
Renormalization à la Migdal-Kadanoff - short correction

A- The 1d case

1) We have exp(KSiSj) = coshK + SiSj sinhK = (coshK) (1 + SiSj tanhK). This stems from
the fact that SiSj = ±1. If this is not seen immediately, one way to proceed is to write

eKSiSj = cosh(KSiSj) + sinh(KSiSj) = cosh(K) + sinh(KSiSj) = coshK + SiSj sinhK, (1)

from parity.

2) S2 will later on be a spin to be decimated :∑
{S2}

eKS1S2+KS2S3 = (coshK)2
∑
{S2}

(1 + S1S2 tanhK) (1 + S2S3 tanhK)

= 2 (coshK)2
[

1 + S1S3 (tanhK)2
]
. (2)

The terms in S0
2 and S2

2 only do survive upon integrating out S2.

3) The partition function can be written

Z(K,N, a) =
∑
{Si}

∏
i

exp (KSiSi+1) = (coshK)N
∑
{Si}

∏
i

(1 + SiSi+1 tanhK) . (3)

Using repeatedly relation (2), for all spins marked with a cross, we arrive at

Z(K,N, a) = (coshK)N Z(K ′, N/b, ba) (4)

where since there are b− 1 spins integrated out between successive retained spins, it appears that
the renormalized model has lattice constant K ′ such that

tanhK ′ = (tanhK)b . (5)

One may note that for b = 2, tanhK ′ = (tanhK)2 ⇐⇒ K ′ =
1

2
log cosh(2K), a form that

we already met (see the tutorials).

B- The two-dimensional model / take 1

4) When computing the partition function, integrating out spins marked with a square in Fig. C1
couples the 4 neighboring spins. Couplings proliferate upon decimation, which is not sustainable.

Figure C1 – Proliferation of couplings under naive renormalization. In one iteration, integrating out the
� spin, the spins marked with circles become coupled by a 4-body term.
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Figure C2 – Finding the fixed point of the recursion relation (7). The graph is for the x 7→ x′ mapping,
with x = tanhK. The non-trivial fixed point is at xc ' 0.3.

5) Moving the bonds makes the problem locally unidimensional, so that we can make use of the result
shown in section A. Therefore, the recursion relation is

tanhK ′ = [ tanh(2K) ]2 . (6)

In terms of x = tanhK, this means

x′ = [ tanh(2K) ]2 =

[
2 tanhK

1 + tanh2K

]2
=

[
2x

1 + x2

]2
. (7)

6) Fixed points for relation (7). There are two trivial fixed points : a large-temperature one for K = 0,
and a low-temperature one for K → ∞. With x = tanhK, they correspond respectively to x = 0
and x→ 1. It can be seen on Fig. C2 that they are both stable, since the derivative is smaller than
unity in their vicinity 1. The figure also displays a third (and non-trivial) fixed point, xc ' 0.3. For
such a value, the t 7→ tanh t graph provided in the main text shows that tanh t ' t is a very fair
approximation (remember the next Taylor term in the expansion, which is t3/3). Thus, Kc ' 0.3 .
A more precise calculation shows that Kc ' 0.305. This fixed point is unstable, as it should.

7) The mean-field prediction is Kmf
c = 1/4, since each site has 4 neighbors on the lattice. As always,

mean-field overestimates the critical temperature, and correspondingly underestimates the critical

K, since it discards fluctuations that destroy order : Kmf
c < Kexact

c . Note that Migdal and Kadanoff

do a better job here than mean-field.

8) Lars Onsager solved the d = 2 Ising model in the 1940s. Rudolf Peierls had previously rigorously
shown the existence of a phase transition for the d = 2 Ising model, in the 1930s.

9) Since the large scale features are preserved by renormalization, ξ′ = ξ, meaning that ξ̃′/ξ̃ = 1/b.

10) We know that when K → K ′, ξ̃ → ξ̃/b. To loop the loop, we need ξ̃ ∝ |K − Kc|−ν . Denoting
K = Kc + δK, K ′ = Kc + δK ′, this means

(δK ′)−ν

(δK)−ν
=

ξ̃′

ξ̃
=

1

b
=⇒ ∂K ′

∂K

∣∣∣∣
Kc

= b1/ν . (8)

1. We are supposed to study the K 7→ K′ mapping, rather than x 7→ x′. Both are equivalent, and if a fixed point is
(un)stable in one variable, then so is it for the other. Indeed, let us call f the function behind the mapping K → K′ :
K′ = f(K), and we are interested in some K∗ with K∗ = f(K∗). We change variable to x = ϕ(K), and we take ϕ to be a
bijection (here, a tanh). Then, x′ = ϕ(K′) = ϕ(f(K)) = ϕ(f(ϕ−1(x))). Elementary calculus shows that

dx′

dx
= ϕ′

(
f(ϕ−1(x))

) f ′
(
ϕ−1(x)

)
ϕ′(ϕ−1(x))

= ϕ′
(
f(K)

) f ′
(
K
)

ϕ′(K)
=⇒ dx′

dx

∣∣∣∣
x∗

= ϕ′
(
f(K∗)

) f ′
(
K∗

)
ϕ′(K∗)

= f ′(K∗).

This proves that a fixed point exhibits the same stability features in both representations, K or x.
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Differentiating (6), we get

(1− tanh2K ′︸ ︷︷ ︸
tanh4(2K)

)
∂K ′

∂K
= 4 tanh(2K)(1− tanh2 2K) =⇒ ∂K ′

∂K

∣∣∣∣
Kc

=
4 tanh 2Kc

1 + tanh2 2Kc

= 2 tanh(4Kc),

(9)

using one more time tanh(2t) =
2 tanh t

1 + tanh2 t
. Since Kc ' 0.3, we can read for the graph given in

the main text that tanh(1.2) ' 0.84. We need to find ν satisfying 21/ν ' 2× 0.84 ' 1.68 ' 5/3 :

ν ' log 2

log 5/3
' 0.69

0.51
' 0.69

0.5(1 + 2 10−2)
' 0.69

0.5
(1− 2 10−2) ' 1.38− 2 ∗ 0.14 ' 1.35. (10)

To conclude, we have found

ν ' 1.35 while νmf =
1

2
and νexact = 1 . (11)

On this count as well, we improve over mean-field.

C- The two-dimensional model / take 2
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Figure C3 – The 4 steps involved in the procedure, with translation in terms of coupling strengths.

11) We decimate b− 1 bonds. According to the result of section A, this means that

tanh K̃x = (tanhKx)b , (12)

while K̃y = bKy.

12) The x-bonds are broken and moved as shown in the figure, which then opens the possibility to
decimate the y-bonds. Then, the x-bonds undergo a b-fold increase and in the perpendicular direc-
tion, tanhK ′y = [tanh(K̃y)]

b. The chain of four moves/decimation is addressed in Fig. C3, where
the corresponding change affecting the couplings is sequenced. To summarize :

K ′x = b tanh−1
(

tanhbKx

)
; K ′y = tanh−1

(
tanh(bKy)

)b
. (13)
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13) We take b = 1 + ε ; we will need
d tanh−1(x)

dx
=

1

1− x2
and

1

1− tanh2 = cosh2.

K ′x = (1 + ε) tanh−1
[
(tanhKx)1+ε

]
(14)

= (1 + ε) tanh−1
[
(tanhKx)(1 + ε log tanhKx)

]
+ O(ε2) (15)

= (1 + ε)

{
tanh−1(tanhKx) + ε

(tanhKx) log tanhKx

1− tanh2Kx

}
+ O(ε2) (16)

= Kx + ε

{
Kx + log tanhKx

tanhKx

1− tanh2Kx

}
+ O(ε2). (17)

and thus we take, to linear order in ε,

K ′x = Kx + ε
{
Kx + (coshKx)(sinhKx) log tanhKx

}
(18)

K ′x = Kx + ε

{
Kx +

sinh(2Kx)

2
log tanhKx

}
. (19)

We treat the recursion relation for K ′y similarly,

K ′y = tanh−1
{[

tanh((Ky + εKy)︸ ︷︷ ︸
tanhKy+εKy(1−tanh2Ky)

]1+ε}
(20)

= tanh−1
{

tanhKy + εKy(1− tanh2Ky) + ε (tanhKy) log tanhKy

}
+ O(ε2) (21)

= Ky + ε
Ky(1− tanh2Ky) + (tanhKy) log tanhKy

1− tanh2Ky

. (22)

Finally, we arrive at the same relation as (19)

K ′y = Ky + ε

{
Ky +

sinh(2Ky)

2
log tanhKy

}
. (23)

14) With the exact critical coupling Kexact
c =

1

2
log(1 +

√
2), one has

exp(2Kexact
c ) = 1 +

√
2, sinh

(
2Kexact

c

)
= 1, tanhKexact

c =
1

1 +
√

2
(24)

which proves the statement : Kexact
c is a fixed point of the recursion relation (19).

15) We start with Eq. (8), and we denote F (K) the term in the curly brackets in Eq. (19) :

(1 + ε)1/ν = 1 +
ε

ν
+O(ε2) =

∂K ′

∂K

∣∣∣∣
Kexact

c

= 1 + ε F ′(Kexact
c ) =⇒ 1

ν
= F ′(Kexact

c ). (25)

Then,

F ′(K) = 1 + cosh(2K) log tanhK +
sinh(2K)

2

1− tanh2K

tanhK
= 1 + cosh(2K) log tanhK + 1.

=⇒ F ′(Kexact
c ) = 2−

√
2 log(1 +

√
2. (26)

To leading order in ε, the critical exponent ν for the correlation length thus reads

ν =
1

2−
√

2 log(1 +
√

2)
. (27)

The numerical value of ν, 1.327, is closer to the exact result than its “take 1” counterpart, but not
by an impressive amount. Here, the effort did not spectacularly pay off.
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D- Generalization to arbitrary dimension (take 1 route)

16) On a three-dimensional cubic lattice with b = 2, an iteration increases length by a factor of 2, so
that N → N/8. In between retained sites, and before decimation, there are two bonds. To preserve
the total “strength” of the lattice, the bond moving step strengthens each bond by a factor 4 (see
Fig. C4, where the 4-fold increase is recovered by a different argument). The “take 1” recursion
relation between K and K ′ is thus

tanhK ′ =
[
tanh(4K)

]2
. (28)

bond

moving

decimation
K K 4K4K K’

Figure C4 – Sketch of the d = 3, b = 2 procedure. To get the strengthening factor of the bonds, one
can focus on “vertical bonds”, and count how many there are, before and after bond moving. Before
bond-moving, we have 4× 1/4 + 4/2 + 1 = 4 pairs of bonds, where the weights 1/4, 1/2 and 1 come from
the fact that these bonds are shared 4 times (along the edges of the cube), 2 times (faces of the cube) or
not shared (the central pair of bonds). After bond moving, we have just 4/4 = one pair left. This 4-fold
decrease in the number of bonds is compensated by a 4-fold increase in the strength. A similar argument
applies to bonds in the two other directions (not “vertical”).

17) Similarly, for a d-dimensional cubic lattice, N decreases to N/2d and keeping in mind the factor 2
alluded to in the previous question, we have

tanhK ′ =
[
tanh(2d−1K)

]2
. (29)

18) We start from K ′ = tanh−1
[
tanh(2d−1K)

]2
and use that

tanh−1(x) =
1

2
log

(
1 + x

1− x

)
together with 1− tanh2 =

1

cosh2 . (30)

In the large K regime, with x = tanh(2d−1K)→ 1, this yields

K ′ ∼ log 2

2
− 1

2
log(1− x2) ∼ 1

2
log
[
cosh2(2d−1K)

]
∼ 2d−1K. (31)

Therefore, the small temperature sink is stable for d > 1 (and then K ′ > K). This is consistent
with the lower critical dimension equal to unity.

19) For arbitrary b and d, we start by noting that N → N/bd. In between two retained sites, there are
b bonds, so that the bond moving step strengthens each bond by a factor bd−1. Decimation then
leads to the generalized form

tanhK ′ =
[
tanh(bd−1K)

]b
. (32)

Migdal-Kadanoff scheme gets worse, when compared to known results, when d increases. One can
see in particular that for large d, we get Kc ∼ 22−2d, which translates into a d-dependent critical
exponent ν for all d. There is no sign of an upper critical dimension. Besides, it can be shown that
ν approaches 1 for d→∞, which is not the mean-field result.
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