
FIP - L5 2009-2010

Exam

3 hours ; documents and pocket calculators not allowed

Tentative scale : 7 points for problem I, 6 points for problem II and 7 points for problem III

I Fluctuations of work in the Jepsen gas

N.B. This problem may be seen as the follow-up of the home assignment of April-May 2010 ; it is however
completely independent and self-contained.

In recent years, remarkable results have been derived in the realm of non equilibrium statistical mecha-
nics. One of the most well known example is provided by the Jarzynski relation, that reads

〈
e−βW

〉
= e−β∆F . (1)

In this equality, W is the work received by the system when its macroscopic states evolves under the action
of an external perturbation, such as an external field, while ∆F is the corresponding free energy variation.
The system, supposed to be Hamiltonian and classical, is initially at thermal equilibrium at temperature T
(we denote β−1 = kBT the inverse temperature). The brackets 〈. . .〉 stand for an average over the different
possible realizations of the experimental protocol (where the initial and final states are fixed).

The goal here is to explicitly check Jarzynski equality, together with a more general one coined Crooks
relation, on an exactly solvable one dimensional model : the Jepsen gas. We shall consider an assembly
of N identical point particles with mass m, that move on a line that defines the x-axis. These particles
undergo binary elastic collisions that conserve linear momentum and kinetic energy. The particles are initially
uniformly distributed in the interval [−L, 0], with a Maxwellian velocity distribution :

φ(v) =

√
mβ

2π
e−βmv2/2. (2)

The gas is confined by a piston of large mass compared to m, and therefore assumed infinite. This piston
is moved with velocity V . If t denotes the duration of the “experiment”, the piston then moves from the
initial position X = 0 to the final position X = V t.

1. Collision law.

(a) Whenever two particles collide, we note (v1, v2) their precollisional velocities, and (v′1, v
′
2) the

postcollisional velocities. Show that v′1 = v2 and v′2 = v1.

(b) Establish that a particle with velocity v colliding elastically with the piston bounces off with
velocity v′ = 2V − v. It turns useful to consider the collision in the piston frame.

(c) What is the kinetic energy variation of a particle colliding with the piston ?

2. Expressing the work. Question 1a) shows that inter-particle collisions amount to a simple label
exchange of the particles (assumed indistinguishable). We can therefore ignore these collisions, and
consider that the particles do not interact. Only the collisions with the piston do matter. In addition,
we will assume in the sequel that L is very large (and we shall take the thermodynamic limit in due
course), which allows for the neglect of particle-piston recollisions –a given particle cannot collide with
the piston more than once– and additionnaly indicates that the velocity distribution function does not
depend on time.

(a) Explain qualitatively this latter assumption (recollision neglected).
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(b) Show that the work received by the gas in the time interval t reads

W =
N∑

j=1

∆Wj =
N∑

j=1

2mV (V − vj) θ(xj + vjt − V t), (3)

where θ stands for the Heaviside distribution, and where the meaning of the different quantities
will be explained. How does the sign of W depend on the sign of V ?

3. Jarzynski relation.

(a) We first focus on the right hand side of equation (1). What is the expression of the force exerted
by the gas (the density of which is supposed to remain uniform at all times) on the piston ? The
result will be expressed as a function of N, β and the length L occupied by the gas at a given
time t (L = L+V t). What is then the free energy variation ∆F ? Other methods may be used to
compute ∆F , if necessary. Show that in the thermodynamic limit where L → ∞, N → ∞ with
fixed density n = N/L, one has

e−β∆F = eα n V t, (4)

where α is a numerical coefficient to be precised.

(b) We are now interested in the left hand side of relation (1). Show that upon neglecting recollisions
and for L big enough,

〈
e−βW

〉
≃

{
1 +

∫ ∞

V

(v − V ) t

L

[
e2βmV (v−V ) − 1

]
φ(v) dv

}N

(5)

(c) Show that

∫ ∞

V
(v − V )

[
e2βmV (v−V ) − 1

]
φ(v) dv = γ V. What is the value of γ ? It is useful

here to note that the product e2βmV (v−V )φ(v) defines a “shifted” Gaussian probability distribution
function φ(v − 2V ).

(d) What does expression (5) become in the thermodynamic limit where N → ∞ with n = N/L
fixed ? Conclude.

4. Crooks relation (this question is more difficult). It is possible to check a more general relation than
that of Jarzynski, by relating the probability density function of the work W for the ”forward” protocol
(that we shall denote PV (W )), to the probability density P−V (W ) of the reverse protocol, where the
sign of the velocity has been changed. The so-called Crooks relation indeed states that

PV (W ) e−βW = e−β∆F P−V (−W ) ; (6)

it is our purpose here to check that it is indeed fulfilled.

(a) Making use of the representation δ(x) =
∫

exp(ikx)dk/(2π) of Dirac distribution, establish that
in the thermodynamic limit :

PV (W ) =

∫
dk

2π
exp[ikW+ntC(k, V )] where C(k, V ) =

∫ ∞

V
(v−V )

[
e2ikmV (v−V ) − 1

]
φ(v) dv.

(7)

(b) Show that the following symmetry property holds :

C(k, V ) = V + C (−k − βi,−V ) . (8)

(c) Deduce Crooks relation from the above equality.

(d) Explain why the behaviour of the function C(k, V ) at small k allows for the calculation of the
mean values 〈W 〉, 〈W 2〉 − 〈W 〉2 etc. If you are courageous, you may compute the first moment

〈W 〉. It may be useful to introduce the dimensionless variables W̃ = βW , ṽ = v(mβ/2)1/2,
τ = nt[2/(mβ)]1/2 and to make use of the annex appended below.
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(e) In which limit does one expect to have a Gaussian work probability distribution function ?

5. An apparent paradox. . . We imagine that the piston is moved very quickly, with V > 0, much
quicker than the typical velocity of the molecules in the gas (what is the corresponding order of
magnitude ?). One may then expect that the particle-piston collisions become very unlikely, so that
W could ultimately become small if not vanishing. In these circumstances, how can Jarzynski equality
hold (it should, irrespective of V . . . ) ?

6. Another paradox ? Joule expansion. . . (This question is more difficult, but admits short answers).
We consider a system slightly different from the above one ; it is made up of two compartments.
One (say the left compartment) initially contains the gas (segment [−L, 0]), and the other (the right
compartment, segment [0, V t]), is initially empty. We assume here V > 0. The wall between the two
compartments is then removed instantaneously, without any work performed. We note that ∆F does
not vanish though, and has the same value as with the protocol described in the above questions. Since
W = 0, Jarzynski equality seems to be violated. What is the problem ?

Annex : The definition of the complementary error function is recalled

erfc(x) =
2√
π

∫ ∞

x
e−t2 dt, so that erfc(0) = 1. (9)

For large arguments (x → ∞), we have erfc(x) ∼ e−x2

x
√

π
.

Reference :

Jarzynski equality for the Jepsen gas, I. Bena, C. Van den Broeck, R. Kawai, Europhys. Lett. 71, 879 (2005).

II The critical temperature of the bidimensional Ising model

We shall study the Ising model on the bidimensional square lattice schematized on the figure below.

The degrees of freedom are N = L2 Ising spins σi = ±1 placed on the vertices of a part of the lattice of
length L. The energy of a configuration is defined as

H(σ1, . . . , σN ) = −J
∑

〈ij〉

σiσj , (10)

where the sum is over the links of the lattice, and one uses periodic boundary conditions in the two directions.
The goal of the exercise is to compute the critical temperature Tc of the model.

1. What is the sign of J in order for the interactions to be ferromagnetic ?

2. How many terms are there in the sum of the equation (10) ?

3. Show that one can write eβJσiσj = c(1 + tσiσj), where you will give the value of the constants c and t.
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4. Deduce from that the following expression of the partition function for N spins, at the inverse tempe-
rature β :

ZN (β) = c2N
∑

σ1,...,σN

∏

〈ij〉

(1 + tσiσj) . (11)

How many terms are there in the expansion of the product in this equation ?

5. To each of these terms is associated a diagram, i.e. a subset of the links of the lattice, corresponding
to the factors where one retains tσiσj in the expansion. Characterize the diagrams which contribute
to the equation (11). A few drawings may be useful.

6. High-temperature expansion. This expansion is ordered according to the power of t, defining the
coefficients aN,n as

ZN (β) = (2c2)N
∞∑

n=0

aN,ntn . (12)

Justify the name “high-temperature expansion” given to this series. In the following we shall denote
AN (x) =

∑
n aN,nxn.

7. Compute the values of aN,n for n = 0, 1, . . . , 6.

8. Give a definition, without any computation, of the coefficient aN,n for any n.

9. Low-temperature expansion. What is the order of magnitude for the temperature that discrimi-
nates the high against the small temperatures ?

10. Which are the configurations which minimize the Hamiltonian (10) ? Give their number and their
energy E0.

11. What is the energy E1 > E0 of the first excited levels ? Describe the corresponding configurations, and
give their number.

12. Same question for the following level, of energy E2 > E1.

13. Deduce from that the following low-temperature expansion,

ZN (β) = 2e2NβJ

(
bN,0 + bN,4

(
e−2βJ

)4
+ bN,6

(
e−2βJ

)6
+ o

((
e−2βJ

)6
))

, (13)

where you shall give the values of the coefficients bN,n. Compare them to the coefficients aN,n of the
high-temperature expansion.

14. More difficult question. Show that the low-temperature expansion can be written ZN (β) = 2e2NβJAN (e−2βJ),
where AN (x) is the function defined in question 6. You can consider the diagrams of the dual lattice,
shown with dashed lines on the figure below.

15. Transition temperature.

We denote f(β) = − 1
β lim

N→∞

1
N log ZN (β) the free-energy per spin in the thermodynamic limit. De-

duce from the high and low temperature expansions two expressions of f(β) ; you will define g(x) =
lim

N→∞

1
N log AN (x).
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16. We admit that the model exhibits a single critical temperature, and hence that f(β) is singular at a
single point βc. Show that

βcJ =
1

2
log(1 +

√
2) . (14)

17. (extra-question) Compare the critical temperature T cm
c obtained with the mean-field approximation,

with the exact result above (Tc) ? How does the ratio T cm
c /Tc depend on the connectivity of the lattice

(number of nearest neigbors), for a given spatial dimension ? Finally, how does this ratio depend on
the spatial dimension (for a given topology of the network) ?

III Rotator phases of alkane molecules

Between their liquid and crystalline phases, linear alkanes may exhibit a variety of so-called ”rotator”
phases (Fig. 1), The molecules are then arranged in layers, on the sites of a three dimensional lattice (long
range spatial order) ; the molecules can rotate around the mean axis of the carbon chain.

Fig. 1 – Phase diagram of linear alkanes, as a function of the number of carbon atoms.

The goal is here to construct a Landau-like model to account for some of the phase transitions observed
experimentally. For the sake of simplicity, we restrict the analysis to a unique layer of molecules.

A RI − RII transition

In the RI and RII phases, all molecules are oriented perpendicular to the layer. The difference lies in
the lattice on which the molecules are arranged within the layer. In the RI phase, the molecules lie on the
vertices of a triangular lattice that is compressed along one axis, while in the RII phase, they are on a perfect
triangular lattice (see Fig. 2). A group of 6 molecules is characterized by the ellipse that goes through their
6 positions. We denote B the length of the ellipse principal axis that relates two molecules, and A stands
for the length of the perpendicular axis (see fig. 3). The following quantity is then defined :

D =
B2 − A2

B2 + A2
. (15)

1. Explain why D may play the role of an order parameter for the RI −RII transition. In which interval
does D vary ?

For a given configuration charaterized by the parameter D, we assume the free enthalpy at temperature T
to be of the mean-field form :

GD(T, D) = G0(T ) +
1

2
a(T )D2 − 1

3
bD3 +

1

4
cD4. (16)
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PHASE R II PHASE R I

Fig. 2 – Pictorial view of phases RII and RI. The points represent the intersection of the plane of the layer
with the axis of the carbon chain of each alkane molecule. The circle (or ellipse) shown with a dashed line
is used to define the quantity D (see below).

Fig. 3 – Definition of the parameter D.

2. What is the meaning of G0(T ) ?

3. At high temperature, the system is in the RII phase. Explain why there is no linear term in D in
equation (16). What is the sign of a(T ) at high temperature ?

4. Why does equation (16) include a term in D3 ?

5. Why was the term in D4 considered in equation (16) ? What should be the sign of c ?

6. At arbitrary temperature, what is the equation fulfilled by the equilibrium value of D ?

In all the following, it is assumed that a(T ) = a0(T − T1).

7. Upon schematically drawing GD(T, D) versus D for different temperatures, show that there exists a
transition between RII and RI at temperature TI−II. What is the order of the transition ?

8. We note DI(T ) the value of D at equilibrium in the RI phase at temperature T . Write the two equations
fulfilled by DI(TI−II).

9. Solve the two above equations and express DI(TI−II) and TI−II − T1 as a function of a0, b and c.

10. What does T1 represent ?

11. Give the expression of the latent heat L of the transition.

12. We define the heat capacity jump at the transition as ∆CP = Cp(phase RI) − Cp(phase RII). Show
that

∆CP = C a0
2

c
TI−II. (17)

What is the value of the constant C ? It is recalled that Cp = T
∂S

∂T

∣∣∣∣
P

.

13. Express TI−II−T1 as a function of L and ∆CP. For n-tricosane (C23H48), one measures L = 0.6 kJ mol−1

and ∆CP = 1.5 kJ mol−1K−1 ; compute TI−II − T1.
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B Transition RI − RV

We are now interested in the transition between phase RI and phase RV. The RV phase differs from RI

in that the molecules may be tilted from the normal to the layer. We note θ the mean tilt angle in phase
RV.

1. Explain why θ may play the role of an order parameter for the RI − RV transition. In which interval
does θ vary ?

We note G(T, D, θ) the free enthalpy at temperature T of a configuration with parameters D and θ. We
first consider the situation with no coupling between D and θ. We then write

G(T, D, θ) = G0(T ) +
1

2
a(T )D2 − 1

3
bD3 +

1

4
cD4 +

1

2
α(T )θ2 +

1

4
βθ4 +

1

6
δθ6, (18)

with a(T ) = a0(T − T1), α(T ) = α0(T − T2), and a0, α0, b, c, β and δ positive. We also have T2 < T1.

2. Write the equation fulfilled by θ at equilibrium. Discuss the number and stability of solutions as a
function of temperature.

3. Find the temperature where the transition between RI and RV occurs. Give the expression of θ at
equilibrium in the vicinity of that temperature. What is the order of the transition ?

We now address the coupled D − θ case, and seek for the influence of that coupling on equilibrium
parameters D and θ of phase RV. To that end, we assume that these parameters are close to those of the
RI phase. We note D0 the value of D at equilibrium in phase RI. We will assume D0 independent of

T , and we write :

G(T, D, θ) = GI(D0) +
1

2
u(D − D0)

2 +
1

2
α(T )θ2 +

1

4
βθ4 +

1

6
δθ6 + γDθ2 +

1

2
ηD2θ2, (19)

making use of previous notations and where GI(D0) is the free enthalpy of phase I at equilibrium, u > 0,
γ < 0 and η > 0. No attempt will be made at computing u.

4. Considering the θ dependence of G only, show that the phase RI becomes unstable at a temperature
Ti that you will provide.

5. Considering the D dependence of G only, show that the equilibrium solution D may be written in the
form of the following expansion

D = D0 − ǫ θ2 + K ǫ θ4 + O(θ6). (20)

What are the expressions of K and ǫ ?

6. (Requires some computations) Making use of equations (19) and (20), write G in the form :

G = GI(D0) +
1

2
α1(T − Ti)θ

2 +
1

4
β1θ

4 +
1

6
δ1θ

6 + O(θ8), (21)

and give the expressions of α1, β1 and δ1.

7. What is then the equation fulfilled by θ at equilibrium ? Give the expression of θ in the RV phase.

8. We assume that β1 > 0 and δ1 > 0. What is the value of θ in the RV phase at temperature Ti where RI

becomes unstable ? Which conclusion can be drawned concerning the order of the RI−RV transition ?

9. We assume that β1 < 0 and δ1 > 0. What is the value of θ in the RV phase at temperature Ti where RI

becomes unstable ? Which conclusion can be drawn concerning the order of the RI − RV transition ?

10. X rays measurements allow to extract the parameters of the RV phase (see figures below). Explain
which coefficients of the model (or combinations thereof) the plots give access to.

References :

Landau theory of the rotator phases of alkanes, P.K. Mukherjee, M. Deutsch, Phys. Rev. B 60, 3154 (1999).
Rotator phases of the normal alkanes : An x-ray scattering study, E.B. Sirota, H.E. King, D.M. Singer and
H.H. Shao, J. Chem. Phys. 98, 7 (1993).
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Fig. 4 – Parameters of the RV phase for n-tricosane, as measured with X rays.
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