
FIP - L5 2010-2011

Exam

3 hours ; documents and pocket calculators not allowed

Tentative scale : 10 points for problem I, 10 points for problem II

I The Potts model

The multinomial expansion formula, that can prove useful here, is reminded in the annex below. In addition,

question 15 may be treated almost independently from the others.

We consider a variant of Ising model, the so-called Potts model, where the N degrees of freedom (spins)
σ1, . . . , σN may each take q different values, σi ∈ {1, . . . , q}, where q is, for the time being, an arbitrary
integer ≥ 2. The spins interact with the following hamiltonian

H(σ1, . . . , σN ) = −
N∑

i,j=1

Ji,jδσi,σj
−

N∑

i=1

hσi
, (1)

where Ji,j is the coupling constant between spins i and j, δ denotes Kronecker symbol and h1, . . . , hq can
be seen as magnetic fields acting on the q possible values of the spins. Such an approach is useful to study
theoretically a variety of condensed matter problems in a unified framework, and is also relevant to model
some experimental systems such as Krypton adsorbed on graphite. In the remainder, we shall work in the
canonical ensemble, the system being in equilibrium at temperature T . We denote the Boltzmann constant
by kB and averages over the Boltzmann-Gibbs distribution by 〈·〉.

1. We consider here the q = 2 case. Establish that Potts model is then equivalent, up to a constant, to

Ising model with variables σ
(I)
i = ±1 and a hamiltonian

H(σ
(I)
1 , . . . , σ

(I)
N ) = −

N∑

i,j=1

J
(I)
i,j σ

(I)
i σ

(I)
j − h(I)

N∑

i=1

σ
(I)
i . (2)

Express J
(I)
i,j and h(I) as functions of parameters pertaining to Potts model.

2. From now on, we consider a generic value for q, and we take Ji,j =
J
N

for all values (i, j), with J > 0.
Why can such an approach be coined “mean-field” ? Show then that the partition function associated
to the hamiltonian (1) can be written in the form

Z =
∑

x1,...,xq

NN
x1,...,xq

e−Nβe(x1,...,xq) , with e(x1, . . . , xq) = −J

q∑

σ=1

x2σ −

q∑

σ=1

hσxσ . (3)

What are the possible values for x1, . . . , xq ? Write explicitly the expression of NN
x1,...,xq

.

3. Stirling’s formula ln(X!) ∼ X lnX −X for X → ∞ is reminded. Show that the free energy per spin
reads, in the thermodynamic limit :

f(T ) = −
1

β
lim

N→∞

1

N
lnZ = inf

x1,...,xq

f̂(x1, . . . , xq, T ), with (4)

f̂(x1, . . . , xq, T ) = e(x1, . . . , xq)− Ts(x1, . . . , xq) and s(x1, . . . , xq) = −kB

q∑

σ=1

xσ lnxσ . (5)

What is the domain where the minimization should be performed ? Comment on the expression of
s(x1, . . . , xq).
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4. We denote by (x∗1, . . . , x
∗

q) the point where the minimum of f̂ is reached. Show that in the thermody-
namic limit, one has 〈δσi,σ〉 = x∗σ for all i and all σ.

5. What is the value of (x∗1, . . . , x
∗

q) for high temperatures ? How can we call the corresponding phase of
the system ?

6. We assume in what follows that h1 = · · · = hq = 0, and it is reminded that J > 0. What are the
possible values of (x∗1, . . . , x

∗

q) at vanishing temperature ? How can we call the corresponding phases ?
What is the degeneracy of the ground state ?

We now wish to study the transition between the low T and high T regimes. We assume that the
spontaneous symmetry breaking that occurs at low T , takes place along the σ = 1 direction, and
does not distinguish among the other q − 1 possible values. We thus write x1 = x, together with
x2 = · · · = xq.

7. Express the common value x2 = · · · = xq as a function of x. Show then that with the above para-

metrisation, we have f(T ) = inf
x
f̂(x, T ), with f̂(x, T ) = e(x) − Ts(x). Provide the expressions of the

functions e(x) and s(x).

From now on, q is taken as an arbitrary real number ≥ 2, not necessarily an integer (there indeed
exists a microscopic alternative definition to (1), that is meaningful for all possible real q).

8. Plot schematically and separately the functions e(x) and s(x) for an arbitrary q > 2, emphasizing the
behaviour close to the boundaries of their support (lower and upper bound), as well as the behaviour
in the vicinity of their extrema (the position of which will be indicated).

9. What is the value of x that minimizes f̂(x, T ) at high temperature ? This value will be denoted x0 in

the remainder. Below which temperature, denoted T
(2)
c , is x0 no longer a local minimum of f̂(x, T ) ?

It may prove useful to show

∂2f̂

∂x2

∣∣∣∣
T

= −γJ
q

q − 1
+ kBT

1

x(1− x)
, where γ is a constant that will be given. (6)

10. Expand f̂(x, T
(2)
c ) to third order around x = x0. Show then that if q > 2, there exists a temperature

T
(1)
c > T

(2)
c such that x0 no longer is the global minimum of f̂ for all temperatures T < T

(1)
c .

11. Plot schematically the graphs of f̂(x, T ) as a function of x for different temperatures.

12. In the case q > 2, write the conditions that determine the value of T
(1)
c , and the position of the global

minimum x(1) of f̂ at temperature T
(1)
c

−

, i.e. infinitesimally below T
(1)
c . Show that the conditions are

met by

x(1) = 1−
α

q
, kBT

(1)
c = J

q − 2

(q − 1) ln(q − 1)
. (7)

What is the value of α ?

13. Sketch the graph of the position of x∗(T ), the global minimum of f̂ , as a function of T . The cases q = 2
and q > 2 should be distinguished. Write down an admissible order parameter. In each case, what is
the order of the transition and, if applicable, what is the value of the critical exponent β associated
to the critical behaviour of x∗(T ) ?

14. Explain qualitatively what would happen if one would consider the exact solution of the Potts model

on a given lattice at T = T
(1)
c , imposing a fraction of spins σi = 1 between x0 and x(1). It will be

assumed that the mean-field scenario for q > 2 holds.

15. Application. The physisorption of Krypton atoms onto a graphite plane provides a possible realization
of Potts model. In such a plane, carbon atoms are organized in an hexagonal structure, and Krypton
preferentially adsorbs in the center of the hexagonal rings (shown by circles on figure 1-a)). For steric
reasons, an adsorbed Krypton atom makes adsorption on nearest neighbouring sites less likely, and we
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b)a) c)

Figure 1 – a) Sketch of a graphite surface, where possible adsorption sites for Krypton atoms are represented
by the circles. b) A possible ground state at filling fraction 1/3 (the sites occupied by Krypton correspond
to the black disks. c) Groups of triplets of adsorption sites, to define the sites considered in the Potts model
(where a q-states spin lives).

Figure 2 – An instantaneous configuration of adsorbed Kr atoms on graphite, at filling fraction 1/3 ; the
question is to identify the different ground states coexisting, and the domain walls between them. . .

shall consider a 1/3 coverage (one site occupied on average out of three). In this case, a possible ground
state is shown in Fig. 1-b). There thus exist three equivalent positions for the lattice of adsorbed Kr,
and we admit that such a system can be described by a Potts model, where a site corresponds to a
triplet of original adsorption sites (see figure 1-c)), and where the spin indicates which of the three
original sites is occupied. We therefore exclude the possibility that Kr atoms desorb, which certainly
happens at high T . What is then the value of q ? Figure 2 shows a configuration of Kr on the graphite
plane, in which the possible ground states coexist, and occupy well defined domains. Show on the
figure the domain walls (you can use page 7 below and don’t forget to give this sheet back !). Which
type of wall is the most energy consuming ?

Annex : the multinomial expansion reads

∑

k1+k2+...+km=n

n!

k1! k2! . . . km!
xk11 xk22 . . . xkmm = (x1 + x2 + . . .+ xm)n

References :

For question 15, see the cover of Statistical Mechanics of Phase Transitions by J. Yeomans (Oxford University
Press), inspired from Commensurate-incommensurate phase diagrams for overlayers from a helical Potts

model, M. Kardar and A. Berker, Phys. Rev. Lett. 48, 1552 (1982).
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II Thermodiffusion, depletion and localisation of colloids

The different sections of the problem can be treated independently. Moreover, many questions in parts B, C

and D can be answered at a very qualitative level. Part D may be slightly easier than part C.

Our interest goes here to thermodiffusion (also referred to as thermophoresis or Soret effect), that is
the motion induced by a temperature gradient. More generally, the controlled gradient of thermodynamic
variables such as the chemical potential or temperature, induces the migration of colloids in fluids. It is
hence possible to separate some molecules, localize them in different stationary states, or obtain efficient
transport strategies upon coupling several gradients. We shall work here in the framework of the linear
thermodynamics of irreversible processes.

A General results on transport coefficients

We are interested in a mixture of two species A (molecules of a certain type), and B (the fluid, which is
the majority species). We denote by nA and nB the corresponding volume densities, from which we define
the concentration of species A : c = nA/(nA +nB). We assume that the majority species is at rest (no flow)
and we shall work in the frame linked to B, where the only non-vanishing current density is that of species
A denoted ~.

1. In what follows, the pressure is constant and uniform. What are the variables on which the chemical
potential µ of species A depends ?

2. Provide, without further justification, the expression of the entropy production rate σ, as a function
of the energy current ~ U , ~, and the gradients of µ/T , 1/T .

3. Put σ in the form

σ = −~ ·

(
1

T

∂µ

∂c

∣∣∣∣
T

−→
∇c

)
+ ~1 ·

−→
∇

(
1

T

)
(8)

What is the expression and meaning of ~1 ?

4. Within linear response formalism, we have

~ = L11
−→
∇

(
−
µ

T

)
+ L12

−→
∇

(
1

T

)
(9)

~U = L21
−→
∇

(
−
µ

T

)
+ L22

−→
∇

(
1

T

)
(10)

What are the properties of the matrix Lij ? No justification is asked.

5. It is furthermore customary to write

~ = −D
−→
∇c−DT

−→
∇T (11)

~1 = −βT
−→
∇c− κ

−→
∇T (12)

What do D and κ represent ? What can be said about their sign ? Same question with the coefficients
DT and βT . Write the transport coefficients (D,DT , βT , κ) as functions of the Lij and the chemical
potential. Calculate the ratio of crossed terms βT /DT . What is its sign ?

B Application to DNA manipulation : Soret effect

In the parameter range considered (room temperature, concentration c ≪ 1), a reasonable approximation
for DT is provided by DT = DST c ; one then writes the current of A particles (minority species) as

~ = −D
(−→
∇c + c ST

−→
∇T

)
. (13)

The Soret coefficient ST does not change much with c and T , and will be henceforth considered as constant.
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Figure 3 – a) Sketch of the temperature and concentration profiles, and geometry of the experiment. The
point indicated by the black disk at x = 0 is the heating spot. b) Depletion factor 1− (∆c)/c0 as a function
of the temperature increment, measured in Kelvin, for two types of DNA molecules.

1. At a reference point where the temperature is T0, we denote the concentration by c0. Making use of
relation (13), express c/c0 as a function of T − T0, in steady state, without any current.

The previous treatment allows for an understanding of experimental results pertaining to the thermophoresis
of DNA, that plays here the role of species A. The suspending fluid, water, is species B. A laser locally
heats the solution. By a fluorescence technique, it is possible to measure the local temperature, and in
the geometry considered (Braun&Libchaber, 2002), one obtains the profiles given in Figure 3, where the
experimental setup is schematized. The interplate distance H is sufficiently small to allow for the neglect of
other spatial coordinates than x for the observables of interest.

2. What is the sign of ST ?

3. With a slab thickness H = 25µm, one obtains ∆T ≃ 7.1K, and it is measured that |ST | ≃ 0.14K−1.
What is the corresponding value of (∆c)/c0 ? Hint : exp(−1) ≃ 0.37.

4. Figure 3-b) shows the theoretical extrapolation of the concentration drop for more vigorous heating.
Two types of DNA strands have been considered : long molecules (5kbp, i.e. 5000 base pairs) or short
molecules (27 bp, i.e. 27 base pairs). Which type of strands have been used for the experiment reported
in question 3 ? What do we learn here on the dependence of Soret coefficient ST on the strand length ?
Hint : ln(10) ≃ 2.3.

C Application to DNA manipulation : localization by convection

For wider inter-plate distances H and more intense laser intensities, the heating induces a fluid flow, in the
form of convection rolls. The confining plates are horizontal while gravity acts in the direction perpendicular
to the x axis.

1. Sketch the form of the velocity field in a plane perpendicular to the plates and containing the hot spot.

2. Explain qualitatively the effect of the flow on the suspended DNA.

3. We are interested in the transient regime. At time t = 0, the laser is switched on, while the system
is in equilibrium (hence c = c0 everywhere for t < 0). The concentration profiles measured in a plane
parallel to the plates are shown in Figure 4. Explain qualitatively the observed sequence of images.
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Figure 4 – Visualisation of iso-concentration regions, at different times, for H = 50µm. The grey intensity
level measures the concentration (whiter regions are those where c is higher).

D Application to DNA manipulation : localisation by polymer depletion

Related experiments have been performed in the presence of a polymer (polyethylene-glycol, PEG), in large
amounts compared to DNA. The heating induces a depletion of PEG, with a concentration profile cPEG that
does not depend on DNA presence (in this respect, PEG thermopheresis can be understood along similar
lines as above ; it is however not necessary to have treated the previous questions to proceed). The PEG
gradient thereby created, though, induces a force on DNA strands. This force is proportional to

−→
∇cPEG,

which translates into an additional term in the current ~ :

~ = −D
(−→
∇c + c ST

−→
∇T

)
− αc

−→
∇cPEG, (14)

where α is a positive quantity.

1. Write down the expression of DNA concentration as a function of cPEG and T , in the steady state.

2. Explain qualitatively the experimental snapshots of Figure 5.

Figure 5 – Measured DNA concentration (c) levels, in a plane parallel to the plates, in presence of a polymer
(PEG). Three distinct experiments with different PEG concentrations have been performed (from left to
right : no PEG, volume fraction 2.5%, then 5%). As in Fig. 4, the darker regions are those with smaller
values of the concentration.

Références :

Trapping of DNA by thermophoretic depletion and convection,
D. Braun, A. Libchaber, Phys. Rev. Lett. 89, 188103 (2002).

Thermal Separation : Interplay between the Soret effect and entropic force gradient,
Y.T. Maeda, A. Buguin, A. Libchaber, Phys. Rev. Lett. to appear (2011).
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Name :

Figure 6 – Same as Fig. 2, to answer question 15 of problem I.

This sheet should be given back with the composition.
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