2.3 

h/r o 

Fig. 3. Determinat ion o f  the " o p t i m u m "  cylindrical cell for n~ = 10 3 M and  n = 5.10 5 M. The only 
aspect-ratio-dependent contribution to the free energy F is f q  dq ~ fai.~c q~q,(r,z = O)d2r, which  has been 

plotted versus h/ro, the volume 2~R2h being kept constant. The two curves correspond to charg ing  pro-  

cesses where either coion or counterion concentrations are kept constant. They both give the same minimum 
h/ro "~ 1.03 (i.e. R/ro ~-- 1.62, R/h ~- 1.57). The summation in Eq. (13)  has been restricted to n = 200. 

it may be concluded that 

2 1 +  P ~ P o  <~n+n_ = n s (27) 

t then If the suspension is in osmotic equilibrium with a salt solution of  concentration ns, 

the condition of  chemical equilibrium between the salt ions in the suspension and in 
the solution implies that [4] P ~ P o  ~ 2 = (ns) . Substitution into (27) leads to the required 
inequality: 

g/s ~ Z2 Z (28) 
n~Ts ~ 1 + 4V2n,s~ 2 2Vn'~, ' 

In the Debye-Hiickel (linearized PB) limit, the inequality becomes an equality, thus 
providing an estimate of  the Donnan effect. 
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0"0.0 1 0 2.0 3.0 4.0 
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Fig. 4. Charge density profiles versus ~or (upper curve, corresponding to z = 0), or versus XDZ (lower 
curve, corresponding to r = 0), for a WS cylinder. The concentrations are the same as in Fig. 3, h/ro = 1.03 
(cf. above), which gives ~oro ~ 2.43, Koh ~-- 2.50 and noR ~ 3.94. 

5. Conclusion 

Our linearized PB analysis provides explicit expressions for the density profiles of 
co- and counterions in the electric double layer around a single, uniformly charged disc 
confined to a spherical or cylindrical Wigner-Seitz cell. This approach accounts for the 
finite concentration of such model clay platelets. Linearization of the Boltzmann factor 
is, strictly speaking, only justified provided the variations of the potential throughout 
the cell are small compared to kBT/e. The condition is fulfilled if the Gouy length 
exceeds the Debye screening length )~o, which requires a low surface charge and/or 
a high concentration of added salt. However, even outside the strict range of validity, 
the linearized theory may be expected to provide a qualitative picture of the electric 
double layer around a platelet of finite size. 

A key result of the present analysis is the rather weak dependence of the quadrupole 
moment of the double layer on clay and salt concentration, except at very low con- 
centration of polyions. 

The linearized PB analysis may be improved, in the immediate vicinity of the disc, by 
incorporating in some adequate manner the known analytic or semi-analytic solutions 
of the one-dimensional PB equation for an infinite uniformly charged plane in a WS 
slab. 
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We are presently examining in more detail the results of our analysis for the osmotic 
pressure and swelling. A comparison will be made with numerical solutions of the PB 
equation in a cubic WS cell with periodic boundary conditions [13] in the perspec- 
tive of density-functional Monte Carlo simulations similar to those which have proved 
successful for spherical charge-stabilized colloids [5]. 
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