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1 Perron-Frobenius theorem

The Perron-Frobenius theorem states that for a real square matrix with strictly positive
entries aij > 0:

• the largest eigenvalue λ is strictly positive.

• there exists a corresponding eigenvector x with every entry xi > 0.

• λ is non-degenerate.

• if µ is any other eigenvalue, then |µ| < λ.

Show the theorem assuming that the matrix is symmetric. Although not necessary, this simpli-
fies the proof. Make extensive use of the Rayleigh quotient, defined for a vector x ̸= 0 and the
matrix aij , as

R(x) =

∑
ij aijxixj∑

i x
2
i

. (1)

⋄

2 Gaussian Integrals

1. Univariate Gaussian: show that with a Gaussian weight of mean x0 and variance σ2:〈
ekx

〉
= exp

(
kx0 +

σ2k2

2

)
.

Remember that a Gaussian weight (distribution) reads:

p(x) =
1√
2πσ2

e−
(x−x0)

2

2σ2 .

Further reading: properties of the cumulant generating function log
〈
ekx

〉
for an arbitrary

probability distribution (see Wikipedia page).

2. Multivariate case of a Gaussian distribution, where the probability density is proportional
to

p(x1, x2, . . . , xn) ∝ exp

(
−1

2
Aijxixj

)
with Einstein’s summation convention and A a symmetric and positive definite matrix.
Compute the normalization factor, in terms of detA. Hint: the variable change yi = Oijxj
where Oij is an orthogonal matrix has a unit Jacobian.

3. It is useful to introduce the conjugate vector with coordinates Xi = Aijxj . Show that
⟨xiXj⟩ = δij : compute ⟨xixj⟩ and ⟨XiXj⟩.

4. Going further, show that:

⟨xif(x)⟩ = ⟨xixj⟩
〈
∂f(x)

∂xj

〉
(2)

Using repeatedly this relation allows to show that even moments of the distribution can
be expressed in terms of a product of second order moments only. This is a facet of Wick
theorem.

⋄

https://en.wikipedia.org/wiki/Cumulant


3 Warming up: partition function of the one dimensional Ising
model

We consider the N -spin Hamiltonian

H = −J
N−1∑
i=1

SiSi+1 (3)

where the state variables Si take values ±1, and boundary conditions at i = 1 and i = N
are free. Write the partition function Z. From the set {Si}, one introduces a new set with
τi = SiSi+1, for 1 ≤ i ≤ N − 1. Why can the corresponding view be qualified as dealing with a
gas of domain walls? Compute Z as the partition function of the gas of walls. What is the free
energy? Does it exhibit a fingerprint of phase transition?

⋄

4 Still the Ising chain: transfer matrix approach

We add a magnetic field to the above Hamiltonian

H = −J

N−1∑
i=1

SiSi+1 − h

N−1∑
i=1

Si, (4)

and take periodic boundary conditions: S1 = SN . The system is ther-
malized at inverse temperature β (up to Boltzmann constant), so that the
probability of a given microscopic configuration is exp(−βH)/Z, Z being

the partition function. The corresponding thermal averages are denoted ⟨...⟩.
1. Put the partition function in the form,

Z =
∑
{Si}

N−1∏
i=1

T (Si, Si+1) (5)

2. Introduce a 2× 2 matrix T such that TS,S′ = T (S, S′) = ⟨S |T |S′⟩.

3. Write Z as a function of T.

4. What are the eigenvalues t± of T, with t+ > t−?

5. Express the free energy per spin, f , as a function of t±. How does the result simplify in the
thermodynamic limit N → ∞? How does this result compare to the h = 0 calculation for
free boundary conditions?

6. We are interested in the mean magnetization per spin, m = ⟨Si⟩. Provide the expression of
m as a function of T and the matrix

σ̂ =

(
1 0
0 −1

)
. (6)

Who is the guy on the stamp? What is he doing here?
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7. Find another expression of m as a function of a derivative of f , and show that in the
thermodynamic limit, we have

m =
sinh(βh)√

sinh2(βh) + exp(−4βJ)
. (7)

Draw the curves m(h) for various temperatures. Conclusion?

8. We now take the vanishing field limit h = 0. Express the correlation function ⟨SiSi+k⟩ as a
function of T and σ̂.

9. Taking the thermodynamic limit in the previous expression (at fixed k), show that the
correlation function becomes exponential. How does the correlation length depend on tem-
perature? Conclude. Here, it is useful to provide the expression of the eigenvectors |v+⟩
and |v−⟩ of T. How does σ̂ act on them?

⋄

5 Not done yet: back to Ising correlation function

We aim at computing the correlation function ⟨SiSj⟩ for the one-dimensional ferromagnetic
Ising model (J > 0), without a magnetic field. We shall assume free boundary conditions.
Noting that

eKSiSi+1 = cosh(K) + SiSi+1 sinh(K), (8)

the N spin partition function can be written

Z = (coshβJ)N−1
∑

{Si}1≤i≤N

N−1∏
i=1

[1 + (tanhβJ)SiSi+1] . (9)

It is then convenient to associate a graph to each term in the expansion of the product. For
instance, for the term (tanhβJ)3(S2S3)(S3S4)(S5S6):

i=1 2 3 4 5 6 7

where a thick segment joins nearest neighbors that are present in the term under consideration.
Under which condition does a graph provide a non-vanishing contribution to the partition
function? Compute Z, thereby recovering a known result. Using similar arguments, show that
the correlation function reads

⟨SiSj⟩ = exp(−|i− j|/ξ), (10)

where ξ is the correlation length (provide its expression). Show that ξ → ∞ in the limit T → 0.
Of which phenomenon is this the signature? What happens with periodic boundaries?

⋄
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6 A special one-dimensional setting: the zipper model

The Kittel zipper model1 is the simplest model for DNA denaturation transition and it turns
out to provide an insightful approach for the denaturation of short oligomers.

Hypothesis. The binding energy of the bases located at the end of the molecule is smaller
than that for pairs away from the ends: the molecule unbinds from the ends like a zipper. Here
we simplify and we consider a single end. If the first k bonds are open, the energy to open the

(k + 1)-th bond is equal to ϵ0. If at least one of the previous k bond is still closed, the energy
to open it is infinite (vanishing contribution to the partition function). Once a bond is open, it
can orient itself in G ways: we then associate an entropy to each open bond S0 = kB logG and
if k bonds are open, the associated Boltzmann weight is:

Gke−βkϵ0 .

The term Gk accounts for the G multiple orientations of each of the k open bonds. By summing
over the possible values of k (with the boundary condition that the N -th bond cannot be open)
the partition function reads:

ZN =
N−1∑
k=0

Gke−βkϵ0 =
N−1∑
k=0

eβk(S0T−ϵ0). (11)

1. Carry out the sum (it is a geometric series) and show that ZN is equal to:

ZN =
1− xN

1− x

with x = Ge−βϵ0 .

2. Compute the free energy and the average open bond number ⟨k⟩N . Can you identify any
special x⋆? How is x⋆ related to the temperature? What is its physical meaning?

3. Study the vicinity of x∗ by changing variable x = x⋆+ϵ and expanding around ϵ = 0. Focus
on ⟨k⟩N and 1

N
d⟨k⟩N
dϵ (which is the slope of the average open bonds).

4. In the thermodynamic limit N → ∞, in which sense is there a phase transition and how
does it relate to G?

We can rewrite (a more general version of) the Hamiltonian in a spin-like fashion, with Si =
0, 1, . . . G:

H = ϵ0(1− δS1,0) +

N−1∑
i=2

(ϵ0 + V0δSi−1,0)(1− δSi,0) (12)

The symbol δS,0 is the Kronecker delta: δS,0 = 1 iff S = 0, otherwise δS,0 = 0. The variable Si

is the bond variable at each “site” i and accounts for the possible G+1 states the bond can be

1V.S. thanks Professor Enzo Orlandini (UniPD) for introducing this model. Original source: C. Kittel, Am.
J. Phys. 37, 917 (1969) here
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in: if Si = 0, the bond is closed; for Si = 1, . . . , G, the bond is open and it is in one of the G
possible orientations (which energetically are all equivalent). We introduced a new term that
depends on V0, which is the energy cost needed in order to open a bond when a previous one
is still closed. In the case of the already analyzed zipper model, V0 → ∞: this precludes the
opening of a bond following a closed one.
The boundary condition reads SN = 0 (the last bond remains closed). In Figure 1, we show
two possible configurations with the Ising-like picture.

Figure 1: Ising-like picture of the zipper model. Each site represents a bond, that can be in one
of three states (denoted 0, 1 and 2). Here, two examples of the configurations for G = 2 are
shown. Top panel: there are 6 consecutive open bonds and the last two are closed, hence we
have an energy E = 6ϵ0. Bottom panel: the first two open bonds account for 2ϵ0; the third and
the fourth are closed and do not contribute to the energy; the fifth bond is open, and follows
a closed one; this results in an energy penalty V0, in addition to ϵ0. The sixth bond is open,
follows an other open bond, and thus contributes an energy cost ϵ0. Putting all together, the
energy is E = 4ϵ0 + V0. In the limit V0 → ∞ (the zipper model limit) this configuration is
forbidden since E → ∞.

We rewrite the Hamiltonian in this more complex and general form in order to implement
the transfer matrix method. The partition function, starting from equation (12) and using the
properties of the Kronecker delta δS,0, reads::

ZN =
∑

{Si=0,...,G}

e−βϵ0(1−δS1,0)

N−2∏
i=1

e−βϵ0(1−δSi+1,0
)
[
1 + (e−βV0 − 1)δSi,0(1− δSi+1,0)

]
(13)

1. By taking V0 → ∞, identify the transfer matrix T. Note that, at variance with the Ising
spin 1/2 model (that had 2 possible values for the spins, hence a 2× 2 transfer matrix), T
now is a (G+ 1)× (G+ 1) matrix.

2. What can be said about the eigenvalues of T? Make use of the Perron-Frobenius theorem.

3. Can you solve for the eigenvalues and the eigenvectors? If not, you can compute them for
the cases G = 1, 2.

4. As a function of G, what can we say about the set of eigenvalues and eigenvectors?

⋄

7 Transition in a binary alloy

Certain binary alloys such as brass (CuZn) exhibit a transition between different solid phases.
At very small temperature, the two types of atoms are organized periodically, while at larger
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temperature, the corresponding lattice is still present, but the atoms are randomly arranged.
The goal is here to show that this phenomenon is akin to the paramagnetic-ferromagnetic
transition, as exhibited by Ising model.

Figure 2: Schematics of the lattice. Sub-lattices of α and β types are shown with filled and
empty disks.

We consider a cubic lattice in dimension d, with length L (even in terms of lattice constant,
that shall be taken as our unit length), with periodic boundary conditions. We note N = Ld

the number of lattice sites. The lattice is divided in two sub-lattices α and β (see figure 2,
where d = 2). N/2 atoms of type A and an equal amount of atoms of type B occupy the lattice
sites. Only nearest neighbor interactions are accounted for, and the energy between neighbors
is denoted εAA, εAB and εBB depending on the configuration.

1. Whats is, as a function of d, the number z of nearest neighbors for a given site? What is
the total number of links within the lattice?

2. One denotes by Nij the number of links of type ij in the system. Express NAA and NBB

as a function of NAB. Show then that the total energy can be put in the form

E =
zN

4
(εAA + εBB) + NAB

(
εAB − εAA + εBB

2

)
. (14)

Establish a condition on (εAA+εBB)/2−εAB such that at vanishing temperature, all atoms
of a given species lie on one of the two sub-lattices. One can then refer to this situation as
that of the ordered crystal. And what if this condition is not fulfilled?

3. For each site l of the lattice, one introduces a variable Sl = ±1: Sl = 1 if the atom is on an
α-lattice site and is of type A, or is of type B on a β-lattice site; Sl = −1 otherwise. Show
that the energy can be written as

E = E0 − J
∑
⟨lm⟩

Sl Sm, (15)

where the summation runs over pairs of nearest neighbors. Give the expression of E0 and
J .

4. Which condition on the magnetization of each of the two sublattices does follow from the
conservation of the number of atoms of each type? Is it a real constraint in the thermody-
namic limit?

5. Under which condition on d does the system exhibit a phase transition? How does the
critical temperature depend on J? What is then the critical temperature of the original
alloy model?
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6. Recall the behavior of the order parameter ⟨Sl⟩ for model (15) as a function of temperature.
What is the corresponding order parameter for the binary alloy?

⋄

8 Mean-field approximation of the Ising model

We start from a standard Ising model in a d dimensional lattice, with Hamiltonian

H = −J
∑
⟨i,j⟩

SiSj − h
∑
i

Si. (16)

The sum
∑

⟨i,j⟩ must be interpreted as 1
2

∑
i

∑
j∈∂i where ∂i denotes the set of neighbors of i.

In a d-dimensional setting on a cubic lattice, each site has z = 2d neighbors.

1. By introducing the average magnetization

m =
1

N

∑
i

Si

rewrite the Hamiltonian as a function of the spin fluctuations δSi = Si −m.

2. The (naive) mean-field approximation consists in neglecting the terms of order O(δSiδSj)
of the Hamiltonian. What is the resulting HMF ?

3. The Hamiltonian HMF is now linear in Si. Compute the partition function ZMF .

4. We used the average magnetization m in the Hamiltonian HMF ; however, this quantity is
NOT a free parameter, and must be fixed self-consistently. Making use of the following
relation

m =
1

βN

∂ logZMF

∂h
, (17)

derive the self-consistency equation for the magnetization m.

5. For the moment, set h = 0 in equation (17). Discuss the physical properties of the magne-
tization m. Do you observe a phase transition?

6. Now consider h > 0 and discuss the changes in the physics of the magnetization.

N.B.: further reading on the possible pitfalls of such mean-field approaches: R. Agra et al., Eur.
J. Phys. 27, 407 (2006) ; cond-mat/0601125.

⋄

9 The Curie-Weiss model

We consider an N -spin Ising system with Hamiltonian

H = − J

2N

N∑
i,j=1

Si Sj − h
N∑
i=1

Si. (18)

1. Why does such a description qualify as “mean-field”? How important are the underlying
geometric features of the system?
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2. Why was the coupling constant J multiplied by the factor 1/N?

3. The system is at thermal equilibrium. Show that the partition function can be written

Z =
∑
m

NN
m e−βN(−Jm2/2−hm). (19)

Give NN
m and specify the values allowed for m in the summation.

4. Making use of Stirling approximation for the factorial function, rewrite the free energy per
spin f(β, h) as

f(β, h) = inf
m

f̂(m;β, h). (20)

5. Plot f̂(m;β, h = 0) versus m, for different temperatures. What is the temperature Tc where
a qualitative change is observed?

6. What is the effect of the external field h on those curves?

7. We define m∗(β, h) as the minimizer in Eq. (20). What is the implicit equation fulfilled by
this quantity?

8. The spontaneous magnetization is defined as

msp = lim
h→0+

m∗(β, h).

What is the shape of this function? Compute the β-exponent ruling the behavior in the
vicinity of the critical temperature:

msp ∝ (Tc − T )β.

9. Plot the mean energy per spin, ⟨H⟩/N as a function of temperature for h = 0. What is
then the behavior of the specific heat

C(T ) =
d

dT

⟨H⟩
N

What critical exponent does account for its behavior?

⋄

10 Landau theory

Landau developed a method to study phase transitions in different systems (such as the Ising
model); he suggested that the free energy of a system in the vicinity of its critical temperature
Tc should:

• be analytic (w.r.t. some order parameter like the magnetization in Ising systems)

• obey the symmetries of the underlying Hamiltonian

By using these two assumptions one can write down an effective free energy describing the
system in interest. We now focus on the Ising model. The Ising model in a lattice obeys the
Z2 symmetry i.e. if we flip sign of all the Si, the Hamiltonian does not change (if there is
no external magnetic field). Hence the effective free energy should not depend on the sign of
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magnetization (which changes sign under Z2 transformation). Given these property a first free
energy can be written as:

F (m,T ) = F0 + a0(T )m
2 +

b0(T )

2
m4 + . . . (21)

The quantity F0 is a constant term which does not affect the results while a0(T ) and b0(T )
are two parameters depending on the temperature. For the system to be thermodynamically
stable, we should require a positive b0(T ) > 0 and for simplicity, we assume b0(T ) = b0. As
for a0(T ), it should change sign (and we will see why) at the critical temperature Tc; hence we
expand a0(T ) ≈ a0(T − Tc). We end up with:

F (m,T ) = F0 + a0(T − Tc)m
2 +

b0
2
m4. (22)

Since the system minimizes the free energy, we should find the optimal m⋆ by taking the
derivative of F (m,T ) w.r.t. m.

1. Find the stationary point of F (m,T ) i.e. ∂F (m,T )
∂m = 0.

2. To find the minima, study the sign of ∂2F (m,T )
∂m2 .

3. How in this setting does the phase transition occur?

4. Introduce now a magnetic field by adding a term −hm to the free energy. How do the
previous minima change? Notice that by adding this term we explicitly break the Z2

symmetry (as in the Hamiltonian with external magnetic field).

5. Do you see any resemblance of this approach with the Curie-Weiss model? What about the
critical exponents?

⋄
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