

Statistical physics

Emmanuel Trizac LPTMS / University Paris-Saclay

Outline

I Introduction to phase transitions and critical phenomena

- 1- The problems raised by phase transitions, from a statistical mechanics perspective
- 2- Classification of phase transitions
- 3- The drosophila of phase transitions
- 4- Order parameter and symmetry breakdown
- 5- Local order and correlation functions : from magnets to liquids

II First order phase transitions

- 1- Unstable isotherms, double-tangent and Maxwell construction
- 2- Spinodal and binodal
- 3- Changing ensembles
- 4- van der Waals equation
- 5- The case of mixtures

III Critical phenomena : qualitative approaches

- 1- Weis molecular field
- 2- Variational mean-field
- 3- Critical exponents
- 4- Landau theory
- 5- Correlation functions and Ginsburg-Landau functional
- 6- Validity of mean-field

Statistical mechanics : considered by some as one of the most intellectually challenging subject. Noted for a high suicide rate among founders

calamitiesofnature.com @ 2010 Tony Piro

Prerequisites

- Elementary statistical mechanics
- Honest person toolbox in mathematics
 - Linear algebra
 - Probability theory
 - Complex analysis

$$f(x) = \frac{(x^2 - 1)(x - 2 - i)^2}{x^2 + 2 + 2i}$$

Introduction to phase transitions and critical phenomena

- 1- Problems raised by phase transitions, from a stat mech perspective
- 2- Classification of phase transitions
- 3- The drosophila of phase transitions
- 4- Order parameter and symmetry breakdown
- 5- Local order and correlation functions : from magnets to liquids

Opens for considerable richness

Various surfactant phases

- (a) An amphiphilic molecule
- (b) Spherical micelle
- (c) Cylindrical micelle
- (d) Cubic phase
- (e) Inverse micelle

- (f) Hexagonal phase
- (g) Bicontinuous cubic structure
- (h) Vesicle
- (i) Lamellar phase
- (j) Sponge phase

Identify an ORDER PARAMETER

Complexity / variety of phase changes

Transition	Example	Order parameter
$ferromagnetic^a$	Fe	magnetization
$\operatorname{antiferromagnetic}^a$	MnO	sublattice magnetization
$ferrimagnetic^a$	$\rm Fe_3O_4$	sublattice magnetization
$structural^b$	$\rm SrTiO_3$	atomic displacements
$\mathrm{ferroelectric}^b$	BaTiO_3	electric polarization
$order-disorder^{c}$	CuZn	sublattice atomic concentration
phase separation d	$\mathrm{CCl}_4\!+\!\mathrm{C}_7\mathrm{F}_{16}$	concentration difference
$\operatorname{superfluid}^{e}$	liquid ${}^{4}\mathrm{He}$	condensate wavefunction
$\operatorname{superconducting}^{f}$	Al, Nb_3Sn	ground state wavefunction
liquid crystalline g	rod molecules	various

From J. Yeomans, *Statistical mechanics of phase transitions* (Oxford)

Image from the International Committee on Taxonomy of Viruses database

Phase behaviour of hard sphero-cylinders

P. Bolhuis, 1996

Introduction to phase transitions and critical phenomena

- 1- Problems raised by phase transitions, from a stat mech perspective
- 2- Classification of phase transitions
- 3- The drosophila of phase transitions
- 4- Order parameter and symmetry breakdown
- 5- Local order and correlation functions : from magnets to liquids

Examples and exceptions

Temperature (K)

What about magnets ?

MAGNETS

Analogy between magnets and liquids ?

Definition of critical exponents

fluids

Specific heat at constant volume V_c $C_V \sim |t|^{-\alpha}$ Liquid-gas density difference $(\rho_l - \rho_g) \sim$ Isothermal compressibility $\kappa_T \sim |t|^{-\gamma}$ Critical isotherm (t = 0) $P - P_c \sim$

Correlation length Pair correlation function at T_c $C_V \sim |t|^{-\alpha}$ $(\rho_l - \rho_g) \sim (-t)^{\beta}$ $\kappa_T \sim |t|^{-\gamma}$ $P - P_c \sim |\rho - \rho_{\mathfrak{C}}|^{\delta} \operatorname{sgn}(\rho - \rho_{\mathfrak{C}})$ $\xi \sim |t|^{-\nu}$ $G(\vec{r}) \sim 1/r^{d-2+\eta}$

magnets

Zero-field specific heat C_H Zero-field magnetizationMZero-field isothermal susceptibility χ_T Critical isotherm (t = 0) $H \sim$ Correlation length $\xi \sim$ Pair correlation function at T_c G(i)

 $C_H \sim |t|^{-\alpha}$ $M \sim (-t)^{\beta}$ $\chi_T \sim |t|^{-\gamma}$ $H \sim |M|^{\delta} \operatorname{sgn}(M)$ $\xi \sim |t|^{-\nu}$ $G(\vec{r}) \sim 1/r^{d-2+\eta}$

Why are critical exponents interesting ? \rightarrow several layers of universality

E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945)

	Т _с (К)	P _c (atm)
Ne	45	26
Ar	150	48
Kr	209	54
Xe	290	58
N ₂	126	33
O ₂	154	50
СО	133	34
CH_4	190	45

Corresponding states for liquid-gas transition

There is more to universality

- Solution Liquid-gas transition: $\beta \sim 0.33$
- Solution № Magnets with uniaxial anisotropy (MnF₂): $\beta \sim 0.33$
- Solution Phase separation in binary mixture (CCl₄+C₇F₁₆): $\beta \sim 0.33$
- ≈ 3d Ising model on cubic lattice, fcc etc...: β ~ 0.33

 \rightarrow all belong to the same <u>universality class</u>

What matters is space dimension + symmetry of order parameter e.g. for Ising in 2D : $\beta = 1/8$

Introduction to phase transitions and critical phenomena

- 1- Problems raised by phase transitions, from a stat mech perspective
- 2- Classification of phase transitions
- 3- Ising model : the drosophila of phase transitions
- 4- Order parameter and symmetry breakdown
- 5- Local order and correlation functions : from magnets to liquids