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PACS numbers:

ENERGETICS MEASUREMENTS

For a system in contact with a heat bath described by a
classical Langevin equation, stochastic energetics (Ref.14
of the main text) provides the framework to quantify
work and dissipation. Along these lines, we calculate
the thermodynamics quantities from measurements of
the position of the sphere in the course of the transfor-
mation for a given protocol. The sphere attached to the
cantilever has a total energy:

E = U(x, F ) +K(v) =
1

2
κx2 − F x+

1

2
mv2 (S.1)

where U(x, F ) is the potential energy, K(v) the kinetic
energy and F the electrostatic force applied to the sys-
tem.

The elementary work done on the system reads

dW =
∂E

∂F
dF = −xdF, (S.2)

and yields the following integrated expression over the
duration of the protocol
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∫ tf

0

∂E

∂F
◦ ∂F
∂t
dt (S.3)

where ◦ denotes Stratonovich integral.
Similarly, the two contributions to the heat are given

by:

dQx =
∂E

∂x
dx = κxdx− Fdx (S.4)

and

dQv =
∂E

∂v
dv = mvdv. (S.5)

We thus get, for the whole protocol duration
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It should be emphasized that the data reported in Fig.4
are the averages of these fluctuating quantities, taken
over 5000 realizations of the experiment.

ESE PROTOCOL

As a first approximation, the system made of the
AFM cantilever plus the sphere can be modeled by a
simple harmonic oscillator of resonant frequency f0 =
(κ/m)1/2/(2π) = 2750 Hz. The validity of our model
breaks down for frequencies exceeding f0.

We monitor in real time the evolution of the sys-
tem during the relaxation towards the new equilibrium
state, and get therefore the expression for the probability
density distribution P (x, v, t). Its dynamics obeys the
Kramers equation associated to the Langevin equation
Eq.(1) in the main text :

m[∂t+v∂x−ω2
o(x−x0)∂v]P = γ∂v[vP +kBT∂vP ] (S.7)

where ω2
o = κ/m and x0(t) = F (t)/κ. To work out the

appropriate function F (t), we proceed as follows: we find
out a specific exact solution Pe(x, v, t) of (7) that fulfills
our boundary conditions x0(ti) = 0 and x0(tf ) = xf , and
infer from this solution the external force that shall be
applied.

For the sake of simplicity, we look for a solution of the
form

Pe(x, v, t) = exp
[
−α(x, t)− βv2 − δ(t)v

]
, (S.8)

with β = m/(2kBT ) constant. Combining Eqs. (7)
and (8), we deduce that the function α(x, t) should
be of the form α(x, t) = α0(t) + βω2

ox
2 + ∆(t)x with

∆(t) = −δ̇ − γδ/m − 2βω2
ox0. The term α0(t) accounts

for the normalization. Noticing that ∆̇ = ω2
oδ, we have a

direct relation between x0(t) and ∆:
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o
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)
. (S.9)

For consistency, we set the boundary conditions of the ∆
function as: ∆(0) = 0 and ∆(tf ) = −2βω2

oxf , ∆̇(0) =

∆̇(tf ) = 0 and ∆̈(0) = ∆̈(tf ) = 0. To fulfill those six
constraints, we choose a polynomial of order five:

∆(t) = 2βω2
oxf s

3
(
−10 + 15s− 6s2

)
, (S.10)

with the dimensionless time s = t/tf , varying from 0
to 1. From Eq. (9), we infer x0(t), and thus the ex-
pression F (t) of Eq.(2) of the main text. Note that the
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ESE protocol is worked out here in its simplest setting
in which a harmonic potential has been used and the
dynamics is controlled by only one parameter, i.e. F (t)
in this specific example. This is the reason why the re-
sults can be readily recovered directly from the Langevin
equation, averaging over noise realizations to work with
the mean position 〈x〉. Imposing the desired evolution
for this quantity leads directly to Eq. (9), which can be
supplemented with the polynomial choice (10) [1, 2].
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