
FIP - L5 2011-2012

Exam

3 hours ; documents and pocket calculators not allowed ; dictionaries allowed

Tentative scale : 20/3 points for each of the three problems

I Mutual information

Whenever two random variables X and Y are not independent, it is interesting to quantify the informa-
tion obtained on one from the knowledge of the other. This is the purpose of the present exercise, where the
notions of conditional entropy and mutual information will be introduced.

We denote by p(x, y) the joint probability of (X,Y ), p(y|x) is the conditional probability of variable
Y given X, and p(x) is the probability of X (marginal law). The variables are supposed discrete, and we
then have p(x) =

∑
y p(x, y). We recall that Bayes formula connects the three above probabilities through :

p(x, y) = p(y|x)p(x), and we then define the conditional entropy SY |X as the entropy of the conditional law
p(y|x), subsequently averaged over x :

SY |X = −
∑

x

p(x)
∑

y

p(y|x) log2 p(y|x) . (1)

In all these definitions, the log in base 2 shall be considered.

1. Establish the link between the entropy SX of variable X, the entropy SX,Y of the joint distribution,
and the conditional entropy SY |X .

2. For concreteness, we consider, in this question only, that X and Y represent the result (heads or tails)
of tossing two correlated coins, with

p(H,H) =
1

2
, p(H,T ) =

1

4
, p(T,H) =

1

8
, p(T, T ) =

1

8
.

Compute the entropies SX,Y , SX and SY |X ; we give 3 log2 3 ≈ 4, 8.

3. What is the relation between SY |X and SY if the variables X and Y are independent ?

4. Write the entropy difference SY − SY |X in the form of the Kullback-Leibler distance between p(x, y)
and another probability distribution. Show then that SY |X ≤ SY , and comment this inequality.

5. We define the mutual information by

IX,Y = SX + SY − SX,Y . (2)

Express the above quantity as a function of SY and SY |X on the one hand, and as function of SX and
SX|Y on the other hand. What does mutual information measure, and what is its sign ? What is the
value of IX,Y in the case where X and Y are independent ?

6. Information degradation

(a) We consider a random variableX and the random variable f(X) obtained by applying an arbitrary
(but deterministic) function toX. What is the value of Sf(X)|X ? What can we say about SX|f(X) ?
Proceed to show that Sf(X) ≤ SX , and provide a condition on f for turning the inequality into
an equality.

(b) Which inequality can we expect between IX,Y and IX,f(Y ), where f is again a deterministic
function (no proof is asked, only a plausibility argument) ?
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(c) The mutual information between two variables (X and Y ), conditioned by a third (Z), is defined
as IX,Y |Z = SX|Z − SX|(Y,Z) = SY |Z − SY |(X,Z). Admitting the following composition rule

IX1,(X2,X3) = IX1,X2
+ IX1,X3|X2

= IX1,X3
+ IX1,X2|X3

, (3)

recover your intuitive answer to the previous question [hint : it proves convenient to take X1 = X,
X2 = Y , and X3 = f(Y )].

7. Propagation of information

We consider random variables X0, X1, . . . , Xn that may each take two values, P and F for instance. A
given person chooses one of the above “messages” with probability 1/2, which fixes the value of X0.
This person then transmits the information to its neighbour X1, but because of ambient noise, the
probability that X1 hears the right value of X0 is only 1−p. There is therefore a probability p that the
transmission is erroneous, i.e. that X1 6= X0. X1 further transmits to X2, and so forth. Information
is thereby transferred to Xn, with the same probability p of transmission error between Xi and Xi+1.
We shall compute the mutual information In ≡ IX0,Xn

between the emitter and the final receiver, in
particular when the distance n between both is large.

(a) What is the marginal law of Xn ? Show then that In = 1 − H(pn), where H(x) = −x log2 x −
(1−x) log2(1−x) is the entropy of a binary variable with probability x, and pn is the probability
that X0 6= Xn.

(b) Determine pn, from a recurrence relation. Comment on the limiting behaviour of pn when n → ∞.

(c) Obtain the asymptotic formula for In in the form In ∼
n→∞

a bn. What are the values of the

constants a and b ?

(d) We consider the one dimensional Ising model with free boundary conditions, that is a system of N
Ising spins σ0, . . . , σN−1 ∈ {+1,−1}N . The energy of a configuration reads H = −J

∑N−1
i=1 σi−1σi,

and we suppose that the system is in thermal equilibrium at inverse temperature β. Show that
this Ising model realises exactly the afore-defined process. What is the connection between p and
Ising model parameters ? Show that the correlation length derived in class is recovered.

8. Subsidiary question : derive relation (3). To this end, one can use after justification that

SX1,(X2,X3) = SX1,X2,X3
= SX1

+ SX2|X1
+ SX3|(X1,X2) . (4)

II Landau theory and tricriticality

Within a Landau approach, the free energy is expanded in powers of the order parameter φ, in the form

R =
1

2
a2 φ

2 +
1

4
a4 φ

4 +
1

6
a6 φ

6 , (5)

where in the vicinity of Tc, the coefficient a2 linearly depends on temperature T : a2 = (T − Tc) ã2 (with
ã2 > 0). For simplicity, we suppose that a4 and a6 are independent on temperature.

A Order of transitions and sign of coefficients

1. Provide an example of a physical system where such an expansion may be relevant.

2. What should the sign of a6 be ?

3. Sketch the free energy profiles R(φ) for different temperatures, treating separately the cases a4 > 0
and a4 < 0. For each case, what is the order of the corresponding phase transition embodied in Eq.
(5) ?
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4. In the first order transition case, we denote T ∗ the critical temperature. What are the conditions on
R which determine this temperature ? At T = T ∗, give the values of φ that minimize the free energy
and show that

T ∗ = Tc + α
a24

ã2 a6
.

What is the value of α ?

5. Draw a schematic phase diagram in the plane (T, a4), for fixed values of ã2 and a6. Indicate the phase
transition lines of first and second orders. In which point of the diagram do they meet ?

B Study of the tricritical point

We will now assume that a4 = 0, which defines for our model a so-called tricritical point.

1. What is the order of the phase transition ?

2. How does the order parameter depend on temperature, in the vicinity of Tc ? Infer from this behaviour
the value of the β exponent, defined by φ ∝ (Tc − T )β below the critical point. What is the value of β
when a4 > 0 ?

3. Under the action of an applied external field h, which additional term should appear in the free energy ?
What is the exponent δ which measures, at T = Tc, the response to h through φ ∝ h1/δ ? Same question
when a4 > 0.

C Upper critical dimension for the tricrical point

We first admit that the spatial autocorrelation function of the order parameter, Γ(~r ), is isotropic and of
the form

Γ(~r ) =
1

ξd−2
F

(
r

ξ

)
, (6)

with r = |~r|, d the space dimension, ξ the correlation length, and F an unspecified function. We may

equivalently assume that Γ(~r ) = 1
rd−2

F̃
(
r
ξ

)
, the scaling functions F and F̃ being simply related.

We again address the case a4 = 0.

1. Discuss qualitatively the behaviour of Γ as a function of r at Tc and at T 6= Tc (no calculation asked).

2. We consider the low temperature phase and we define the Ginzburg ratio as

RG =
1

φ2
eq

1

ξd

∫

ξd
Γ(~r )d~r , (7)

where φeq is the equilibrium value of the order parameter. Why is the quantity RG interesting ?

3. Determine the temperature dependence of RG in the vicinity of the critical temperature, assuming
that ξ diverges at Tc with an exponent ν = 1/2, and making use of the β exponent derived in part
B (or treating β as a free parameter if needed). Give the upper critical dimension of the model, and
comment upon it.

4. Write a free energy functional of the Ginzburg-Landau type, that generalizes expression (5) to situ-
ations where φ changes with position ~r, and which includes a term stemming from an external field
h(~r).

5. What is the differential equation fulfilled by the correlation function ? What form does it take when
the system is spatially homogeneous ?

6. Show then that one indeed has ν = 1/2.

7. Which simple prediction can be made for the behaviour of the surface tension when T approaches Tc ?
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III A microscopic approach for Onsager relations

The goal is here to show, starting from a microscopic model of a system’s dynamics, that Onsager’s
symmetry relations hold.

We assume that the microscopic configuration of the system is specified by a set of N real variables
x1, . . . , xN . We denote x = (x1, . . . , xN ) the global configuration of the system, and H(x) its energy. When
put in contact with a thermostat, the configuration evolves according to Langevin’s equations

dxi
dt

= −
∂H

∂xi
(x1(t), . . . , xN (t)) + ξi(t) for i = 1, . . . , N , (8)

where the ξi(t) are random functions accounting for the coupling to the thermostat, with

〈ξi(t)〉 = 0 , 〈ξi(t)ξj(t
′)〉 = Γ δi,j δ(t− t′) . (9)

We admit that the probability P (x, t) to observe the system in configuration x at time t evolves following
the Fokker-Planck equation

∂P

∂t
= WP . (10)

The Fokker-Planck operator W acts on functions f(x) of phase space configurations following

(Wf)(x) =
N∑

i=1

∂

∂xi

[
∂H

∂xi
f(x) +

Γ

2

∂f

∂xi

]
. (11)

1. Provide a qualitative interpretation of Langevin equations when no random terms are at work (ξi = 0).

2. Give a sufficient condition on Γ such that Gibbs-Boltzmann distribution Peq(x) = e−βH(x)/Z be
stationary. We shall suppose this condition fulfilled in the remainder.

We assume that at t = 0, the initial condition x(t = 0) is randomly chosen from the probability
distribution function P0(x), and that the system evolves, for t ≥ 0, according to the above Langevin
dynamics. We denote by 〈•〉 averages over the initial condition and over the stochastic subsequent
evolution. For two observables A,B (i.e. two functions A(x), B(x)), we denote 〈A(t)〉 = 〈A(x(t))〉 the
average at time t and 〈A(t)B(t′)〉 = 〈A(x(t))B(x(t′))〉 the two-time correlation function.

3. We denote by Qx,x′(τ) the probability that the system be in configuration x at a given time t, knowing
that it was in configuration x′ at time t − τ . Write Q as a function of W (operators will be formally
treated as matrices).

4. Write the expression of 〈A(t)〉 as a function of P0, Q and A(x).

5. Same question for 〈A(t)B(t′)〉, assuming that t > t′.

6. Simplify your answers to the two previous questions assuming that the system is initially in equilibrium,
i.e. with P0 = Peq.

7. Admitting that
Qx′,x(τ)Peq(x) = Qx,x′(τ)Peq(x

′) , (12)

show that for an equilibrium system, 〈A(t)B(t′)〉 = 〈B(t)A(t′)〉.

8. Briefly recall the consequences of this invariance by time reversal, in the framework of weakly out of
equilibrium thermodynamics.

9. Subsidiary question : prove the relation (12).

Hint : one can start by showing that WPeq = PeqW
†, where Peq is the diagonal multiplication by

Peq(x) operator and † denotes transposition. To this end, it can be remarked that

W =
N∑

i=1

[(
∂2H

∂x2i

)
+

(
∂H

∂xi

)
∂

∂xi
+

Γ

2

∂2

∂x2i

]
, and that

(
∂

∂xi

)†

= −
∂

∂xi
. (13)
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