
IPa school on disorder in complex systems
Introduction to phase transitions and critical phenomena

Tutorial 1

Binder cumulants and phase transitions

The free energy of a finite system cannot be singular: a phase transition can only be observed in
the thermodynamic limit, i.e. with infinitely large systems. While this limitation is of little practical
relevance for experimental systems (finite but in general large enough to exhibit the hallmarks of phase
transitions), it has important conceptual and practical consequences for computer simulations. More
often than naught, the computed observables are strongly system-size dependent, and thus quite different
from their thermodynamic limit value. Interestingly, the proper treatment of finite-size effects turns this
apparent drawback into a powerful and useful tool for the study of phase transitions, at a continuous but
also a first order transition.

Here, we will focus on continuous phase transition. The rather general arguments below are illustrated
on the example of Ising spin 1/2 model, on regular square lattices in dimension d (therefore cubic for
d = 3 etc.). Couplings are restricted to nearest neighbors and there is no external field applied. The
ferromagnetic coupling constant is denoted J and T is the temperature. The number of spins in the system
is N . We define the instantaneous magnetization in the system from the spin configuration {si}i=1...N by

s =
1

N

N∑
i=1

si, (1)

where every spin takes value ±1. By averaging over a number of equilibrium configurations in a finite-size
L× L system, we thereby define the moments 〈s2〉

L
, 〈s4〉

L
etc.

1) For a Gaussian random variable X with mean 0 and standard deviation
√
〈X2〉 = σ, what is the

value of 〈X4〉/〈X2〉2?

2) For a random variable X that would be sharply peaked around X∗ 6= 0 (meaning that X∗ is much
larger than the standard deviation), what is the approximate value of 〈X2〉? Same question for 〈X4〉
(or actually for the mean of any power of X). What is then (approximately) 〈X4〉/〈X2〉2.

3) Figure 1 displays the behaviour of the so-called Binder cumulant

U
L
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L
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L

. (2)

Invoking the central limit theorem, explain the dominant small T and large T behaviours displayed by
U

L
. A thorough explanation goes through estimating the fluctuations of s, that obey the fluctuation-

response connection

〈s2〉
L
−m2

sp =
χkT

N
, (3)

where χ is the susceptibility per spin and msp is the spontaneous magnetization. Below the critical
temperature, msp > 0.

4) It is observed on the right panel in Fig. 1 that the curves at different sizes do cross at a special
point. What is this point, and why is there crossing? How can this feature be used to study the
phase transition?

5) It is seen in Fig. 1 that at small T , U
L

departs from a constant by a small negative value. Using a
combination of the central limit theorem and the fluctuation-response connection, show indeed that

U
L
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3
− 4χkT

3N m2
sp

. (4)
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Figure 1: Binder cumulants. Plot of 3U
L
/ 2 as a function of kT/J , where k is the Boltzmann constant,

for square lattices of growing sizes N = L×L. The right panel is a zoom into the sector where the curves
cross. From A. Sandvik (2015).
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