Renormalization a la Migdal-Kadanoff - short correction

A - The 1d case

1)

2)

3)

We have exp(KS;S;) = coshK + S;5; sinh K = (cosh K) (1 + 5;5; tanh K'). This stems from
the fact that 5;5; = £1. If this is not seen immediately, one way to proceed is to write

K55 = cosh(K S;S;) + sinh(K S;S;) = cosh(K) + sinh(KS;S;) = cosh K + S;S; sinh K, (1)

from parity.

So will later on be a spin to be decimated :

D eSS = (cosh K)? ) (1 + 815, tanh K) (1 + S293 tanh K)
{S2} {S2}
— 2 (cosh K)? [1+ 5153 (tanhK)2]. (2)

The terms in S and S2 only do survive upon integrating out Sa.

The partition function can be written

Z(K,N,a) ZHeXp (K S;Sit1) = (cosh K)N ZH + S;Siy1 tanh K) . (3)
{sit @ {si} i

Using repeatedly relation (2), for all spins marked with a cross, we arrive at
Z(K,N,a) = (cosh K)N Z(K',N/b,ba) (4)

where since there are b — 1 spins integrated out between successive retained spins, it appears that
the renormalized model has lattice constant K’ such that

tanh K’ = (tanh K)° | (5)

1
One may note that for b =2, tanh K’ = (tanhK)? = K’ = 3 log cosh(2K), a form that

we already met (see the tutorials).

B- The two-dimensional model / take 1

1)

When computing the partition function, integrating out spins marked with a square in Fig. Cl1
couples the 4 neighboring spins. Couplings proliferate upon decimation, which is not sustainable.
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F1GURE C1 — Proliferation of couplings under naive renormalization. In one iteration, integrating out the
[ spin, the spins marked with circles become coupled by a 4-body term.
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F1cURE C2 — Finding the fixed point of the recursion relation (7). The graph is for the x — 2’ mapping,
with & = tanh K. The non-trivial fixed point is at z. ~ 0.3.

5)

6)

7)

8)

10)

Moving the bonds makes the problem locally unidimensional, so that we can make use of the result
shown in section A. Therefore, the recursion relation is

tanh K’ = [tanh(2K)]? | (6)

In terms of x = tanh K, this means

' = [tanh(2K)]* = [ 2tanh K& ]2 _ [ 2 r

Bl = 7
1+ tanh® K 1+ 22 (7)

Fixed points for relation (7). There are two trivial fixed points : a large-temperature one for K = 0,
and a low-temperature one for K — co. With & = tanh K, they correspond respectively to x = 0
and x — 1. It can be seen on Fig. C2 that they are both stable, since the derivative is smaller than
unity in their vicinity !. The figure also displays a third (and non-trivial) fixed point, z. ~ 0.3. For
such a value, the t — tanht graph provided in the main text shows that tanht ~ t is a very fair
approximation (remember the next Taylor term in the expansion, which is ¢3/3). Thus, .
A more precise calculation shows that K. ~ 0.305. This fixed point is unstable, as it should.

The mean-field prediction is K™ = 1/4, since each site has 4 neighbors on the lattice. As always,
mean-field overestimates the critical temperature, and correspondingly underestimates the critical
K, since it discards fluctuations that destroy order : | K. énf < K&| Note that Migdal and Kadanoff
do a better job here than mean-field.

Lars Onsager solved the d = 2 Ising model in the 1940s. Rudolf Peierls had previously rigorously
shown the existence of a phase transition for the d = 2 Ising model, in the 1930s.

Since the large scale features are preserved by renormalization, £ = £, meaning that E/ / 5 =1/b.
We know that when K — K’, £ — g/b To loop the loop, we need € o |K — K.|7". Denoting
K =K.+ 0K, K' = K.+ §K’, this means

GBK) & 1 oK’

el —_ pl/v
GE)” ~ £ b oK |~ " )

1. We are supposed to study the K + K’ mapping, rather than = — 2’. Both are equivalent, and if a fixed point is
(un)stable in one variable, then so is it for the other. Indeed, let us call f the function behind the mapping K — K’ :
K' = f(K), and we are interested in some K* with K* = f(K™*). We change variable to x = ¢(K), and we take ¢ to be a
bijection (here, a tanh). Then, 2’ = p(K’) = o(f(K)) = ¢(f(¢ *(z))). Elementary calculus shows that

=@ L) - vuun LR — | — sy LR - s

This proves that a fixed point exhibits the same stability features in both representations, K or x.



Differentiating (6), we get
K’ oK' 4tanh 2K,

0
1 — tanh® K’ = 4tanh(2K)(1 — tanh? 2K) — = ——————— = 2tanh(4K,),
(1= fanh” &) 0K (2K ) OK |, 1+tanh?2K, (4Ke)
tanh?(2K) ¢
9)
. . 2tanht . . .
using one more time tanh(2¢) = E—re Since K. ~ 0.3, we can read for the graph given in
an
the main text that tanh(1.2) ~ 0.84. We need to find v satisfying 2!/¥ ~ 2 x 0.84 ~ 1.68 ~ 5/3 :
log 2 . . .
g2 069 069 ~ Y 9102 138240042135 (10)

Y= log5/3 = 051~ 05(1+210-2) ~ 05

To conclude, we have found

1
v~1.35 while ol = 3 and ¥t =1 (11)

On this count as well, we improve over mean-field.

C- The two-dimensional model / take 2
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F1GURE C3 — The 4 steps involved in the procedure, with translation in terms of coupling strengths.

11) We decimate b — 1 bonds. According to the result of section A, this means that

tanh K, = (tanh K,)°|, (12)

while K, = bK,,.

12) The x-bonds are broken and moved as shown in the figure, which then opens the possibility to
decimate the y-bonds. Then, the z-bonds undergo a b-fold increase and in the perpendicular direc-
tion, tanh K, = [tanh(K,)]’. The chain of four moves/decimation is addressed in Fig. C3, where
the corresponding change affecting the couplings is sequenced. To summarize :

xT

b
K! = b tanh™! (tanthz> ; K, = tanh ™! <tanh(be)> . (13)




13) We take b =1+ €; we will need

K, =

and thus we take, to linear order in e,

We treat the recursion relation for KZ’/ similarly,

dtanh™!(x) 1 1 9
= ——— = cosh”.
dx 1— 22 1—tanh2 O
(1+€)tanh™* [(tanh KI)HE] (14)
(1+€)tanh™* [(tanh K)(1 4 elog tanh K,)] + O(e?) (15)
_ tanh K;) log tanh K
1 tanh ™! (tanh K, ( z z O(é 16
( +e){an (tan ) + € | tanh’ K. }—i— (€”) (16)
tanh K.
K, K, + logtanh K, —————"— O(é%). 17
+€{ + logtan 1—tanh2Kr}+ (<) (17)
K, = K, + e{Km + (cosh K, )(sinh K) logtanth} (18)
inh(2K,

K., = |K; + ¢ {Kx + s1n(2) logtanth} . (19)
K, = tanh_l{[ tanh((K, + eKy) }14—5} (20)

= K, +e€

Finally, we arrive at the same relation as (19)

tanh Ky+eKy(1—tanh? K,)
= tanh™! {tanh K, + €K, (1 — tanh® K)) + €(tanh K,) logtanh K} + O(e?)  (21)

K,(1 —tanh? K,) + (tanh K) log tanh K,

1 — tanh? K,

K;:Ky—i-e{Ky—F

sinh(2K,)

log tanh K } .

1
14) With the exact critical coupling K&t = 5 log(1 + /2), one has

exp(2K5) = 1 4+ v/2,

sinh (2KJ) =1,

tanh K &xact

(22)
(23)

1
e

which proves the statement : K& is a fixed point of the recursion relation (19).
15) We start with Eq. (8), and we denote F'(K) the term in the curly brackets in Eq. (19) :

Then,

FI(K) =

— F/ (Kgxact) —

1+ = 1+§+0(62) -

0K’
8K Kgxact

1+ cosh(2K)logtanh K +

2 —v2log(1 + V2.

= 1+ ¢ F(K*Y) =

sinh(2K) 1 — tanh? K

2

tanh K

1

v

= F/(Kg™Y).  (25)

1+ cosh(2K)logtanh K + 1.

To leading order in €, the critical exponent v for the correlation length thus reads

The numerical value of v, 1.327, is closer to the exact result than its “take 1”7 counterpart, but not

1

v 2—\/§log(l+\/§).

by an impressive amount. Here, the effort did not spectacularly pay off.

(27)

(26)



D- Generalization to arbitrary dimension (take 1 route)

16)

On a three-dimensional cubic lattice with b = 2, an iteration increases length by a factor of 2, so
that N — N/8. In between retained sites, and before decimation, there are two bonds. To preserve
the total “strength” of the lattice, the bond moving step strengthens each bond by a factor 4 (see
Fig. C4, where the 4-fold increase is recovered by a different argument). The “take 1” recursion
relation between K and K’ is thus

tanh K’ = [tanh(4K)]* | (28)

decimation *

K

bond
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FiGURE C4 — Sketch of the d = 3, b = 2 procedure. To get the strengthening factor of the bonds, one
can focus on “vertical bonds”, and count how many there are, before and after bond moving. Before
bond-moving, we have 4 x 1/4+44/2+1 = 4 pairs of bonds, where the weights 1/4, 1/2 and 1 come from
the fact that these bonds are shared 4 times (along the edges of the cube), 2 times (faces of the cube) or
not shared (the central pair of bonds). After bond moving, we have just 4/4 = one pair left. This 4-fold
decrease in the number of bonds is compensated by a 4-fold increase in the strength. A similar argument
applies to bonds in the two other directions (not “vertical”).

17)

18)

19)

Similarly, for a d-dimensional cubic lattice, N decreases to N/2¢ and keeping in mind the factor 2
alluded to in the previous question, we have

tanh K’ = [tanh(291K)]?|. (29)

We start from K’ = tanh™! [tanh(Qd_lK)]2 and use that

1 1+ 1
tanh () = = 1 together with 1 — tanh? = : 30
anh™ " (x) 5 log <1 — 3:> ogether wi an ool (30)
In the large K regime, with z = tanh(2¢~'K) — 1, this yields
log 2 1 1
K ~ og — 3 log(1 — z?) ~ B log[cosh2(2d_1K)] ~ 271K (31)

Therefore, the small temperature sink is stable for d > 1 (and then K’ > K). This is consistent
with the lower critical dimension equal to unity.

For arbitrary b and d, we start by noting that N — N/b%. In between two retained sites, there are
b bonds, so that the bond moving step strengthens each bond by a factor b%~!. Decimation then
leads to the generalized form

tanh K’ = [tanh(b? ' K)]"|. (32)

Migdal-Kadanoff scheme gets worse, when compared to known results, when d increases. One can
see in particular that for large d, we get K. ~ 22724 which translates into a d-dependent critical
exponent v for all d. There is no sign of an upper critical dimension. Besides, it can be shown that
v approaches 1 for d — oo, which is not the mean-field result.



