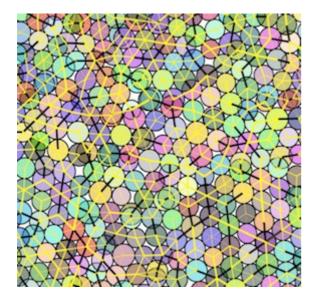


Introduction to the statistical physics of phase transitions and critical phenomena



Emmanuel Trizac LPTMS / University Paris-Saclay

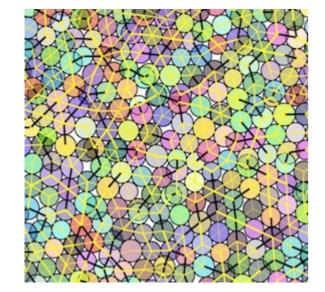
Disorder in Complex Systems @ IPa

$Un \ Pascal \rightarrow not \ only \ a \ unit \ of \ pressure!$

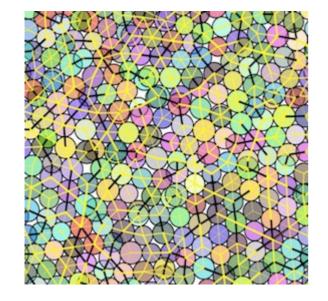
Blaise Pascal

Port-Royal des Champs 15 km from IPa 8 km from St Rémy (→ chemin Racine)

You registered for a school on disorder...



You registered for a school on disorder...



 \rightarrow course deals with emergence of *order* through cooperative phenomena

J'écrirai ici mes pensées sans ordre [...] Je ferais trop d'honneur à mon sujet, si je le traitais avec ordre Blaise Pascal, Pensées

Statistical physics of phase transitions and critical phenomena

I Introduction

 \rightarrow Classification, universality, effect of dimension, broken symmetry

II First order phase transitions

 \rightarrow Unstable isotherms, double-tangent and Maxwell construction, spinodal and binodal

III Critical phenomena : qualitative approaches → mean-field

- \rightarrow Variational mean-field
- → Statistical field theory / Ginzburg-Landau approach

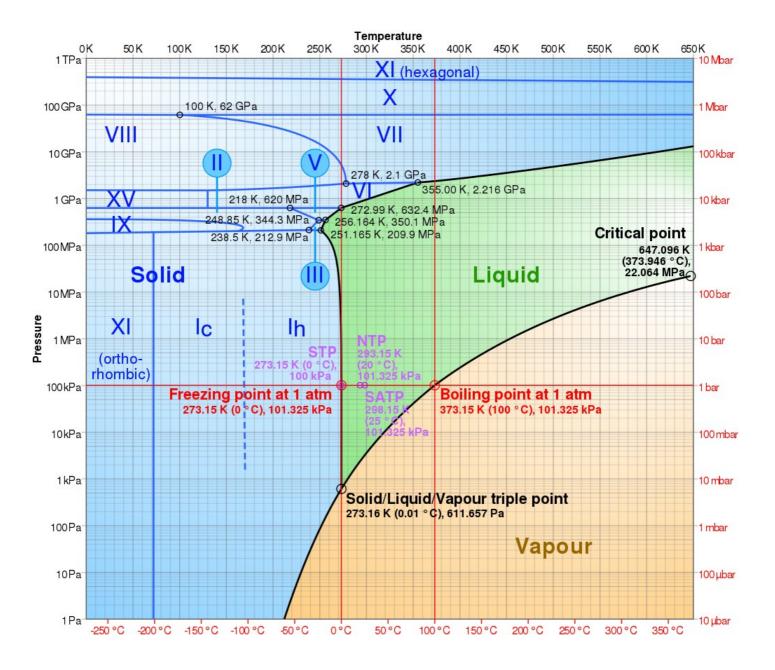
IV Beyond mean-field: fluctuations and scaling

 \rightarrow Upper critical dimension

V Renormalization group ideas

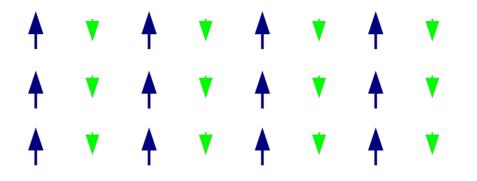
 \rightarrow Take advantage from the large value of the correlation length ξ

Phase diagram of water



Ce-Sb (Cerium Antimonide)

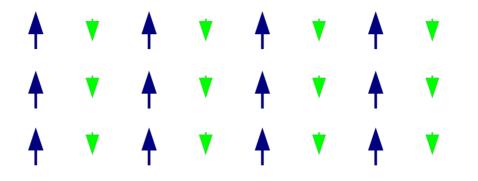
14 different phases (ferrimagnetic), revealed by neutron scattering



- Why the strange name *antimoine/antimonium* (against the monk)?
 → of pigs and monks?
 - \rightarrow unlikely: antimony used as a pill until XIXth century eternal pill...

Ce-Sb (Cerium Antimonide)

14 different phases (ferrimagnetic), revealed by neutron scattering



- Why the strange name *antimoine/antimonium* (against the monk)?
 → of pigs and monks?
 - → unlikely: antimony used as a pill until XIXth century eternal pill...

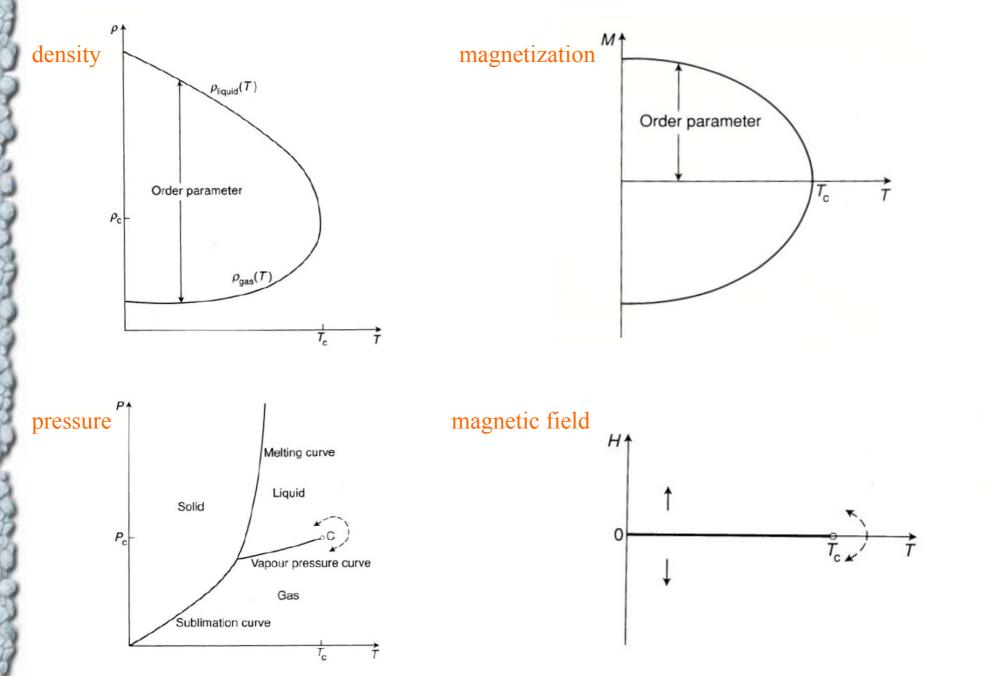
although laxative!

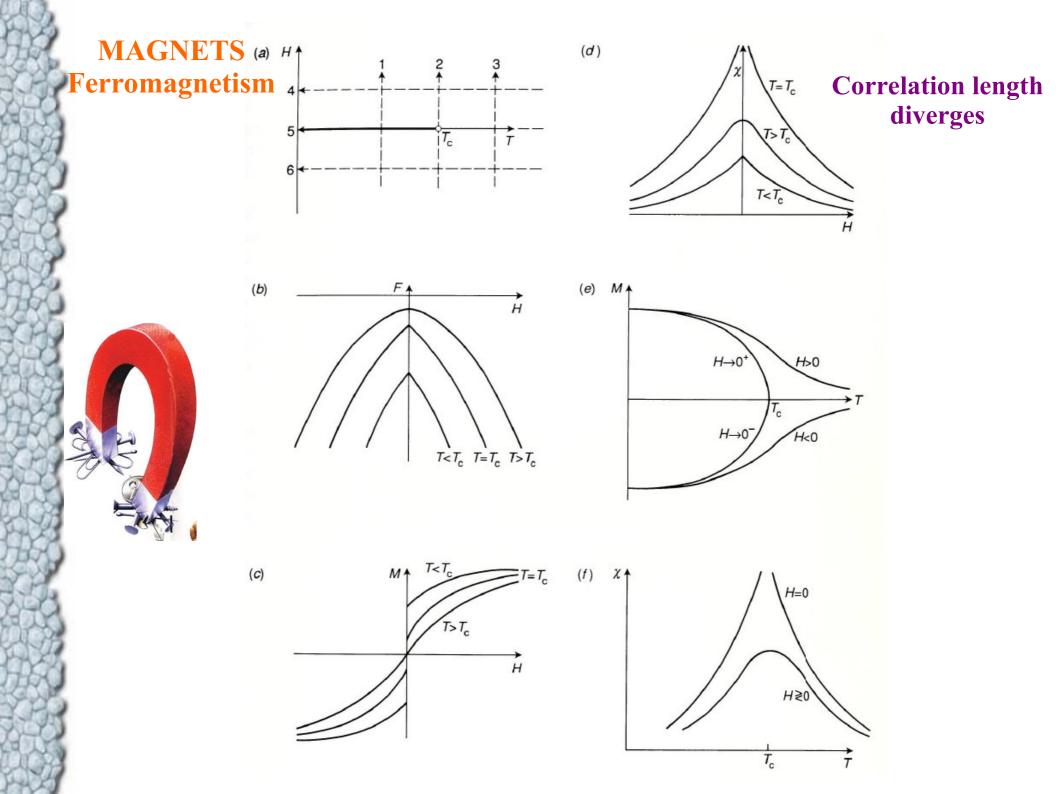
Complexity / variety of phase changes

Transition	Example	Order parameter
$ferromagnetic^a$	Fe	magnetization
$\operatorname{antiferromagnetic}^a$	MnO	sublattice magnetization
$ferrimagnetic^a$	$\rm Fe_3O_4$	sublattice magnetization
$structural^b$	$\rm SrTiO_3$	atomic displacements
$\mathrm{ferroelectric}^b$	BaTiO_3	electric polarization
${\rm order}\text{-}{\rm disorder}^c$	CuZn	sublattice atomic concentration
phase separation d	$\mathrm{CCl}_4\!+\!\mathrm{C}_7\mathrm{F}_{16}$	concentration difference
$superfluid^e$	liquid ${}^{4}\mathrm{He}$	condensate wavefunction
$\operatorname{superconducting}^{f}$	Al, Nb_3Sn	ground state wavefunction
liquid crystalline g	rod molecules	various

From Yeomans, Statistical Mechanics of Phase Transitions (Oxford)

Some systems are equivalent Magnets (⇔liquids) as prototypical examples

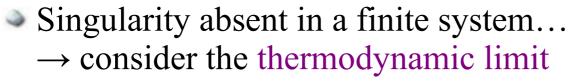


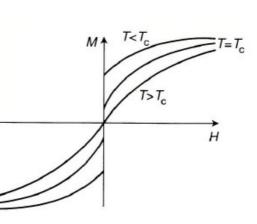


- Abundance/complexity
- \sim Identify an order parameter \leftrightarrow free energy derivative

$$M = -\left(\frac{\partial F}{\partial B}\right)_T$$

Onsager's singular legacy





Lars Onsager (1903-1976)

Introduction to phase transitions and critical phenomena

- 1- Problems raised by phase transitions, from a stat mech perspective
- 2- Classification of phase transitions
- 3- The drosophila of phase transitions
- 4- Order parameter and symmetry breakdown
- 5- Local order and correlation functions : from magnets to liquids

Characterization of 2^{nd} order transitions \rightarrow critical exponents

fluids

Specific heat at constant volume V_c $C_V \sim |t|^{-\alpha}$ Liquid-gas density difference $(\rho_l - \rho_g) \sim$ Isothermal compressibility $\kappa_T \sim |t|^{-\gamma}$ Critical isotherm (t = 0) $P - P_c \sim$

Correlation length

Pair correlation function at T_c

 $C_V \sim |t|^{-\alpha}$ $(\rho_l - \rho_g) \sim (-t)^{\beta}$ $\kappa_T \sim |t|^{-\gamma}$ $P - P_c \sim$ $|\rho - \rho_c [\delta \operatorname{sgn}(\rho - \rho_c)]$ $\xi \sim |t|^{-\nu}$ $G(\vec{r}) \sim 1/r^{d-2+\eta}$

magnets

Zero-field specific heat $C_H \sim |$ Zero-field magnetization $M \sim ($ Zero-field isothermal susceptibility $\chi_T \sim |$ Critical isotherm (t = 0) $H \sim | T$ Correlation length $\xi \sim | t$ Pair correlation function at T_c $G(\vec{r}) \sim$

 $C_H \sim |t|^{-\alpha}$ $M \sim (-t)^{\beta}$ $\chi_T \sim |t|^{-\gamma}$ $H \sim |M|^{\delta} \operatorname{sgn}(M)$ $\xi \sim |t|^{-\nu}$ $G(\vec{r}) \sim 1/r^{d-2+\eta}$

From Yeomans, Statistical Mechanics of Phase Transitions (Oxford)

Why are critical exponents interesting ? \rightarrow several layers of universality



E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945)

	Т _с (К)	P _c (atm)
Ne	45	26
Ar	150	48
Kr	209	54
Xe	290	58
N ₂	126	33
O ₂	154	50
CO	133	34
CH_4	190	45

Corresponding states for liquid-gas transition

There is more to universality

- Solution Liquid-gas transition: $\beta \sim 0.33$
- Solution Magnets with uniaxial anisotropy (MnF₂): $\beta \sim 0.33$
- Solution Phase separation in binary mixture (CCl₄+C₇F₁₆): $\beta \sim 0.33$
- 3d Ising model on cubic lattice, fcc etc...: $\beta \sim 0.33$

\rightarrow all belong to the same <u>universality class</u>

What matters is space dimension + symmetry of order parameter e.g. for Ising in 2D : $\beta = 1/8$

Different universality classes

Universality class	Symmetry of order parameter	α	β	γ	δ	ν	η	Physical examples
2-d Ising	2-component scalar	0 (log)	1/8	7/4	15	1	1/4	some adsorbed mono e.g. H on Fe
3-d Ising	2-component scalar	0.10	0.33	1.24	4.8	0.63	0.04	phase separation, flu order-disorder e.g. β
3-d X-Y	2-dimensional vector	0.01	0.34	1.30	4.8	0.66	0.04	superfluids, supercon
3-d Heisenberg	3-dimensional vector	-0.12	0.36	1.39	4.8	0.71	0.04	isotropic magnets
mean-field		0 (dis.)	1/2	1	3	1/2	0	
2-d Potts, $q=3$ q=4	q-component scalar	$\frac{1}{3}$ $\frac{2}{3}$	$\frac{1}{9}{1}$	13/9 7/6	14 15	$\frac{5}{6}{2/3}$	4/15 1/4	some adsorbed mono e.g. Kr on graphite

- \rightarrow define the O(n) model
- \rightarrow existence of scaling relations, eg $v d = 2 \alpha$

Introduction to phase transitions and critical phenomena

- 1- Problems raised by phase transitions, from a stat mech perspective
- 2- Classification of phase transitions
- 3- Ising model : the drosophila of phase transitions
- 4- Order parameter and symmetry breakdown
- 5- Local order and correlation functions : from magnets to liquids

Ernst Ising (1900-1998)

Why a transition ?

energy ↔ entropy competition...

against

Why a transition ?

Often energy ↔ **entropy competition...**

but not always

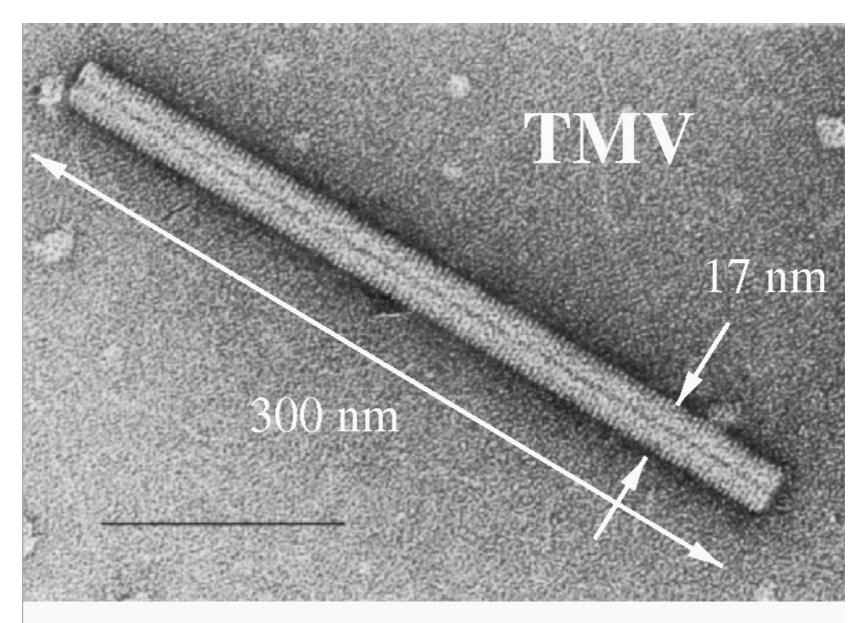
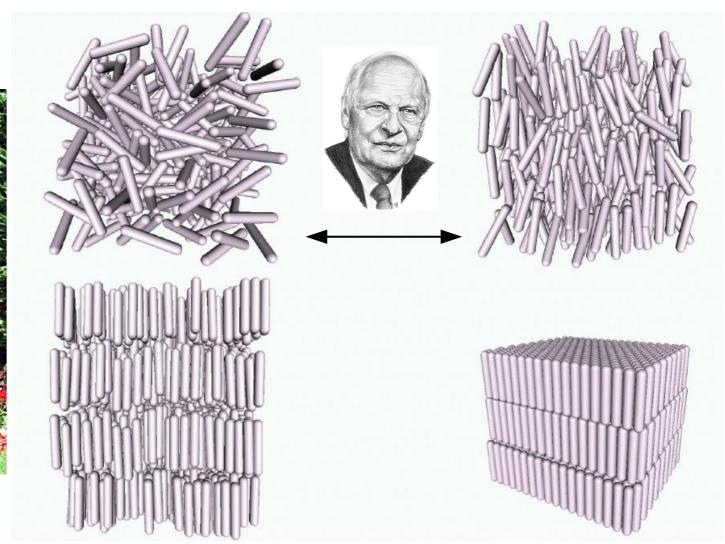


Image from the International Committee on Taxonomy of Viruses database

Phase behaviour of hard sphero-cylinders



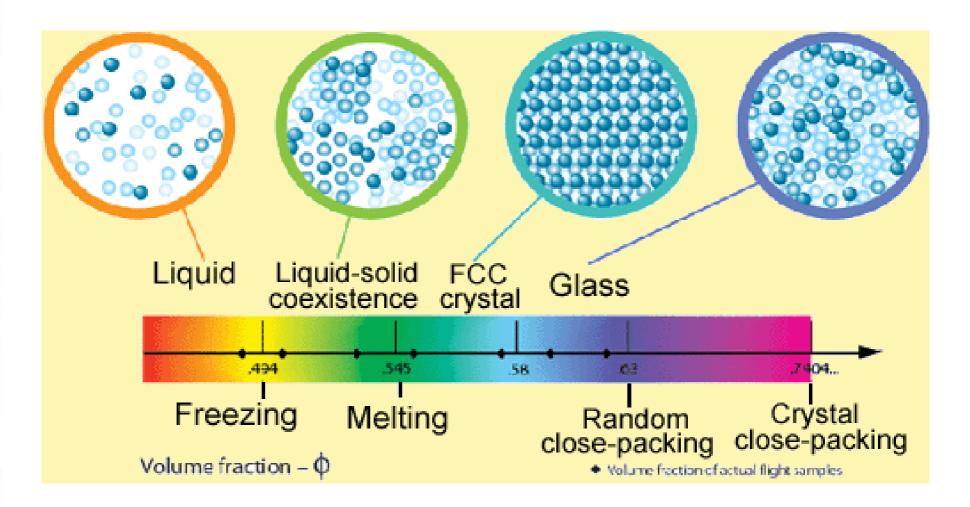
P. Bolhuis, 1996

The dark hand of entropy



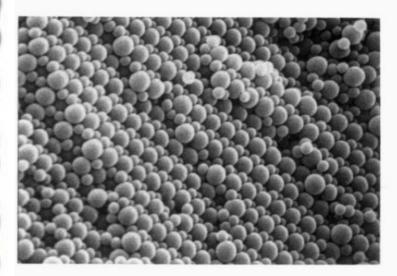
10 fundamental stamps...

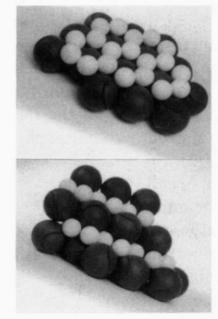
The dark hand of entropy



Entropic phase transition for hard spheres (NASA experiment)

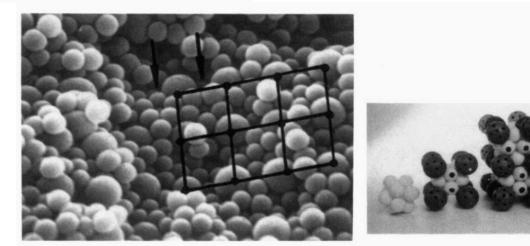
Entropic phase transition for binary mixtures...





AB₂ super-structure also observed in gem opals

AB₁₃ super-structure also observed in gem opals



System : sterically stabilized PMMA spheres P. Bartlett, R. Ottewill, P. Pusey, *Phys. Rev. Lett.* **68**, 3801 (1992)

Back to Ising model

d=1:transfer matrix formalism

$\sim d=2$: Peierls + Onsager's exact solution

$\sim d=3$: renormalization group treatment

THE RENORMALIZATION GROUP AND CRITICAL PHENOMENA

Nobel lecture, 8 December 1982

by

KENNETH G. WILSON

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

When I entered graduate school, I had carried out the instructions given to me by my father and had knocked on both Murray Gell-Mann's and Feynman's doors, and asked them what they were currently doing. Murray wrote down the partition function for the <u>three dimensional Ising model</u> and said it would be nice if I could solve it (at least that is how I remember the conversation). Feynman's answer was "nothing". Later, Jon Mathews explained some of

Nobel 1969

Nobel 1965

One and higher dimension Where does the difference come from ?

d=1

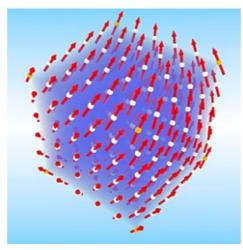
d=2 (and larger)

	(a)	(b)
r)	+ + + + + +	+ + + + + -
	+ + + + + +	+
	+ + + + + +	+ -
	+ + + + + +	+
	+ + + + + +	+ + + -
	+ + + + + +	+ + + + + + + + + + + + + + + + + + +

→ In 1d, the energetic cost of fluctuations is too small Entropy dominates, fluctuations proliferate

- \rightarrow no phase transition
- \rightarrow notion of lower critical dimension : $d_{lower} = 1$ for usual Ising

Back to the O(n) model with n > 1: the physics of spin waves



The Mermin Wagner theorem

No phase transition with continuous symmetry in one and two dimensions

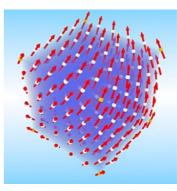
Introduction to phase transitions and critical phenomena

- 1- Problems raised by phase transitions, from a stat mech perspective
- 2- Classification of phase transitions
- 3- Ising model : the drosophila of phase transitions
- 4- Order parameter and symmetry breakdown
- 5- Local order and correlation functions

Conclusion of chapter

- \blacksquare Phase transition \leftrightarrow discontinuity or singularity in free energy derivative
- Solution No phase transition in a finite system (so... what about computer simulations? → see the tutorial on Binder cumulants)
- Phase transition means long range order...
 although the correlation function is short range outside T_c
- Solution Correlation length diverges at T_c : microscopic details no longer matter \rightarrow universality \rightarrow renormalization group treatment
- Notion of lower critical dimension :
 - 1 for discrete spins, 2 in continuous case (Mermin Wagner)

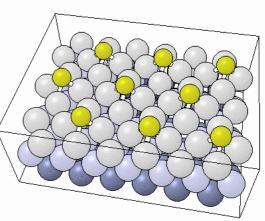
Goldstone modes destabilize order



Beyond universality, Ising also important through isomorphism of models

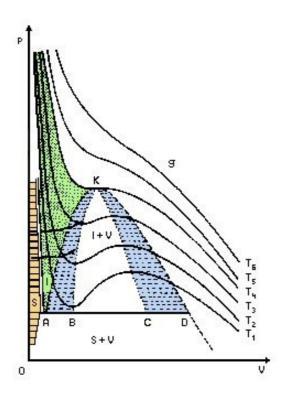
- Binary alloys
- Lattice gas model, for liquid/gas transition ; or adsorption of H onto iron

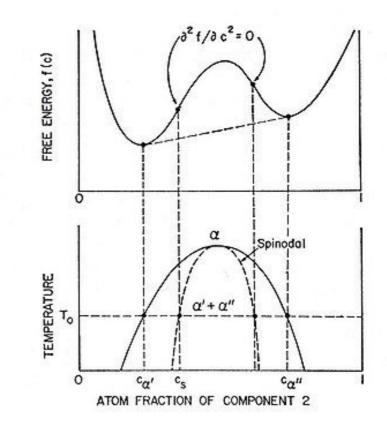
Fe surface (110)

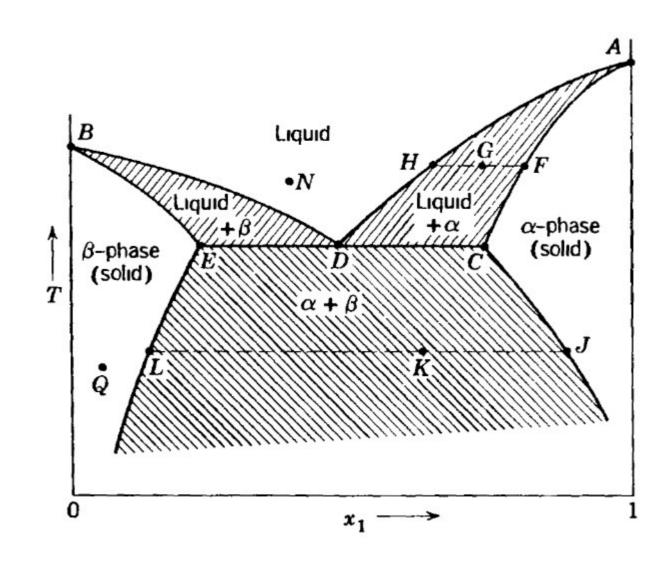


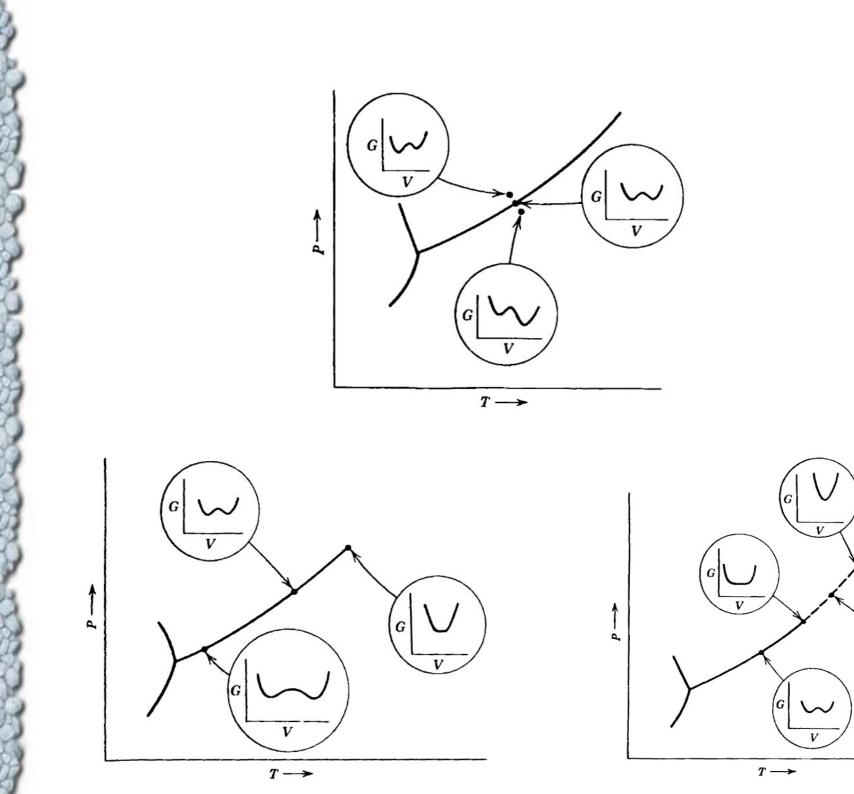
- Fads/herds and hypes (effets de mode)
- Neuronal activity
- Protein folding,
- Bird flocking... and much more

Spinodal and binodal



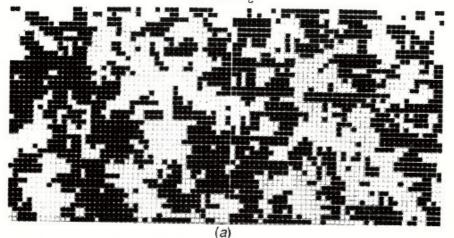






G

V



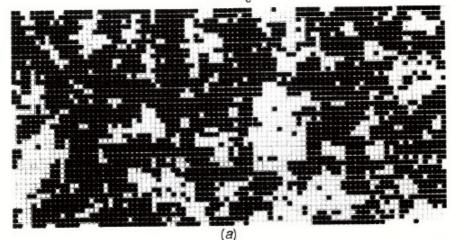
b

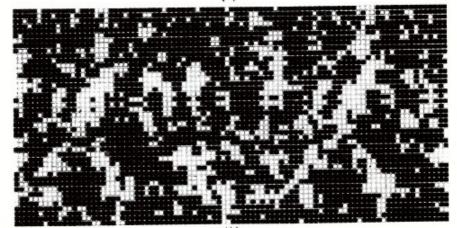
(C)

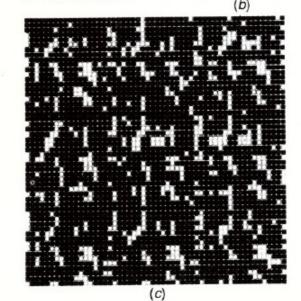
(d)

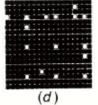
建液油 (e)

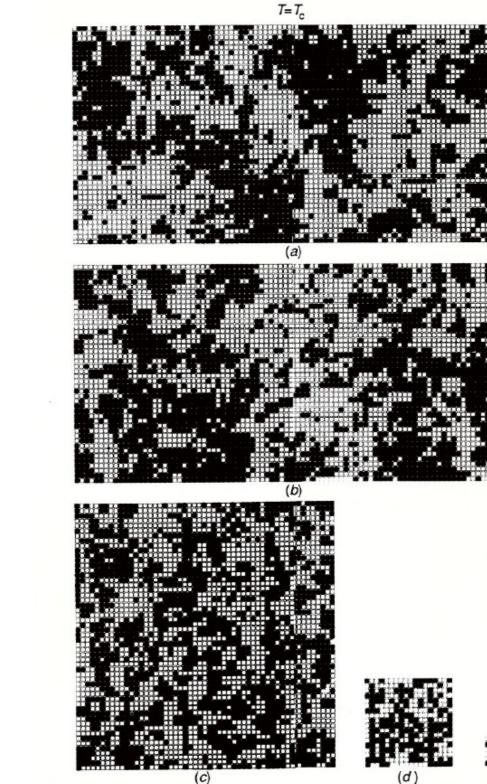
T=0.99



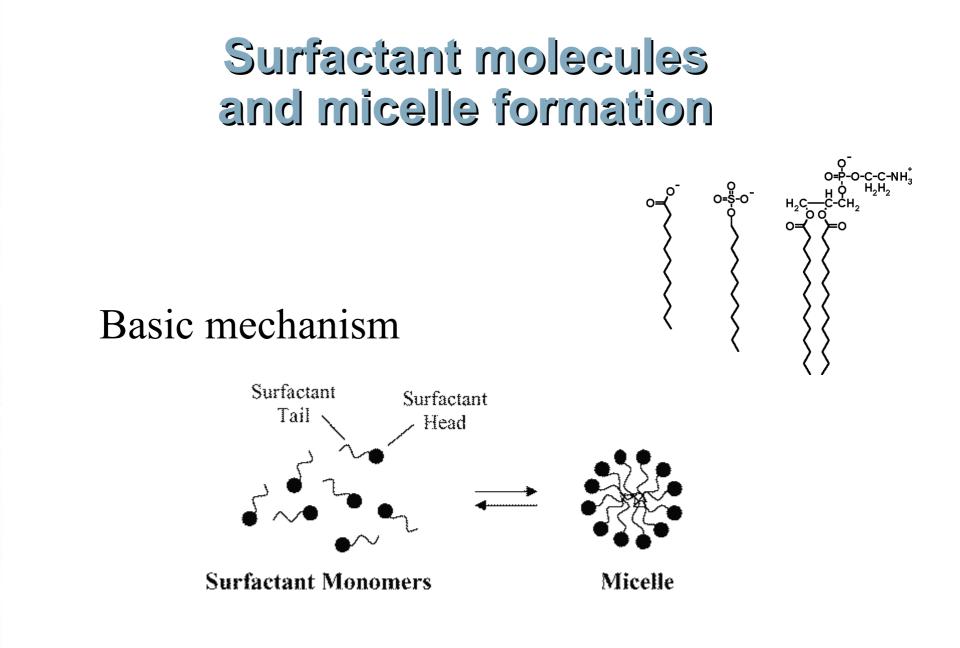






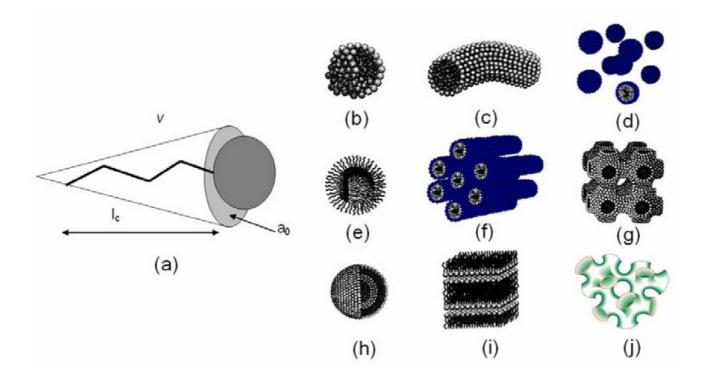


(e)



Opens for considerable richness

Various surfactant phases

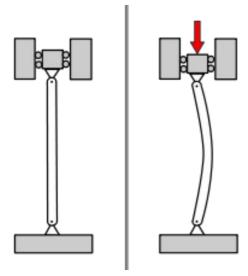


- (a) An amphiphilic molecule
- (b) Spherical micelle
- (c) Cylindrical micelle
- (d) Cubic phase
- (e) Inverse micelle

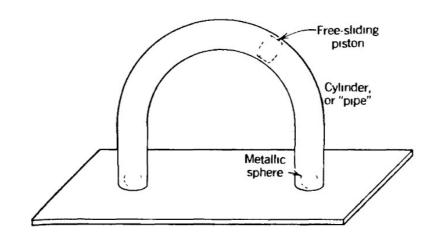
- (f) Hexagonal phase
- (g) Bicontinuous cubic structure
- (h) Vesicle
- (i) Lamellar phase
- (j) Sponge phase

a whole zoo

Mechanical symmetry breakdown



Buckling



I Introduction to phase transitions and critical phenomena

- 1- The problems raised by phase transitions, from a statistical mechanics perspective
- 2- Classification of phase transitions
- 3- Ising model: why?
- 4- Order parameter and symmetry breakdown
- 5- Local order and correlation functions

II First order phase transitions (mostly treated as a tutorial)

- 1- Unstable isotherms, double-tangent and Maxwell construction
- 2- Spinodal and binodal

III Critical phenomena : qualitative approaches

- 1- Weiss molecular field
- 2- Variational mean-field and critical exponents
- 4- Landau theory
- 5- Correlation functions and Ginsburg-Landau functional

IV Beyond mean-field: fluctuations and scaling

1- Fluctuations

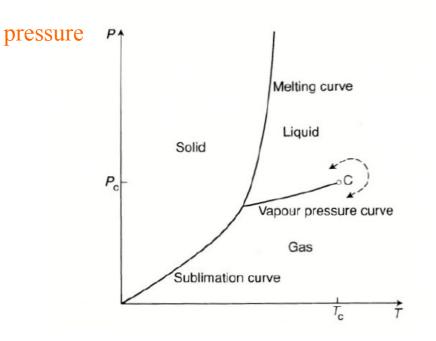
What do mean-field practitioners really do ? Fluctuation correction to the saddle-point Ginzburg criterion, crossover behaviour Scattering and fluctuations: measure of structure factors

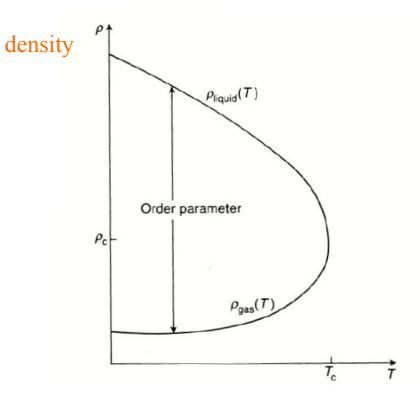
2- The scaling hypothesis: life with a large correlation length Homogeneity and scaling relations Finite size scaling: turning a drawback into an advantage

V Renormalisation group ideas

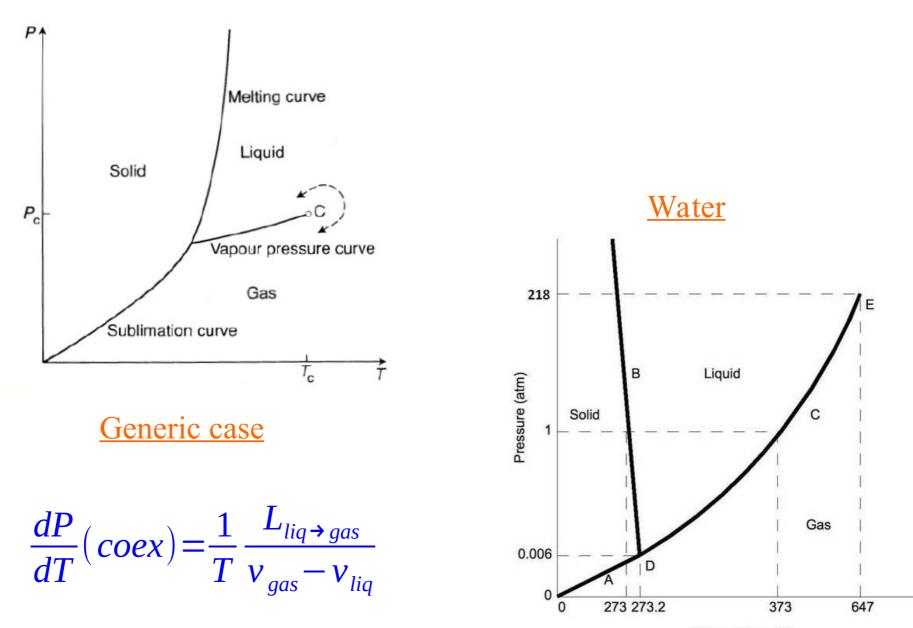
- 1- What are the problems ?
- 2- Definition of a renormalisation group transformation
- 3- Fixed points and universality
- 4- Scale invariance, critical exponents

Identify an ORDER PARAMETER





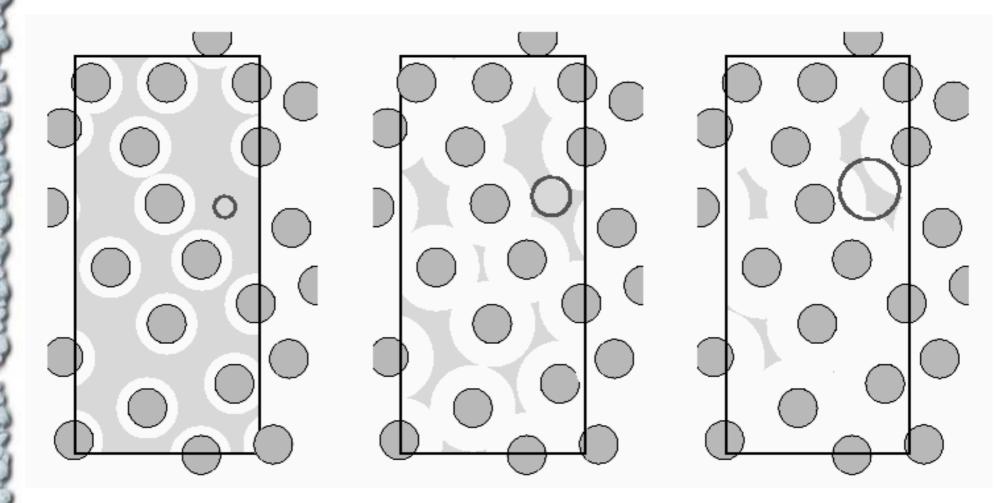
Examples and exceptions



Temperature (K)

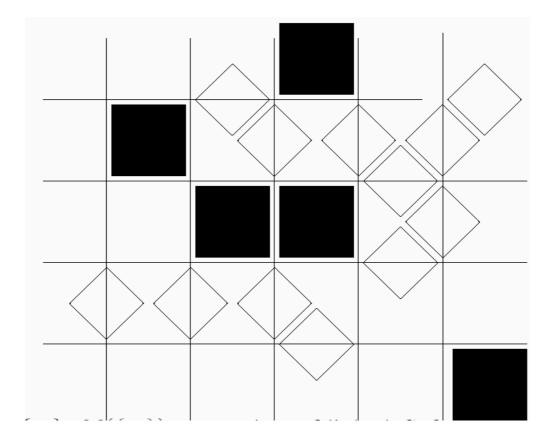
The excluded volume

Increasing the size of a tagged particle



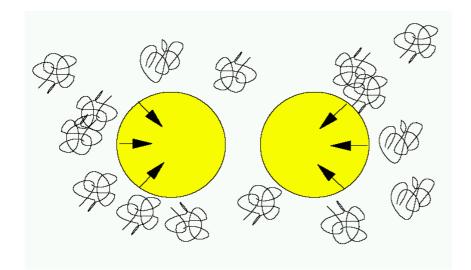
after Barrat/Hansen

Depletion forces: an exactly solvable lattice model



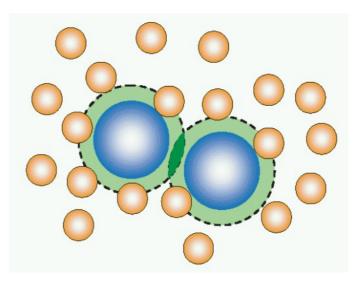
Frenkel and Louis, Phys. Rev. Lett. 68, 3363 (1992)

Sphere-sphere depletion potential

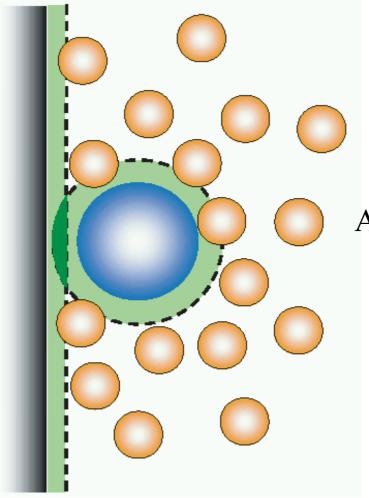


Colloid-polymer mixture

Mechanical and entropic interpretations fully coincide

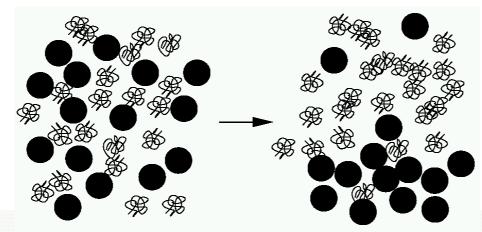


Sphere-plane depletion potential

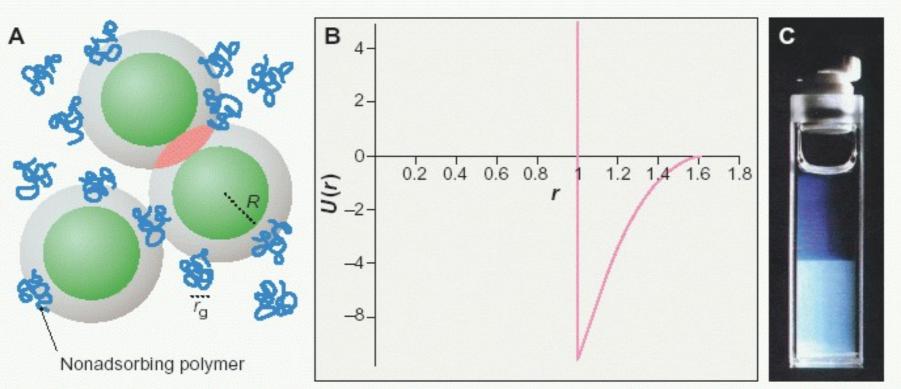


Again... uncompensated pressure overlap of exclusion zones

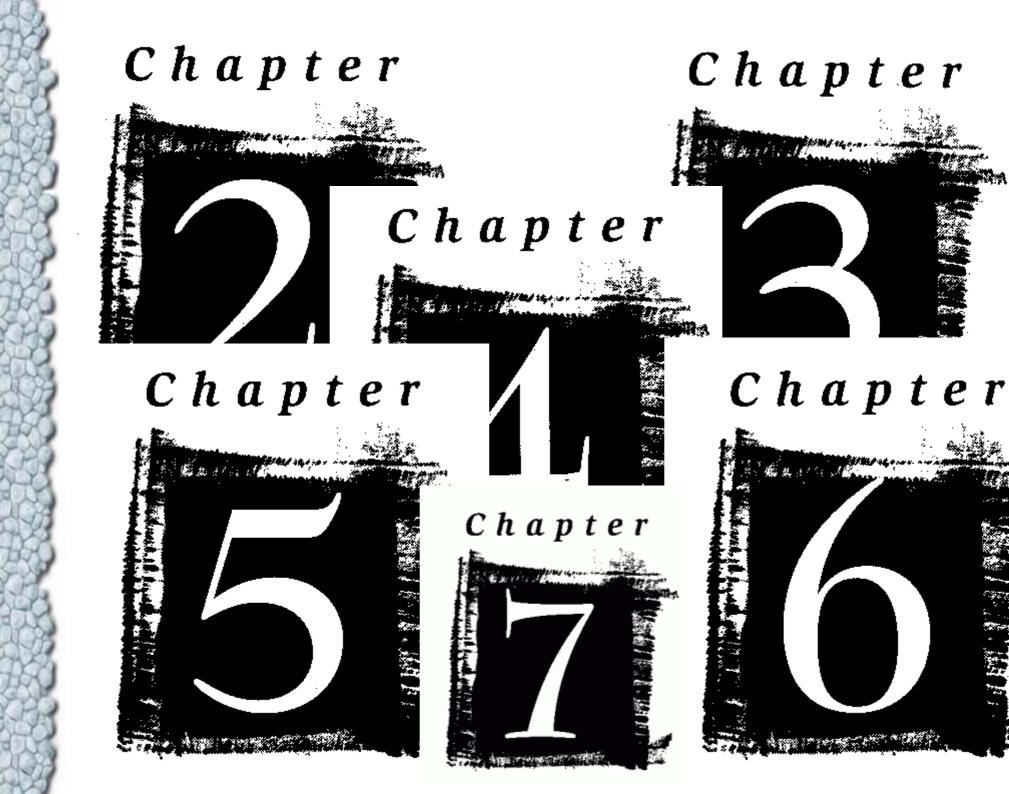
Polymer induced flocculation



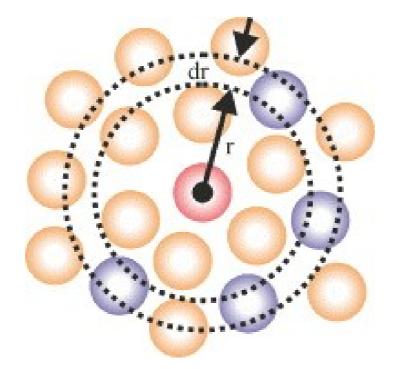
expected mechanism



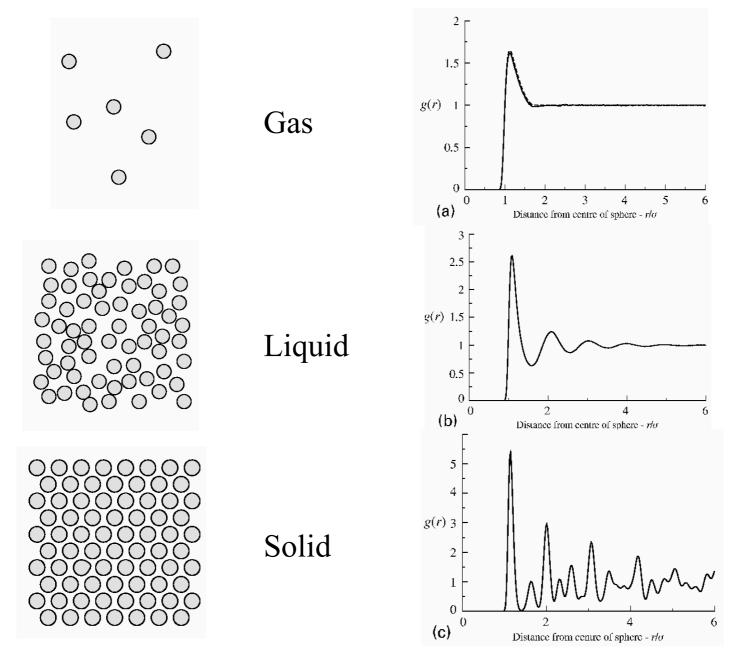
PMMA spheres (70 nm) + polystyrene



The pair correlation function g(r)

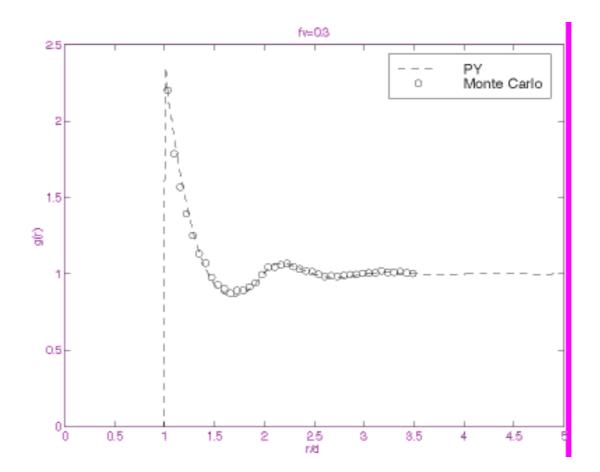


For a Lennard-Jones fluid



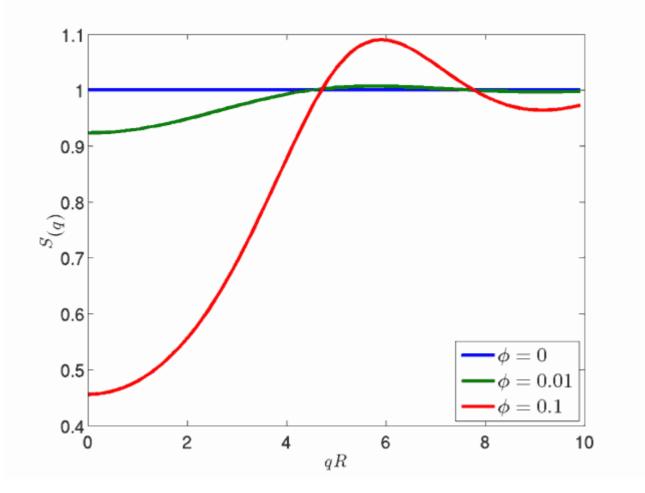
From Barrat/Hansen, Basic concepts for simple and complex fluids (2003)

The pair distribution function



Hard spheres ; maximum at contact

Structure factor S(k)



Hard spheres