




Paris-Sud / Paris-Saclay University M1 General Physics Year 2017-2018 STATISTICAL PHYSICS Partial exam 2019

2 HOUR 30 MINUTES

DOCUMENTS, POCKET CALCULATORS AND ANY ELECTRONIC DEVICE <u>NOT ALLOWED</u> Concise but explicative answers expected throughout. No bonus for verboseness

## **1** Basic questions

- 1) Starting from the microcanonical description of a fluid through the function S(U, V, N), express the differential forms of F, G, H and U. Name the various quantities.
- 2) What is (arguably) the simplest treatment one can think of to describe ferromagnetism ?
- **3)** Explain what the Gibbs-Bogoliubov inequality is about. What is it interesting for in the realm of phase transitions?
- **4)** In a binary mixture, how many intensive variables have to be fixed to specify fully the state of the system? Same question with a ternary mixture.
- 5) Sketch graphically the Legendre transform of the function in the graph below



- 6) How is Maxwell plateau argument related to the double-tangent construction?
- 7) In a fluid, how is  $c_v$ , the specific heat at fixed volume, related to the free energy F and the temperature T? Derive a similar relation between  $c_p$ , the specific heat at constant pressure, and some relevant thermodynamic potential to be given.
- 8) In the theory of continuous phase transitions, how many critical exponents refer to macroscopic properties, and how many do pertain to microscopics? Are these exponents related?
- 9) We consider a Gaussian random variable X with mean 0 and standard deviation 3. Compute  $\langle e^X \rangle$ ,  $\langle e^{-X} \rangle$ ,  $\langle X^2 \rangle$ ,  $\langle X^3 \rangle$  and  $\langle X^4 \rangle$ . Same question for  $\langle e^X \rangle$  and  $\langle e^{-X} \rangle$  if the mean is changed to unity, leaving the standard deviation unaffected.

## 2 Fluctuation-response connection for ideal magnets

We aim at verifying the fluctuation-response connection for ideal magnets. We consider to this end an ensemble of N non interacting spins taking value  $\pm 1$ , in an external magnetic field B.

- 1) What is the Hamiltonian of the system ?
- 2) Give the corresponding partition function.
- 3) What is the mean magnetization  $\langle M \rangle$ ?
- 4) Define and compute the susceptibility, as a function of B (*i.e.* not restricted to small fields).
- 5) Compute the second moment  $\langle M^2 \rangle$ ? How does it behave in the thermodynamic limit?
- 6) Relate the variance of M to the susceptibility (for  $B \neq 0$ ).
- 7) Can ferromagnetism be observed here?
- 8) What could we call "the ideal magnet equation of state"?
- **9)** Show the fluctuation-response connection on general grounds (for an arbitrary Hamiltonian of an *N*-spin system).

 $\diamond$ 

## **3** Landau vs Bragg-Williams approaches

We consider a simplified free energy F(m), where m is the order parameter of some transition, in the form

$$F(m) = \frac{1}{2}a_2(T)m^2 + a_4m^4 - Bm$$
(1)

where B is some external field. The coefficient  $a_4$  is a positive constant, while  $a_2$  is temperature dependent, taken linear of the form  $a_2(T) = \tilde{a}_2(T - T^*)$ , where  $\tilde{a}_2$  is a positive constant.

- 1) For B = 0, provide a sketch of the free energy profiles, identifying the different temperature ranges to be distinguished.
- 2) To which type of phase transition does this behaviour correspond to?
- 3) Compute the critical exponent  $\beta$  characterizing the behaviour of m vs T at B = 0.
- 4) Compute the critical exponent  $\gamma$ .
- 5) Same question for the critical exponent  $\delta$ , related to the *B* dependence of the order parameter at the critical temperature.
- 6) Write Bragg-Williams free energy for the ferromagnetic Ising model.
- 7) How is it possible to recast Bragg-Williams free energy in the form of Eq. (1)?
- 8) How do exponents compare to their van der Waals counterpart?