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Real space renormalization of an Ising model

The purpose of this set of problems is to learn how to implement the renormalization group ideas on
simple physical systems, such as interacting spins.

1 Warm-up on the one-dimensional Ising chain

A one-dimensional Ising model has Hamiltonian H = −J
∑N
i=1 σiσi+1, where J > 0, σi = ±1 and where

i = 1, . . . , N , with σN+1 ≡ σ1 (periodic boundary conditions are used). The lattice spacing a is taken to
be unity. The partition function of the Ising chain is denoted by Z(K,N, a), where K = βJ .

1) Prove that for three spins σ, σ′ and σ′′, one can always write∑
σ′

eKσσ
′+Kσ′σ′′

= AeK
′σσ′′

(1)

where A and K ′ are functions of K. Show that one can write tanhK ′ = (tanhK)2.

2) Use the identity in 1 to show that Z(K,N, a) = AN/2Z(K ′, N ′ = N/2, a′). What is a′? How would
you interpret lnA?

3) The calculation in 2 can be interpreted as a renormalization procedure with a scaling factor b. What
is b? By iterating the procedure, one obtains a recursion relation on the coupling Kn after n steps
(K0 = K = βJ , K1 = K ′, etc.). What are the fixed points of the recursion relation? What is their
physical meaning? Why are the terms “high-temperature” or “low-temperature” used when describ-
ing these fixed points (here and throughout, the temperature has however been kept a constant)?

4) We define the dimensionles correlation length as ξ̃ = ξ/a. Show that ξ̃′ = ξ̃/2. Taking advantage of

the fact that tanhK ′ = (tanhK)2, show that this yields ξ̃ ∝ 1/[− log(tanhK)].

2 The Niemeijer-Van Leeuwen decimation procedure

In the early days of the renormalization, Niemeijer and Van Leeuwen [Phys. Rev. Lett. 31, 1411 (1973)]
came up with an explicit, albeit approximate, procedure to integrate out a fraction of the degrees of
freedom in a two-dimensional spin system. This is what we want to explore in this section. We consider
a two-dimensional Ising model with N spins living on a triangular lattice with spacing a. The exchange
energy J normalized by the temperature is again denoted by K.

1) The lattice is divided, as shown in figure 1, into triangular plaquettes. A spin variable SI = ±1 is
associated to each plaquette I = {i1, i2, i3} via a majority rule: SI = sign(σi1 + σi2 + σi3). What
is the number N ′ of plaquettes and what is the spacing a′ of the triangular lattice the plaquettes
make up?

2) The Hamiltonian H = −J
∑
〈i,j〉 σiσj of course features interactions between spins σi belonging to

the same plaquette I, but it also features interactions between spins σi and σj belonging to differ-
ent nearest neighbor plaquettes I and J . We thus split the Hamiltonian into H = H1 + H2, with
H1 =

∑
I h1(I) and H2 =

∑
〈I,J〉 h2(I, J). With these loose notations h1(I) actually denotes a

function of the spins pertaining to plaquette I (same for h2(I, J)). For a given triangular plaquette
I = {i1, i2, i3} write the expression of h1(I) as a function of {σi1 , σi2 , σi3}. Similarly, for two nearest
neighbor plaquettes I = {i1, i2, i3} and J = {j1, j2, j3}, write h2(I, J) as a function of {σi1 , σi2 , σi3}
and {σj1 , σj2 , σj3}.
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Figure 1: The original spins σi lie at the black bullets while the plaquette spins lie at the empty circles.
They form a triangular lattice materialized with dashed lines.

3) We would like to rewrite the original partition function Z in terms of a summation over the {SI}
configurations rather than over the {σi} configurations, be it at the expense of modifying the Hamil-
tonian. As a step in that direction, we note that

Z(K,N, a) =
∑
{SI}

′∑
{σi}

e−βH[{σi}] (2)

where
∑′

denotes a sumation over all {σi} configurations at fixed plaquette configurations SI =
sign(

∑
i∈I σi). Let Z({SI}) =

∑′
{σi} e−βH[{σi}]. Determine the approximate expression of Z({SI}),

denoted by Z1, when the plaquette-plaquette interactions are discarded.

4) Justify that

Z(K,N, a) =
∑
{SI}

Z1〈e−βH2〉1 (3)

where 〈. . .〉1 = 1
Z1

∑′
{σi} e−βH1 . . .. How would you interpret the average brackets 〈. . .〉1?

5) In general, determining 〈e−βH2〉1 is a formidable task. Express the latter average in terms of the
cumulants of H2 with respect to the measure 〈. . .〉1.

6) We now implement the Niemeijer-Van Leeuwen approximation which consists in dropping all cumu-
lants of order ≥ 2. What is the physical content, in terms of plaquette-plaquette interactions, of the
second cumulant (which is neglected)?

7) Let σi be a spin belonging to a plaquette I. Show that

〈σi〉1 = SI
e3K + e−K

e3K + 3e−K
(4)

8) Within the proposed approximation, show that Z(K,N, a) = (e3K + 3e−K)N
′
Z(K ′, N ′, a′), where

K ′ = f(K) is to be identified.

9) Find the fixed points of f . Discuss their stability and their physical meaning. Find the critical
temperature (within the proposed approximation); compare it with the mean-field value. The exact
result is close to 3.6 J/k

10) Let ν be the exponent governing the divergence of the correlation length as criticality is approached.
Find the value of ν predicted by the Niemeijer-Van Leeuwen approximation and compare it with
both its mean-field counterpart and the exact value (νexact = 1).

A few years later, Van Leeuwen and his collaborators [Phys. Rev. Lett. 40, 1605 (1978)] came up with
a decimation scheme exact in the limit of very large systems. While the specifics of the calculation itself
are tedious, the idea was to begin with an N spin system and to eliminate, at each step of the decimation
procedure, an infinitesimal fraction of spins.
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