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Introduction

In May 2000, the sealed envelope sent in February 1940 by Wolfgang Doeblin
from the front line in Lorraine to the Academy of Sciences in Paris, was finally
opened. This was a long-awaited event for researchers in probability, with some
interest in the history of their field, and who had in the past been struck by the
modernity of the ideas of Wolfgang Doeblin.

Once again, the Pli turned out to contain some gems, e.g. an extremely
advanced representation of the standard one-dimensional diffusions. Apart from
its purely scientific interest, the Pli reveals a lot about Wolfgang Doeblin as a
human being fully involved in the second World War and torn, as is his whole
family, between France and Germany.
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The Pli has now been published in its entirety in theComptes Rendusof the
Acad́emie des Sciences [14] as a Special Issue, dated December 2000, and this
seems to have awakened or renewed interest in both Wolfgang Doeblin’s life
and work. Perhaps as a consequence, Professor Sondermann has kindly asked
us to present an English translation of selected pages of the Pli as well as some
answers to the main recurring questions recently asked about Wolfgang Doeblin.

Here are the results of our efforts towards this goal. These are summarized
in our Plan of the article:

1. About Plis cachetés in general, and the Pli no. 11.668 in particular.
2. The lives of Wolfgang Doeblin and Vincent Doblin; the phoney war; Vincent

as mathematician – soldier – telephonist.
3. Main results found in the Pli; where does the Pli stand among studies of

stochastic processes?
4. Selected pages from the Pli.
5. Reading Notes from the Pli.

Bibliography.

The contents of these five sections were strongly influenced by the great
number of questions asked, and by the reactions during our writing and immedi-
ately after the publication of the Comptes Rendus volume: What is a Pli cacheté?
How did the D̈oblin family live before and after the war? How important are the
contents of the Pli?

In fact, interest around the Pli seems to have gone way beyond the community
of probabilists, due to a number of facts:

– world-wide media coverage was given to the announcement of the opening
by the Acad́emie des Sciences of a Pli cacheté deposited sixty years ago as
well as to the tragic story of the life and death of Wolfgang Doeblin during
WWII.

– people interested in the writings of Alfred Döblin also became curious about
his son’s life during WWII, if not his mathematics... One knows how much
intertwined the lives of the young Wolfgang, an exceptionally gifted mathe-
matician, and of his father Alfred D̈oblin, one of the great German writers
of the 20th century, have been. Wolfgang was the beloved son of his mother
Erna D̈oblin, who always kept his letters with her. Wolfgang’s physical re-
semblance to his father was astonishing; they also had the same passion for
poetry and music. Yet, their relationship was a source both of love and con-
flict. Some of Wolfgang’s manuscripts which are deposited in the literary
archives of Marbach are written on the back of Alfred’s manuscripts. Paul
Lévy, one of Wolfgang’s mentors, was at the same time a friend of Alfred,
and one of his daughters was a friend of Erna. Many literary critics have rec-
ognized in Edward Alisson, the hero of Alfred Döblin’s last novel (D̈oblin
1966), not only a double of Wolfgang but also of Alfred. Edward who has
been gravely wounded during the war, tries to escape the dark world which
surrounds him, and is only liberated through the death of his parents... This
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leads naturally to the grave where Wolfgang, Alfred and Erna are buried in
the Vosgian village of Housseras where Wolfgang ended his life.

– some probabilists and/or physicists discovered that the genesis of a part of
their field had escaped their attention. The Pli appears as an opportunity for
looking back on their common past.

– but, perhaps, more important than anything else, Wolfgang Doeblin’s figure
stands out throughout the writing of the Pli and, in fact, throughout his whole
life as an incarnation of “mankind’s indomitable thirst for knowledge”, to
borrow a line from D. Williams.

Here, we have tried to respond simultaneously to these different interests.
This task took us into a number of divergent directions, and we may only have
fulfilled our task partially...

We warmly thank Professor Sondermann for his sustained interest in the
development of our undertaking, and his judicious suggestions.

The two younger brothers of Wolfgang, Claude and Stephan Doblin, were
very enthusiastic about our undertaking, and helped us to correct several erro-
neous facts. Nick Bingham, Ron Doney, Torgny Lindvall, Anne Ruston carefully
read our manuscript, and suggested a number of improvements. We are very
grateful to each of them.

1 About Plis cachetés in general, and the Pli No. 11.668 in particular

1.1 What is a Pli cacheté?

The procedure of a “Pli cacheté” goes back to the very origin of the Académie
des Sciences. One of the first known examples was that of the deposit by Johann
Bernoulli, on February 1st, 1701, of a “sealed parcel containing the problems
of Isoperimetrics so that it be kept and be opened only when the solutions of
the same problems by his brother, Mr. Bernoulli from Basle, will appear”. A
“Pli cachet́e”, since that time, allows an author to establish a priority in the
discovery of a scientific result, when he/she is momentarily unable to publish it
in its entirety, in a manner which prevents anybody from exerting any control,
and/or asking for some paternity, over the result. This procedure continued after
the creation in 1835 of the Comptes Rendus de l’Académie des Sciences which
play a comparable role (to the Plis cachetés), but which, to some degree, are
submitted to the judgments of peers and referees, while they do not allow in
general the development of methods and proofs.

This procedure is still in use today and is subject to rules updated in 1990.
These stipulate that a Pli can only be opened one hundred years after its deposit
unless the author or his/her relatives explicitly demand it. Once the century has
elapsed, a special commission of the Academy opens the Pli in the order of its
registering and decides whether to publish it or not.

From here on, we shall refer to Doeblin’s Pli cacheté No 11.668 asthe Pli.
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1.2 Why did Wolfgang Doeblin use this procedure?

One may ask about the reasons which led Wolfgang Doeblin to have recourse to
the procedure of a Pli cacheté for his study of Kolmogorov’s equation.

We go back to February 1940. Spring was approaching and with it a pre-
dictable German offensive. Wolfgang Doeblin, a soldier in the French Army, did
not have time to finish writing up his results. He could not send a memoir in this
state. He was lacking references, he needed to read again the whole manuscript
and to complete the proofs. This would perhaps have meant one month’s work
given the rhythm Wolfgang Doeblin was able to furnish.

On the other hand, Wolfgang Doeblin had so far not published anything on
the general case of Chapman’s equation, which he had been studying since 1938.
He decided to stop there the work begun in November 1939 and to concentrate
instead on the writing of notes announcing his results in the general case. What
should he do with his manuscript? He might send it to Fréchet or Ĺevy, but neither
was entirely reliable. In 1938, Ĺevy kept in his filing cabinet the manuscript of
the memoir [11] on the metric theory of continued fractions which Doeblin
had asked him to present to Compositio Mathematica. Fréchet, on his side, was
overwhelmed with diverse tasks and tended to forget things...Indeed, he was to
forget in his papers, in turn, the last two notes written by Doeblin on Chapman’s
equation. These will only be published in the Blaubeuren volume as late as 1993
(Cohn 1993).

Moreover, Doeblin knew that the subject of Kolmogorov’s equation was
attracting a lot of interest and he feared to be preceded or plagiarized by some-
one...Of course, he could “chop” his manuscripts, sending the fully prepared part
to a journal and the rough remaining part to his brother in the United States. This
he had done before for his study of the set of powers of a probability ([13], 1940).
In the end, however, the procedure of a Pli cacheté turned out to be the safest
and most speedy way. Time was running out... Already, during the summer of
1938, when international tension was rising around the rape of Czechoslovakia,
Doeblin had tried to safeguard his yet unpublished papers. In fact, before go-
ing hill walking in the Jura and the Alps, Wolfgang Doeblin had deposited two
Plis cachet́es (Nos 11.445 and 11.446) which he claimed back and recovered in
their sealed forms on September 28th, the day before the signing of the Munich
agreement.

Doeblin’s case was not unique; other scientists were making use of the same
procedure during the troubled period of the years 1938–1940. In particular, the
work of Dedebant, Wehrlé and Kamṕe de Feriet on the statistical theory of
turbulence was deposited in four Plis cachetés. Likewise, the theory of nuclear
fission of Joliot, Halban and Kowarski was deposited in several stages between
1939 and 1940. Thus, some of the best kept atomic secrets during WWII may
have been those kept in the attics of the Institute as well as a few ingenious
proofs of the quadrature of the circle, the plans of several machines inducing
never-ending motion, and Kolmogorov’s equation.



Comments on the life and mathematical legacy of Wolfgang Doeblin 7

Cases of Plis coming from the Army’s postal sectors were more exceptional.
Apart from the Pli 11.668, only two other Plis came from researchers drafted to
the Army. One came from René Marconnet; this Pli has not been withdrawn,
and we do not know anything about it. The other one was deposited by René de
Possel, one of the founding members of Bourbaki, with H. Cartan and A. Weil.
This Pli, the content of which is also unknown, was returned to its author on
August 22nd 1947.

Thus, in February 1940, Doeblin finally decided to have recourse again to
the procedure of a Pli cacheté. More than ever, he was anguished with the idea
of dying whilst the results of his research about Kolmogorov’s equation would
forever remain unknown. Consequently, he resorted to two further precautions:
in a letter dated March 12th 1940, he alerted Fréchet about sending the Pli and,
in a separate mail registered on March 13th 1940, he sent to the Académie a
copy of his memoir. He believed that the war was not going to last long and
that he would be able to reclaim his manuscript, as he had done at the end of
the summer of 1938, or that Fréchet would do it for him. All seemed to be well
planned, except for what actually happened.

Doeblin died on June 21st 1940. His manuscripts lay scattered in several
places – in Philadelphia, with his brother Peter, where a second full manuscript
on the set of powers [13] as well as the rough draft of his general theory of
chains [12] had been deposited, – in Paris, in the caves of the Sorbonne, with
the papers of his father, other rough drafts and personal papers, – with Fréchet,
two projects of Notes for the Comptes Rendus, – finally, in the Académie, the
Pli cachet́e 11.668.

But the war lasted for five years. Lévy was forced to go into hiding under a
false name. He also needed to have recourse to the procedure of Pli cacheté (1943)
for other reasons, which the Académie had not foreseen, namely racial banning.
After the liberation of France, life was difficult. Fréchet, who had just lost his
wife run over by an American military vehicle, was mainly preoccupied with the
material needs of his grandchildren. He had clearly forgotten about the Pli and
Doeblin’s notes (in fact, Doeblin’s death was only officially known as late as the
Spring of 1944). Fŕechet was no longer interested either in the theory of chained
events or in Chapman’s equation, the latter domain being now reserved to Lévy
who was preparing an important book on the subject (1948). Nonetheless, Fréchet
had not forgotten about Doeblin altogether. During the “Congrès de la Victoire de
l’Association Franc¸aise pour l’Avancement des Sciences” held in Paris at the end
of October 1945, it was Fréchet, the holder of the Parisian Chair of Probability
Theory and Mathematical Physics, who presented the bulk of the French work in
Probability and Statistics undertaken during the German occupation. His lecture
opened with a moving homage to the memory of Wolfgang Doeblin, “of German
origin, but who became French before the War”. Fréchet writes: “From all his
soul, he (W. D.) wanted, when the war broke out, to show his gratefulness to
his adopted fatherland, by fighting hard for her. This is the imprint which my
conversations with him left me. But, it is in this ardent fight that he will meet
his death on June 22nd 1940 (sic). One must hope that it will be possible to find
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the mathematical papers sent by Wolfgang Doeblin to his relatives in America
and, in any case, to present a general study of the rich sequel of works which he
published in a few years interval.” (Fréchet 1947, p. 107).

Fréchet and Ĺevy involved themselves actively in the publication of Doe-
blin’s last manuscripts. They cannot be accused of negligence, lack of interest or
malevolence. It seems obvious that they would have edited the memoir on Kol-
mogorov’s equation, had they known about it as there was every indication that
it might become a “classic”. In his presentation of the state of probability theory
in France (1947), Fréchet alluded to the two C. R. Notes [CR9, 10] in a way that
suggests that neither did he remember much from them nor had any recollection
either of Doeblin’s correspondence on this topic or of the Pli cacheté, nor of
the CR Notes. As to Ĺevy, in his study of Doeblin’s work (1955), he merely
recalled the local theorem of the iterated logarithm for the regular movements
contained in the Note [CR9] and concluded: “The premature death of the author
prevented him from developing this note. Despite the few pages devoted to these
questions by P. Ĺevy (1948, pp. 75–78), this note and those that had followed
should doubtless inspire some further research”; (1955, p. 111).

In 1957, separated by a few months, Alfred and then Erna Döblin died.
Their three remaining sons Peter, Claude and Stephan entrusted all their father’s
manuscripts to the literary archives of Marbach. Wolfgang’s personal papers and
various rough drafts, which had been kept by Erna Döblin, were recovered by
Claude Doblin who would deposit them in Marbach at the end of the eighties.

Fifty years have now passed. A conference in honor of Wolfgang Doeblin was
organized in the Institut Heinrich Fabri in Blaubeuren in Germany, November
2nd–7th 1991. This conference was initiated by K. L. Chung, planned by A.
Blanc-Lapierre, H. Cohn, J. Gani, H. Hering and M. Iosifescu and chaired by
J. L. Doob. This event naturally gave occasion to the renewed study of the
unfinished work of Wolfgang Doeblin and to looking back upon the unpublished
manuscripts (see Cohn 1993).

Fortunately, the archives of Maurice Fréchet had been deposited by his family
in the Acad́emie des Sciences. Fréchet had kept everything, his school exercise
books, the manuscripts of his publications, all the reprints sent to him covering
all kinds of topics, the text of his conferences, the notes of his university lectures
in Strasbourg and Paris and, of course, all the letters he received during his
very long academic life from dozens of scientists, from the Moscow school,
the Polish school, from Romania, Bulgaria, Czechoslovakia, Yugoslavia, Greece,
United States, from the main (non-German) analysts of the 20th Century, but
also from statisticians, Fisher, Neyman, the Pearsons (father and son), and from
many French scientists, amongst whom Lévy (whose extensive correspondence
is being edited by B. Locker in his thesis 2001) and, of course, Doeblin. In
Doeblin’s correspondence with Fréchet, which amounts to about twenty letters,
one finds Wolfgang’s letter dated 12th of March 1940 announcing the dispatch
of his Pli about Kolmogorov’s equation. From there, it was easy to verify that
the Pli had never been opened, and remained in the Archives of the Académie
des Sciences.
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Meanwhile, the important work of Alfred D̈oblin, which had so far been
neglected, was gaining more interest and recognition. The publication of his
complete works was undertaken; this involved, as often is the case, some difficult
negotiations and complex rulings. This led to delays for the opening of the Pli.
Claude Doblin was finally able to present this demand at the Académie in May
2000, and the Commission, in agreement with the 1990 ruling, undertook the
opening of the Pli 11.668. The long night of the last manuscript of Wolfgang
Doeblin had come to an end.

2 The lives of Wolfgang Doeblin and Vincent Doblin;
mathematician–soldier–telephonist

2.1 Wolfgang Doeblin was born on the 17th of March, 1915, in Berlin1. His
father Alfred D̈oblin (1878–1957), who belonged to a Jewish family, was a physi-
cian and was starting to get a name in the vanguard of German literature. He
became famous in 1929 once his novelBerlin Alexanderplatzwas published. The
Döblin family was forced into exile in March 1933 after the burning of the Reich-
stag and the vote of full powers to Hitler. After a short stay in Zürich, the D̈oblins
settled in Paris. Wolfgang, having finished his “humanities” in a Protestant Gym-
nasium in Berlin, enrolled for the Licence de Mathématiques at the Sorbonne in
the autumn semester 1933. At the end of 1935, he carried out research about the
theory of Markov chains under the guidance of Maurice Fréchet. At that time
Paris was, with Moscow, one of the main mathematical centers interested in the
new theory of probability. There one would meet Borel, Darmois, Fréchet, Ĺevy,
Francis Perrin, and also a group of young mathematicians Dugué, Fortet, Lòeve,
Malécot, Ville,..., each of whom was to defend his mathematical thesis bearing
upon some probabilistic themes at the end of the thirties.

1 The correspondence and the autobiography of Alfred Döblin (1970, 1980) give a clear picture of
the peregrinations of the D̈oblin family in Europe and in the United States during the war. Particularly
worth reading is Alfred D̈oblin’s description of the French rout in June 1940 when two of his sons
are fighting in French uniforms against the German troops, and another son is fighting in German
uniform against the French troops.

While in Paris, Alfred D̈oblin continued his literary work. During the phoney war, he belonged
to the Board of French propaganda. In July 1940, he managed to leave France together with his wife
and their younger son born in 1926. The Döblins spent the war in the United States where Alfred
Döblin found it hard to emerge. Alfred D̈oblin and his wife as well as their sons Peter and Stephan
converted to catholicism at the end of the year 1940, which separated them even more from the
Jewish community from which Alfred had parted soon after the end of WWI. The Döblins came
back to France in 1945. Alfred D̈oblin started work for the cultural services of the French occupying
forces in Germany, then stationed in Baden-Baden. His role consisted in reading the manuscripts
presented by the German writers and journalists in order to obtain a publication visa from the French
occupying forces. These activities of a censor dressed in the uniform of a French colonel did not
help Alfred Döblin to re-enter the realm of German literature. His last years proved particularly
difficult. He went back to live in Paris in 1952, and he will die in Emmendingen (Schwarzwald)
in June 1957, almost completely forgotten, ignored by the different communities to which he had
successively belonged – a Jew from Stettin who became a Parisian catholic, a Berlin physician who
became a cosmopolitan writer, a banished European, but indeed a “sower and forerunner of the true
European of the future, and a true citizen of the World”, as his friend Hermann Kesten put it. See
also (Lindvall 1991, 1993).
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The young Doeblin very quickly obtained some most remarkable results. In
a few months, Doeblin’s name was to become well known to the small group
of mathematicians interested in a theory which by then was in full bloom. In
order to give an idea of the difficulty and the originality of the work achieved by
Doeblin in so short a time and at such a young age, Paul Lévy (1955) compared
Doeblin to Galois and Abel. Of course, one may argue about Lévy’s judgment,
but it is difficult to deny that Doeblin, together with Kolmogorov, Khinchin, and
Lévy himself, was one of the main characters involved in probability theory in
the thirties. At the age of 23 years and with only two years of active research
behind him, Doeblin’s performance must be considered unique, probably since
Laplace2.

Wolfgang Doeblin, together with his parents and his two younger brothers
Claude and Stephan, acquired French citizenship in 1936. After defending his
famous thesis in Mathematics [5] in Spring 1938, he was enlisted for two-years
military service which had been deferred for the duration of his studies. At the
beginning of November, he was posted to a battalion of the 91e RI stationed
in Givet in the French Ardennes. Getting depressed by the barracks routine life,
he stopped all his mathematical work for four months. It was only at the end
of February 1939 that, in order to overcome his lethargy, Doeblin resumed his
work. He had several themes in mind, among them Chapman’s equation – which
we shall discuss later – about which he had already written two Comptes Rendus
(Acad. Sci. Paris) notes before his departure for Givet, as well as questions
relating to independent random variables, which he had put aside in February
1938. He started working again on this second topic, and it was indeed in Givet,
whilst listening with one ear to some courses for corporal students3 that he wrote
his fundamental memoir about the sets of powers of a probability law [13] which
contains the theory of domains of partial attraction (i. e. the closure in law of
the normalized powers of a given law), in particular, the “universal” laws which
belong to the domain of partial attraction of all the infinitely divisible laws (see
Feller 1966 for a presentation of this theory). We know from his correspondence
(Cohn, p. 27) that, in July 1939, Doeblin was at last able to characterize the sets
of infinitely divisible laws (the empty set, the Gaussian laws,..., all the infinitely

2 About the scientific work in general of Wolfgang Doeblin, one may consult (Lindvall 1991;
Lévy 1955; Cohn 1993; Chung 1964, 1992; Doob 1953; Feller 1950, 1966; etc.

T. Lindvall (1993, pp. 55–56) quotes K. L. Chung’s review of (Lévy 1955) in theMath. Reviews:
“After all there can be no greater testimony to a man’s work than its influence on others. Fortunately,
for Doeblin, this influence has been visible and is still continuing. On limit theorems his work has
been complemented and completed by Gnedenko and other Russian authors. On Markov processes
it has been carried on mostly in the United States by Doob, T. E. Harris and the reviewer. Here his
mine of ideas and techniques is still being explored.”

3 Monsieur Paul Beaujot from Fromelennes in the Ardennes was posted to Doblin’s company in
Spring 1939. He remembers very well the soldier Doblin with whom he attended the course for
corporal students in the battalion. Doblin made good use of the theoretical courses by writing the
second part of his memoir on the sets of powers of a probability. He was often called to order as he
was doing computations with no relation to the theory he was supposed to be learning. Nonetheless,
he was the major of his group during the final examination in August 39. Vincent Doblin was always
standing on his own, lost in his thoughts and computations, of which he could not speak and which
have mostly been lost.



Comments on the life and mathematical legacy of Wolfgang Doeblin 11

divisible laws) which constitute the domain of partial attraction of a given law.
This necessary and sufficient criterion, about which Doeblin wrote that it is the
most difficult problem he ever solved apart from the general theory of chains
[12], has never been published or even clarified. Indeed, no one has been able
to decipher the rough draft he sent to his brother Peter in the United States, and
which was deposited after the war by his mother Erna Döblin in the Acad́emie
des Sciences where it has remained to this day... As usual, Doeblin made sure
that his text would be illegible to anybody but himself, and to start understanding
it, one would need, at least, a statement of the theorem he was proving, or some
modern analogue which does not seem to exist. These details are only given to
indicate the level of difficulties at which Wolfgang Doeblin was working, cut
off as he was from every scientific contact. We also hope that these details may
raise some new interest on “the last theorem of Givet”.

Immediately after the outbreak of war, Vincent Doblin was incorporated into
a new regiment, the 291e RI, attached to the “Secteur défensif des Ardennes”,
and stationed in the small village of Sécheval, south of Givet. His company’s
duty was to organize the defense on the Meuse between Anchamps and Château-
Regnault, in the meanders of the Meuse, one of the most beautiful landscapes of
the Ardennes. However, these beautiful autumn days seemed to accentuate the
recurring low spirits of the soldier Doblin who for two months abandoned all idea
of scientific work, only contenting himself with the correction of the galley proofs
of his memoirs to be published, in particular [10] and [11], which his mother
had sent him. Monotonous days were filled by Morse training with radios, shifts
at the telephone booth of the battalion, drilling exercise with the section. The
evenings were spent in a nearby farm where he went to drink some fresh milk,
before going to sleep on the straw in an old kitchen which had been converted
to a dormitory for fifteen soldiers4. In any case, the possibilities of intensive
intellectual work were quite limited. Doeblin had no scientific document at hand
and no place to work apart from the telephone booth. Even there, he could only
find quietness during his night shifts. He was alone, hibernating. He no longer
wrote to his parents. Maurice Fréchet, who had had no news from him since the
beginning of the war, learned about his postal sector from his mother. He wrote
to Doeblin asking him to collaborate on the scientific work which he directed at
the Institut Henri Poincaré, then in the service of National Defense. This letter,
which we have not yet retrieved, seemed to have had a beneficial effect on
Doeblin’s morale, since on October 29th, 1939 Doeblin gave a positive answer
to Fŕechet’s invitation. Not long afterwards, in a letter dated November 12th,
Doeblin informed Fŕechet that he had started work again “oh! not much, about

4 The building where he was staying belonged to the family Canot, who had been living in
Sécheval for many years.́Emile Canot, then 14 years old, very well remembers the soldier Doblin
who used to come to the farm around 8 pm to drink some fresh milk.Émile Canot particularly
remembers a discussion which struck him: one evening, Vincent Doblin told them in confidence that
he was a Jew, and that he would never accept to be a prisoner of the Germans, and that he always
kept on him a bullet to kill himself if he was captured. This verbal account is corroborated by others
and serves to underline Doeblin’s determination as well as his premonition of what was going to
happen, a feeling that was deep inside him all the time.
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one hour every day” and that he was writing the developed proofs of his Note
on Kolmogorov’s equation [CR9], which had been published a little before his
departure for military service (Cohn pp. 29–28, 53–54). He was trying very hard,
as he wrote to Fŕechet, to “fight against depression. As I am not interested in
alcohol, I cannot resort to getting drunk.” Mathematics as a therapeutic against
the blues, a nice Pascalian theme.

2.2 At this point, it may be useful to pause for one instant in order to examine
the genesis of the work of Doeblin on Chapman’s equation. It seems that it was
only during the year 1937, after having completed his general theory of chains
[CR5], [12], that Doeblin began in earnest his attack on one of the most important
and most difficult problems of probability theory during the thirties (and follow-
ing decades), the “Bernstein-Kolmogorov problem”: given some local character-
istics as general and natural as possible, to construct a movement whose law sat-
isfies the functional equation of Bachelier-Smoluchowski-Chapman-Kolmogorov
and to study its behavior5. By local characteristics, one must understand what
determines the movement between the instantst and t + dt, that is, in the case
of a continuous movement, the instantaneous speed of the non-random compo-
nent (the drift), and the instantaneous variance of the random component (the

5 Wolfgang Doeblin did not wait until 1937 to take on Kolmogorov’s problem. He was one of those
scientists who learn a theory while trying first to solve its open problems, preferably the most difficult
ones, even if they do not understand its terms completely. We may try to establish an approximate
date of Doeblin’s first contact with Kolmogorov’s problem. In the archives of Maurice Fréchet in
the Laboratoire de Probabilités of the University Paris VI, one finds an abbreviated translation by
Doeblin of the two memoirs of Kolmogorov (1931, 1933a). This is probably some work done on
the request of his teachers, Fréchet or Darmois. Even a quick overall reading of these translations
clearly shows that the young Doeblin was a beginner in probability theory, and more generally
in Mathematical Analysis. For example, he translates the title of§4 “Das Ergodenprinzip” as “Le
principe de l’Ergoden”, obviously not knowing what this means, although since 1928, Hostinský,
Hadamard, Fŕechet had been using the term “principe ergodique” to denote the regular asymptotic
behavior of Markov chains, by analogy with the ergodic property of dynamical systems. It may even
be that Kolmogorov’s “Ergodenprinzip” was a German translation of the “principe ergodique” in the
theory of chains of Hostinsḱy-Hadamard (1928), which Doeblin himself was to develop brilliantly
from the beginning of the year 1936. It is then quite plausible that this is a text written at the
beginning of 1936, or even more likely during the year 1935. It is known that during Spring 1934,
Wolfgang Doeblin was a Licence student of G. Darmois who immediately noticed his extraordinary
quickness of mind. From then on, Darmois regularly informed the young Doeblin about the most
difficult open problems in the theory of probability. He may well have indicated to him Kolmogorov’s
problem, although this may have occurred with Fréchet, a close friend of Kolmogorov, who was in
USSR during the fall of 1935. In any case, one finds in Doeblin’s translation an important number of
“typos” (more than in the original text in Math Annalen which Doeblin does not correct and which
he does not appear to notice), or even mathematical errors of translation (for example, “totalstetig”
on top of page 440 is translated as “totalement continue”, whereas a more advanced student would
have translated adequately as “absolument continue”, showing there probably that he did not yet
know Lebesgue’s theory, in any case not better than that of Markov). Thus, it seems that, although
not understanding it reasonably well, Doeblin would have read Kolmogorov’s theory as early as
1935 when he was barely 20. He might then have decided that he was not quite ready and that
he should rather begin to learn some analysis and to reconstruct in his own manner the theory of
chains, which he will achieve from the beginning of 1936 in a very original manner. The astonishing
maturity of the text of the Pli would thus seem a little better understandable. The Doeblinian theory
of Kolmogorov’s equation is certainly not the most difficult work realized by Doeblin in his very
short scientific life, but in some way, it is the most mature and one of the most modern.
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martingale part), or in the case of a discontinuous movement, the probability of
going from one state to another during an infinitesimal interval of time(dt). This
problem had been posed in one of the most famous memoirs of Kolmogorov
published in 1931 in “the” Revue ofMath. Annalen, and was soon followed by
very important work of Khinchin, Petrowski and Feller. All these authors had
used analytical methods borrowed from the theory of partial differential equations
of parabolic type. The conditions they imposed on the local data were therefore
analytic and seemed artificial as soon as the problem was considered from a
probabilistic point of view: a random movement, which is continuous or discon-
tinuous, without memory (non hereditary). Hence, as early as 1937, Doeblin’s
idea was to solve Kolmogorov’s problem in such a way that the solution satisfied
the following double criterion: “the local conditions which we impose must have
a probabilistic meaning, a meaning for the movement, and the ideal solution will
be a solution which allows us to read, in some way, the movement”.

In a program of research dated May 1937, Doeblin stated that he aimed to
study some questions related to parabolic equations and he chose, in agreement
with Fréchet, as a second thesis subject6: “Limit problems for the partial differ-
ential equations of parabolic type”, that is the theory which Khinchin, Petrowski
and Feller had applied with success to Kolmogorov’s equation. All this indicates
Wolfgang Doeblin’s strong and constant interest in this main research theme,
whilst, at the same time (this is the year 1937), there was a steady stream of
publications of his work on many other subjects : inhomogeneous chains, chains
with complete links, general theory of chains, independent random variables,
random continued fractions, ergodic theorem of Fortet-Doeblin-Yosida-Kakutani,
etc.....He had also finished writing all of his thesis worked out the preceding year.

In October 1937, Doeblin took part in the Geneva Colloque on the Calculus
of probabilities, and, upon this occasion, met all the leading (non-Russian) per-
sonalities of the theory, among them Feller, Hostinský, Craḿer, and others. It was
Doeblin who was asked by Fréchet to edit the conferences of Slutsky and Bern-
stein, who were absent from Geneva. The month of February 1938 was wholly
devoted to the theory of independent random variables ([9], [CR6,7]). How-
ever, in March, he gave a main lecture on Chapman’s equation at the Hadamard
Séminaire (see [14] for a transcription of this exposé); some of his future lead-
ing ideas are found here in seminal form. He defended his thesis on March
26th, 1938. The following three months were devoted to the preparation for the
exam of General Physics which he still needed in order to obtain his “licence
for mathematical teaching”7. This involved some quite intensive work which left

6 For the French degree of “docteurès sciences mathématiques”, there were two theses, the main
one and a second one which was an oral examination whose aim was to test the breadth of knowledge
and teaching abilities of the candidate (Taqqu 2001, p. 6).

7 At that time, the licence for mathematical teaching consisted of three exams: Rational Mechanics,
Differential and Integral Calculus, and General Physics. The latter exam was part of licences for
teaching both mathematics and physics. Its program was encyclopedical covering all of classical
physics. In June 1935, Doeblin brilliantly passed his examination in Differential and Integral Calculus.
Since, during the previous year, he had passed the exam in Rational Mechanics and Probability
Calculus (which is a specialized optional examination), he already held his “licence de doctorat”
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very little time for personal research. It was during the summer of 1938, whilst
walking alone in the Jura and the Alps and sleeping in Youth Hostels as he
had done each summer since 1935, that Doeblin really worked on Kolmogorov’s
equation. It is difficult to date his results more precisely. The first results he ob-
tained were probably those contained in the second note [CR10] and concerned,
in the homogeneous case, the behavior of the movement in the neighborhood of
a point where the local data vanish and its possible infinite branches as soon as
the non random current is not compensated by the amplitude of the Gaussian
movement. Most likely, this work had been motivated by the “stochastic” lecture
of Bernstein in Geneva, which Doeblin had just edited (Bernstein 1938).

Whatever, in October 1938, shortly before his being drafted, Doeblin ob-
tained his main results about Kolmogorov’s equation. It is even possible that
he presented part of them at the Séminaire Borel, although we have no definite
proof of this. In a letter to Ĺevy written in that period and reproduced in (Cohn,
pp. 38–39), Doeblin explained that he did not want to take on new topics of
research, as he wrote: “I still have other things to write, and, above all, I am
engaged in research about Chapman’s equation which I would first like to finish,
if only provisionally (it may keep me busy for my whole life8 ).“

2.3 Thus, during the first fortnight of November 1939, in a small village of
the Ardennes, as the glowing autumn receded giving way to a winter which
promised to be severe, the soldier telephonist Vincent Doblin went out to buy
a school exercise book of 100 pages and began to write down the development
of his note “Sur l’́equation de Kolmogorov” which he had written more than
one year previously and never touched since, – one hour a day at most, and
most likely during his night shifts in the telephone booth. The first pages of
the Pli indicate that this was a form of therapy which the author imposed upon
himself. The writing was relaxed, the hypotheses were not so precise, and the
first proofs invoked “well-known arguments”, but those were not made explicit.
However, it appears that, as nights went by, the soldier Doblin was getting back
into the game. The writing, as concise as ever, was becoming ethereal. The total
absence of leaves had been forgotten, and around Christmas, the soldier Doblin
was getting more and more addicted to his work. He even discovered some new
results which amused him enough to incite him to write a second Note [CR12]
on the same subject, before putting the last word to the writing of the memoir. It
was now the beginning of January 1940 (Cohn, p. 29): it was extremely cold, the

which enabled him to enrol for a thesis. This he did at the end of the year 1935. Doeblin was well
aware that it would be difficult to obtain a University chair in France, as these were more or less
“reserved” for the most brilliant French (native) students of the Ecole Normale Supérieure who all
were holders of the complete licence for teaching and of “agrégation” (an exam with a plethoric
program which gave access to the best teaching position in Lycées). In order to improve chances
on his side, Doeblin estimated that he had to satisfy the French University rules and in particular to
obtain the certificate of General Physics, which forced him to interrupt his research, at least while
he learnt all of French physics in three months, of which he knew nothing. Indeed, Doeblin passed
this examination in June 1938. In a letter to a Swiss friend dated July 1938, he confessed that this
had been the hardest effort he ever had to make and that he was exhausted (Cohn, p. 41).

8 In a recent paper on the Heat equation, Serge Lang used the same sentence!
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ground was frozen to a depth of one meter, it was snowing, but the soldier Doblin
was full of optimism. He may have dreamt, as the official French propaganda
wished him to do, that the war was close to an end and that the 3rd Reich was
imploding.

In the middle of January 1940, the dream was brutally replaced by reality,
with the “alert on Belgium”. On January 11th, 1940, a Luftwaffe plane crashed
on Belgian territory. Belgium was at this point a neutral country. The pilot was
arrested and in his suitcase papers originating from the German Headquarters
were found. These demonstrated that the Wehrmacht, far from collapsing, was
getting ready to re-edit the Schlieffen plan of 1914 by attacking Belgium as soon
as the weather would permit. In fact this plan was soon replaced by the Manstein
plan with the main attack in the Ardennes, the attack on Holland and Belgium
being only a trap to attract the Allied forces into Belgium, so that the net, once
lifted, would eliminate the best enemy troops as far as possible. However, in
January 1940, the papers found on the German pilot had the impact of a bomb.
The French troops on the Belgian and Luxembourg fronts were put on alert and
there were talks about entering Belgium. One witnesses a huge ballet of fighting
units the logic of which was difficult to penetrate, but which, relevant to our case,
resulted in the transfer of the 291e RI from the Meuse front to that of Lorraine.
Hence, Kolmogorov’s equation moved from the Ardennes to Meurthe-et-Moselle
under conditions of minimum comfort. From the report of Captain Camus, who
commanded Doblin’s company, it appears that, on January 25th, the troop took
a train to reach Rosières aux Salines, east of Nancy. The cold was intense. In
order to allow the soldiers to warm up their shoes during the journey, fires were
lit each time the train halted. Doblin’s company were marched to Athienville, a
small Lorraine village close to Arracourt. The first weeks were difficult, with a
complete battalion of more than 700 men billeted in a village of less than 150
inhabitants. Doblin slept in an attic with no heat, where it snowed, but, soon,
his section was settled in relatively comfortable barracks specially built for the
troop. Vincent Doblin was to remain there until March 14th, 1940. The 291e RI
practiced before moving to the front line, and the quiet garrison life had started
again.

Thus, it may well have been in Athienville, probably around the middle of
February, that Doeblin finished writing the Pli. He would then have sent it to the
Acad́emie. This may explain the changes in numbering and pagination. There
is an Ardennes pagination and a Lorraine pagination. Doeblin wrote to Fréchet
that at some point he had had enough of Kolmogorov’s equation. He still had
to write up the Note of 1939 [CR10] and the diverse results he had obtained
since then. To establish a date, he sent, probably at the same time as the Pli, a
second Note [CR12] which was presented by Borel on March 4th. It is difficult
to give a more precise chronology in the absence of truly decisive elements.
Rather than to carry on improving his manuscripts, he preferred to work directly
on the mixed case of Chapman’s equation. The “local stochastic conditions” now
allowed the movement to go at once from one state to another without solution of
continuity (the probability of a sudden displacement of the movementX towards
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L, betweent and(t + dt), is equal toc (X (t) , L, t) dt for a local datac, satisfying
some natural conditions), if not they are “regular” in the sense of the Pli. The
question was then, for some given “local conditions” and under some adequate
hypotheses, to determine the law of the movement which satisfies Chapman’s
equation in an “ideal form” which allowed one to follow its evolutions in the
course of time. This work, which must have begun in February, was to continue
up to mid-April. Hence, these two months were devoted to the general problem of
Bernstein-Kolmogorov about which he had been thinking for about three years.
It is likely that Doeblin wanted to finish an organized general scheme of work
about Chapman’s equation before the spring and a possible German attack. His
spirits remained high, one reason being that, at long last, he may possibly have
obtained a leave in the middle of March, which he may then have put to profit by
going to the Institut Henri Poincaré (IHP) to look for the memoirs of Hostinský
he needed.

During Doblin’s leave, assuming it took place, the 291e RI left Meurthe-et-
Moselle and was marched to the Defensive sector of the Sarre, on the Maginot
line. The 3rd Battalion was stationed in Oermingen, Bas-Rhin, in barracks which
had been built between 1936 and 1938 to house fortress troops guarding the
sector’s blockhouses. The 3rd Battalion was to remain in Oermingen till April
17th, 1940. During the stay of the 291e RI on the Maginot line, the soldiers of
classes 30 and below were exchanged with younger soldiers from fortress troops.
The soldier Doblin who belonged to the class 1935 remained in his battalion,
but half of his comrades left, and a large number of officers was replaced. In
particular, Doblin’s company was entrusted to Captain Franc¸ois Renard, a priest
from the diocese of Soissons. He became Doblin’s immediate superior and was
to remain so up to June 20th. Doblin, who seems to have been relatively aside
in his company where his work on Kolmogorov’s equation may not have found
too much interest, was getting even more isolated from his fellow soldiers whom
he did not know. Yet, this did not seem to affect his enthusiasm for work, and it
was in Oermingen that he wrote three drafts of Notes on Chapman’s equation.
Only one would be published, through the help of Fréchet, [CR13], which was
presented by Borel on April 29th, 1940. As we mentioned above, Doeblin’s goal
was to determine the “ideal form” of the solution of Chapman’s equation which
correspond to some given local conditions with possible jumps; it is clearly given
by a series of multiple integrals with increasing orders as in Hostinský and Feller,
but each of the terms of the series now had a clear probabilistic meaning.

The two other drafts of Notes written in April 1940 remained in the papers of
Fréchet and were only published in the Blaubeuren volume (Cohn, pp. 32–36).
At the end of his last letter to Fréchet, he announced other results to come on the
control of small jumps, but these results have not been found, and most likely,
were never written (Cohn, p. 36). Likewise, the proofs of the results in the mixed
case are not available. The last theorems of the Maginot line are still resisting.

On April 17th, 1940, Doblin’s regiment moved to the front line, close to the
German frontier on the loop of the Blies, between Sarreguemines and Bliesbruck.
The 3rd Battalion’s HQ was established in Folpersviller, east of the airfield at
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Sarreguemines. Wolfgang Doeblin found again the – completely evacuated –
town where he had spent his early childhood from 1915 to 1917, when his
father had volunteered as a physician in the Military Hospital of Saargemünd,
the German Sarreguemines. In fact, his brother Klaus was born in Saargemünd.
Doeblin seemed confident as to the end of the conflict, and was interested in
getting a grant for his return to civilian life. This he estimated to be likely before
the end of the year 1941. However, despite his optimism, Doeblin no longer
found time nor possibilities for work. He sent back the reprints which Fréchet
had communicated to him, with just a short postcard of thanks. It was dated
April 21st, 1940. He was never to resume his work. For Wolfgang Doeblin, the
study of Chapman’s equation had ended.

The German offensive began on May 10th, 1940. The Sarre frontline where
the 291e RI was positioned came under intensive bombardment. Under enemy
fire, the soldier Doblin restored interrupted contacts, an act for which he was
decorated with the Croix de Guerre and on which occasion he proved his great
physical courage and disdain of death. This he was demonstrate even more be-
tween the 14th and the 20th of June when his regiment was trying to slow down
the progress of the First German Army in its move south.

During the night of June 20th to 21st, as the remains of his decimated reg-
iment are in the Vosges, completely encircled by German troops and surrender
is imminent, the soldier Doblin who, according to the opinion of his superi-
ors, has always been a “constant model of bravery and devotion”, leaves his
company and tries to escape on his own. After walking all night long, he finds
himself inside the German net in the village of Housseras which has been taken
by advanced elements of the 75th German Infantry Division. Refusing to give
himself up as a prisoner, he then shoots himself in the head9. The life of the sol-
dier Vincent Doblin stops here. He is buried in the evening of the 21st, without
ceremony, without name, without a coffin. His body was only to be identified
in April 194410. A plaque has just been erected there, on June 2nd, 2001, in
commemoration of Wolfgang Doeblin and his study of Kolmogorov’s equation.

9 The suicide of Wolfgang Doeblin has been described by several trustworthy witnesses. When
he understands that the village of Housseras is surrounded by German soldiers, Wolfgang enters a
farm, which belongs to the Triboulot family. There, without saying a word, he burns all his papers in
the kitchen stove. He then comes out of the farm building, enters the barn and shoots himself in the
head. Thus, Wolfgang Doeblin wanted to disappear in silence. Among his burnt papers, there may
have been his “research notebook” in which he had always jotted down new questions to study, ideas
to develop... and which has not been found. The Nazis had burnt the works of his father and had
forced his family into exile. For Wolfgang Doeblin, there remained the ultimate freedom to burn his
papers himself and to kill himself in order to preserve his ideal of life and the beauty of his work.

10 The identification of Vincent Doblin’s body was made possible thanks to the research under-
taken by Marie-Antoinette Tonnelat as early as July 1940. Marie-Antoinette Tonnelat completed her
university studies in IHP at the same time as Wolfgang Doeblin; she soon became his best (and only
true) friend. Specialized in theoretical physics, she was to defend in 1941 her thesis written under
the direction of Louis de Broglie. One may refer to (Cohn, pp. 45–46) for more details about this
topic.
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3 Where does the Pli stand among studies of stochastic processes?

3.1 One may invoke many reasons why the emergence of a specific branch
of probability – the study of stochastic processes – took a quite tortuous path
throughout the XXth century.

On one hand, the pioneers were very often quite original mathematicians,
such as Bachelier, Ĺevy, Itô,..., whose novel ways of looking at things took a
long time to be accepted.

On the other hand, perhaps the fact that Brownian motion possesses so many
properties, which we summarize as:

Fig. 1. Brownian motion and related processes

led many authors to develop studies of one or another special class of processes,
thus giving a hard time to outsiders...

The Pli is mostly concerned with the construction and study of continuous
Markov processes, particularly of one-dimensional diffusions.

3.2 The studies of these processes, prior to WWII, were done exclusively with
the help of differential equations – more precisely, second order parabolic PDE
– and pathwise constructions of these processes do not appear as such, although
they are clearly present in the thoughts of Kolmogorov, Bernstein, Feller...

All along, from 1940 onwards, there has been a constant evolution from
PDE argumentswhich we may call “exterior calculus”, in that it expresses as a
solution of a PDE the expectation, say:

u (t , x) = Ex [Ft ]

of the (Brownian) functionalFt underPx , the law of Brownian motion or of a
diffusion starting fromx, to pathwise arguments, which we might call “interior
calculus”, indeed, essentially Itô calculus, consists of the study of the process
(Ft , t ≥ 0) “inside” the expectationEx , e.g.: its semimartingale decomposition.

Again, this has not been a perfectly linear trend, as the following exam-
ple illustrates: the paradigm of exterior calculus may well be theFeynman-Kac
formula (1949), which characterizes the function:

ν (x) = Ex

[∫ ∞

0
dt exp

(
−λt − µ

∫ t

0
ds f(Bs)

)]
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as the unique solution of a certain Sturm-Liouville equation.
A very nice application, given by Kac, has been the recovery of the arc sine

law of Paul Ĺevy for Brownian motion:

P0

(
At ≡ 1

t

∫ t

0
du1(Bu>0) ∈ da

)
=

da

π
√

a (1 − a)
,

which Lévy obtained through a beautiful analysis of the Brownian paths (1939,
pp. 317–320), as a consequence of the identity:

At
(law)
= Aτs (for fixed t , s > 0),

where (τs) is the inverse local time.
Nonetheless, It̂o’s calculus took 25 years (1944–1969) to be accepted, the

latter year being that of the publication of McKean’s marvellous little book:
Stochastic integrals. Itô’s exposition of excursion theory (1970) represents a
second generation of “interior calculus”, where (Brownian) paths are decomposed
into excursions away from a point, formalizing ideas which pervade Lévy’s deep
study of linear Brownian motion (1939, 1948). Again it takes about 10 years
(1970–1980) to make this new tool operational, thanks to D. Williams integral
representation of Itô’s (σ-finite) measure of Brownian excursions, see e.g., L.C.G.
Rogers (1981, 1989). This is followed by yet another wave (around 1983) where,
through the works of Neveu, Pitman, Le Gall, Aldous..., trees and Branching
processes are constructed from Brownian excursions.

Exterior Calculus Interior Calculus

Feynman-Kac formula
Poisson’s equation
Resolvents
Semigroups
Infinitesimal Generators

Itô’s calculus
Itô’s Excursion theory
Trees and branching processes in Brownian
excursions

Fig. 2. Two complementary calculus

We should probably come back to matters which lie closer to the Pli: in
Fig. 1, we have linked with a broken arrow: [Markov processes] and [Mar-
tingales]; this intends to mean that both studies are intimately linked: indeed,
Stroock-Varadhan’s introduction of a general martingale problem to characterize
a given diffusion (1969, 1979) has been a very powerful tool, extending the mar-
tingale characterization of Brownian motion. As we shall see below, in Sect. 3.3,
Wolfgang Doeblin was not far from this point of view.

To further insist upon the systematic evolution from Markov processes to
martingales11, we discuss succinctly the several developments of the so-called

11 As Le Jan puts it in his paper “Martingales et changement de temps”,Śem. Proba. XIII, Lect.
Notes in Maths 721, pp. 385–399, Springer (1979), about time changes of martingales: “Going through
the usual procedure, which passes via Markov processes, one may see that the “probabilistic version”
of this formula is an expression of the predictable increasing process associated to the discontinuous
part of a time-changed predictable martingale.”
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Girsanov’s theorem, which explains how stochastic processes are being trans-
formed under absolutely continuous changes of probability laws: starting with
(Fortet 1943, Chap. II), Cameron and Martin (1945) who related the laws of
Brownian motion and Brownian motion with drift, such results are extended to
diffusions by Maruyama (1955) and then Girsanov (1960), and then found a sim-
ple and very general, almost “ultimate” extension with the Van Schuppen-Wong
formulation (1974); if(Mt ) is a (Ft ) martingale underP, andQ � P, then(Mt )
is a semimartingale underQ and its semimartingale decomposition(s) may be
written in terms of bracket(s) involving(Mt ) andDt ≡ dQ

dP

∣∣
Ft

.
All previous formulations (in Markovian settings...) could then be easily re-

covered and understood from the Van Schuppen-Wong formulae.

Fig. 3. Evolution of Girsanov’s theorem

3.3 As we shall see, Wolfgang Doeblin takes the martingale point of view in
his analysis of the paths of an inhomogeneous real-valued diffusion(Xt , t ≥ 0),
starting fromx, with drift coefficient(a (y, s)) and diffusion coefficient(σ (y, s)),
as follows:
(at this point, it is essential to recall that the general notion of martingale, and
many facts about the structure of continuous martingales did not exist, when the
Pli was written!)

i) Zt
def
= Xt − x − ∫ t

0 a (Xs, s) ds, t ≥ 0, and Z2
t − Ht , t ≥ 0, where Ht =∫ t

0 σ2 (Xs, s) ds, are martingales; again: the term martingale is not found in the
Pli, but the results are proven!
ii) there exists a Brownian motion(β (u) , u ≥ 0) such that:

Zt = β (Ht ) ;

in fact, Doeblin introduces the time change:
θ (τ ) = inf {t : Ht > τ} , τ ≥ 0,

and shows that:β (τ ) = Zθ(τ ), τ ≥ 0, is a Brownian motion.
Finally, collecting i) and ii), Doeblin has obtained the representation of

(Xt , t ≥ 0) as:

Xt = x + βHt +
∫ t

0
a (Xs, s) ds . (1)
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3.4 A few years later, K. It̂o presented(Xt , t ≥ 0) in the form of the solution
of a stochastic differential equation:

Xt = x +
∫ t

0
σ (Xs, s) dBs +

∫ t

0
a (Xs, s) ds , (2)

where(Bs, s ≥ 0) is a Brownian motion.
Then, the comparison of Doeblin’s and Itô’s representations (1) and (2) yields:∫ t

0
σ (Xs, s) dBs = β (Ht ) , t ≥ 0 , (3)

a result which would only be understood in a general setting years later with
the Dubins-Schwarz and Dambis, both in 1965, representation of a continuous
martingale(Mt , t ≥ 0) as:

Mt = γ
(〈M 〉t

)
, t ≥ 0,

where(γ (u) , u ≥ 0) is a Brownian motion.

3.5 Together with the representation (2), K. Itô establishes the key point of
stochastic calculus:Itô’s formula (1951b), which in this context, may be stated
as follows:

if ϕ: R+ × R → R is C1,2, then:

ϕ (Xt , t) = ϕ (x, 0) +
∫ t

0
σ̄ (Xs, s) dBs +

∫ t

0
ā (Xs, s)ds , (4)

where

ā (x, s) = ϕ′
s (x, s) + ϕ′

x (x, s) a (x, s) +
1
2
ϕ′′

x2 (x, s) σ2 (x, s) ,

σ̄ (x, s) = σ (x, s) ϕ′
x (x, s) .

3.6 In the Pli, although Doeblin does not know, of course, about Itô’s stochastic
integral – a creation of It̂o in 1942 – he established for his diffusions, once
represented in the form (1), the following change of variables formula:

ϕ (Xt , t) = ϕ (x, 0) + δ
(
H̄t

)
+

∫ t

0
ā (Xs, s)ds

where(δ (u) , u ≥ 0) is a Brownian motion, and:

H̄t =
∫ t

0
σ̄2 (Xs, s) ds.

3.7 We hope that the above paragraphs – in this Sect. 3 – have given the reader
the feeling that the Pli stands out as a link between the analytical researches of
pre WWII, and the post WWII pathwise constructions.

It is now time for the reader to enjoy a few selected pages from the Pli,
which we have translated into English.

Nonetheless, as T. Lindvall wrote to us, it must be “pointed out that this is
not a matter of a finished manuscript. Reading one of thepublishedpapers by
Wolfgang Doeblin is a pleasure: clear, carefully prepared, filled with a finely
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tuned enthusiasm. I regret if some reader’s experience of his writing is limited
to the Comptes Rendus pages or the English version of them; they get the wrong
impression.”

Some further discussion about the modernity of Doeblin throughout the Pli
is made in Sect. 5.

4 Selected pages from the Pli

Research on Kolmogorov’s equation

Definition of Kolmogorov’s equation.Let us consider a particle which moves
randomly on the line (or on a segment of the line). Assume that there exists
a well defined probabilityF (x, y, s, t) such that the particle which has been at
time s in the positionx is at time t(> s) to the left of y, a probability which
does not depend on the preceding movement of the particle. We shall assume
that F (x, y, s, t) is (B) measurable with respect tox, s and t , and that it solves
the functional equation:

F (x, y, s, t) =
∫ ∞

−∞
F (z, y, u, t)dFz (x, z, s, u)

We assume furthermore that the following limits exist (except for “singular”
points which vary continuously with time and are in a finite number in every
finite interval):

lim
t→s

1
t − s

∫
|y−x|<1

(y − x)dF(x, y, s, t) = a(x, s) , (1)

lim
t→s

1
t − s

∫
|y−x|<1

(y − x)2dF(x, y, s, t) = σ2(x, s) , (2)

lim
t→s

∫
|y−x|>η

dF (x, y, s, t) = o(t − s), for every η . (3)

If x is a singular point at times, one has only (3). We assume that the limits (1)
and (2) take place uniformly and thata(x, s) and σ2(x, s) are continuous with
respect tox ands on every interval which does not contain singular points, (3)
taking place uniformly with respect tox.

We assume furthermore that one has:

lim
t→s

lim
x→−∞

[
1 − F (x, y, s, t)

]
(t − s)−1 = 0 (4)

lim
t→s

lim
x→∞ F (x, y, s, t) (t − s)−1 = 0 (5)

If all these conditions are satisfied, we say that the movement is regular. We
shall only consider regular movements.

. . .
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Local Gaussian movement.Assume thatX (s) = x, x being a regular point at
time s, andσ(x, s) being/= 0.

Consider[X(t) − X(s)] /
√

t − s. We may write:

X (s + ∆) − X (s) =
n∑
1

(
X

(
s +

i
n

∆

)
− X

(
s +

i − 1
n

∆

))
.

If ∆ is sufficiently small, the probability for one of the quantities∣∣X (
s + i

n ∆
) − X (s)

∣∣ to be > ε is < ε/2, and we can findn such that the
probability for one of the

∣∣X (
s + i

n ∆
) − X

(
s + i −1

n ∆
)∣∣ to be > ε∆ is < ε.

Denote:

∆i = X

(
s +

i
n

∆

)
− X

(
s +

i − 1
n

∆

)

If |X
(

s +
i − 1

n
∆

)
− X (s)| < ∆, let ∆̄i = ∆i , if |∆i | < ε∆,

= 0, if |∆i | > ε∆ .

If
∣∣X (

s + i −1
n ∆

) − X (s)
∣∣ > ∆, we take for∆̄i an arbitrary variable whose math-

ematical expectation isa(x, s)∆
n , and whose standard deviation isσ(x, s)

√
∆
n ,

with E|∆̄3
i | < ε∆2

n σ2.
We have for every±X

(
s + i −1

n ∆
)

E′ [∆̄i
]

= [a(x, s) + η]
∆

n

E′ [∆2
i

]
=

[
σ2(x, s) + η′] ∆

n
. . .

E′ [∆3
i

]
< ε∆E

[
∆2

i

]
whereE′denotes the mathematical expectation evaluated ifX

(
s + i −1

n ∆
)
is deter-

mined,η andη′ being extremely small. It then follows easily from (e.g. S. Bern-
stein Math. Ann. 1927) that the characteristic function of[

n∑
1

∆̄i − ∆a(x, s)

]
∆−1/2 converges, as∆ → 0, towards exp

{
−σ2(x, s) t2

2

}
.

n∑
1

∆i differs from
n∑
1

∆̄i only on sets of arbitrarily small probability; hence,

if ∆ → 0, the probability distribution of

[
n∑
1

∆i − ∆a(x, s)

]
∆−1/2 converges

towards the centered Gauss distribution with standard deviationσ(x, s).
We may say:
If σ(X (s) , s) differs from 0, the local displacement∆X is the result of the

superposition of a non-random displacement with speeda (x, s) ∆ and a Gaussian
random movement with zero mean, and whose standard deviation isσ(x, s)

√
∆

(we shall callσ(x, s) the amplitude of the Gaussian movement).
Locally, the non-random movement, being of the order of∆, is negligible

with respect to the Gaussian movement. It is not so when∆ is no longer infinitely
small. It is to be remarked that the decomposition of the movement, as indicated
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above, is not invariant when one makes a change of variables, even if the latter
has the simple formx′ = ϕ (x), y′ = ϕ (y), t ′ = t , s′ = s.

If σ = 0, [X (s + ∆) − X (s)] is, outside of cases of probabilityΞ (∆),12 0(∆).
. . .
6) Consider the processZ (t) = X (t) − ∫ t

0 a (X (u) , u) du....
. . .13

VII. It follows from the preceding proof that under the hypothesisH ′:
EH ′ (Z (t) − Z (s)) = 0 .

. . .

VIII. Let θ (τ ) the random time at which
θ∫

0

σ2 [X(u), u] du = τ

resp. if |X(t)| = 1 for the first time, at a random timeu1, and that
u1∫

0

σ2 [X(u), u] du < τ

the random instant at which:
u1∫

0

σ2 [X(u), u] du + σ̄2 [θ (τ ) − u1] = τ

Lemma. For any value of Z[θ (∆)], for ∆ ≤ τ ,

E
[
Z

(
θ
(
τ ′)) − Z (θ (τ ))

]
= 0 ,

E
[
Z

(
θ
(
τ ′)) − Z (θ (τ ))

]2
= τ ′ − τ.

Proof. We may write

Z (θ (τ )) = lim
n→∞

n∑
i =1

{
Z

[
i
n

]
− Z

[
i − 1

n

]}
ϕi ,

whereϕi = 1, if θ (τ ) < i −1
n , = 0 if θ (τ ) ≥ i −1

n

E [Z (θ (τ ))] = lim
n→∞

n∑
i =1

E

{[
Z

[
i
n

]
− Z

[
i − 1

n

]]
ϕi

}
,

and since

E

[
Z

[
i
n

]
− Z

[
i − 1

n

]]
= 0

12 Doeblin’s notationΞ(∆) stands for any quantity converging to 0 as∆ → 0.
13 To make paragraph VIII – which is essential in the Pli – understandable, we insert here the

definition of Z in paragraph 6), and the statement of its martingale property, proven by Doeblin in
paragraph VII. See our above Subsect. (3.3) for a succinct discussion ofZ .
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for all Z(t) with t ≤ (i − 1)/n, one finds:
E [Z (θ (τ ))] ≡ 0 .

and thenE
[
Z

(
θ
(
τ ′)) − Z (θ (τ ))

]
= 0, and we see easily that this formula

remains true if one knows the values ofZ (θ (τi )) or of X (θ (τi )), for any set of
instantsτi < τ ′.

One also proves easily that

E
[
Z (θ (τ )) − Z

(
θ
(
τ ′))]2

= τ − τ ′.

IX. Lemma. The probability law of

[
Z (θ (τ )) − Z

(
θ
(
τ ′))]/√

τ − τ ′

is the centered, reduced normal Gaussian for any j values of Z
[
θ
(
τ ′)].

Proof. The functionZ [θ (τ )] is a continuous function ofτ , sinceZ (t), θ (τ ) and
τ (θ) also are.

Indeed, one has:

A <
θ (τ ) − θ

(
τ ′)

τ − τ ′ < B

if 1
B < σ̄2, σ2(x, s) < 1

A. Hence, sinceZ(t) is a. s. continuous, so isZ [θ (τ )].
We may write

Z (θ (τ )) − Z
(
θ
(
τ ′)) =

n∑
j =1

{
Z

(
θ
(
τj

)) − Z
(
θ
(
τj −1

))}

whereτn = τ , τ0 = τ ′, τj − τj −1 = n−1
(
τ − τ ′).

Apart from cases of probability< ε̄ = Ξ (n),
∣∣Z (

θ
(
τj

)) − Z
(
θ
(
τj −1

))∣∣ will
be < ε for every j.

If we define

∆Zj = Z
(
θ
(
τj

)) − Z
(
θ
(
τj −1

))
if

∣∣Z (
θ
(
τj

)) − Z
(
θ
(
τj −1

))∣∣ ≤ ε ,

∆Zj = 0 if
∣∣Z (

θ
(
τj

)) − Z
(
θ
(
τj −1

))∣∣ > ε ,

Z̄ =
n∑

j =1

∆Zj ,

the functionsZ̄ and Z coincide outside of cases of probability< ε̄. H being
any hypothesis concerningZ [θ (τi )], i ≤ j − 1, it follows from the previous
discussion that

EH
[
∆Zj

]
= EH

[
Z

(
θ
(
τj

)) − Z
(
θ
(
τj −1

))]
+ o

(
1
n

)
= o

(
1
n

)
and

EH

[
∆Zj

2
]

=
τ − τ ′

n
+ o

(
1
n

)
,
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EH

[
∆Zj

3
]

< εE
[
∆Z2

j

]
.

We may then apply a Proposition of M. S. Bernstein and we conclude that
the law of

∑
∆Zj converges to the law of Gauss ifn → ∞, and since Z and̄Z

are identical outside of cases of probabilityΞ (n), the lemma follows.

X. Theorem: Local form of the iterated logarithm. If x is a regular point of
the movement at time s, and X(s) = x, a. s.

lim
t→s

|X(t) − X(s)|√
(t − s) lg2 (t − s)−1

=
√

2σ (x, s) (22.1)

Proof. We first assumeσ /= 0.
We may supposex and s = 0. Let us defineZ (θ (τ )) as previously. Since

Z (θ (τ )) follows a Brownian process, it results from a theorem of M. Khintchine
that

lim
τ→0

|Z (θ (τ ))|√
τ lg2 τ−1

=
√

2 (22.2)

But, if τ is sufficiently small, outside of cases of probabilityΞ(τ ),

Z (θ (τ )) − Z (0) = X (θ (τ )) − X (0) −
θ(τ )∫
0

a (X(t), t)dt

and a. s.

lim
τ→0

θ (τ )
τ

=
1
σ2

.

As ∣∣∣∣∣∣
θ(τ )∫
0

a (X(t), t)dt

∣∣∣∣∣∣ = 0[θ (τ )] = 0(τ )

a.s. lim
τ→0

|Z (θ (τ ))|√
τ lg2 τ−1

= lim
τ→0

|X (θ (τ ))|√
τ lg2 τ−1

,

τ = τ (θ) being the inverse function ofθ (τ ).

a.s. lim
τ→0

|X (θ (τ ))|√
τ (θ) lg2 τ (θ)−1

= lim
θ→0

|X (θ)|√
σ2θ lg2 θ−1

.

Relaxing the hypothesisX (s) = 0, s = 0, (22.2) becomes (22.1), qed.
Let us suppose thatσ = 0. Define

Z ′ (t) = Z (t) + Y (t) ,

with Y (t) a random function, with independent increments, independent ofZ (t),
and∆Y(t)/

√
∆t following a symmetric Gaussian distribution with standard de-

viation ε.

Let us now denote byθ (τ ) the random time at which:
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θ(τ )∫
0

σ2 (X(s), s) ds+ ε2θ (τ ) = τ

resp. if |X(u)| = 1 for the first time at timeu1, let θ (τ ) denote the time at which

u1∫
0

σ2 (X(s), s) ds+ σ̄2 (θ (τ ) − u1) + ε2θ (τ ) = τ .

If M 2 denotes the maximum ofσ2 + σ̄2 + ε2, for |x| ≤ 1, ε < 1, then one has:

1
ε2

>
θ
(
τ ′) − θ (τ )

τ ′ − τ
>

1
M 2

.

The functionZ ′ [θ (τ )] is still a Gaussian process with independent increments,
and one has:

lim
t→0

∣∣∣∣∣Z ′(t) − Z ′(0)√
t lg2 t−1

∣∣∣∣∣ =
√

2ε .

If lim
t→0

X(t)/
√

t lg2 t−1 were > α > 0 with probability > β > 0, there would

exist, with this probability an instantt very small such that

X(t)/
√

t lg2 t−1 >
α

2
.

Since the probability law ofY (t) is symmetric, the probability such that at the
same instant one would have:∣∣∣∣∣Z ′(t) − Z ′(0)√

t lg2 t−1

∣∣∣∣∣ >
α

2

is > 1/2. Hence, one would have:

Pr

{
lim
t→0

∣∣∣∣∣Z ′(t) − Z ′(0)√
t lg2 t−1

∣∣∣∣∣ >
α

2

}
>

β

2
,

which impliesβ = 0. The theorem follows in the caseσ = 0, qed.
. . .
XV. Changes of variables.Let ϕ (x, t) be an increasing function ofx con-

tinuous with respect to(x, t). DefineY (t) = ϕ (X (t) , t). Let G (x, y, s, t) be the
probability thatY (t) < y, if at time s, one hadY (s) = x. G (x, y, s, t) is equal
to the probability thatX (t) < y′ when one had:X (s) = x′.

It is easily verified thatG (x, y, s, t) satisfies Chapman’s equation, forx
varying betweenϕ (−∞, s) and ϕ (+∞, s). But, in order thatG satisfies Kol-
mogorov’s equation, it is necessary to make some further hypothesis onϕ. We
assume thatϕ′

x , ϕ′′
x2 andϕ′

t exist, and thatϕ′
x andϕ′′

x2 are continuous with respect
to t andx.

We apply the finite increments formula:
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Y (t + ∆) − Y (t) = ϕ [X (t + ∆) , t + ∆] − ϕ [X (t) , t + ∆]

+ϕ [X (t) , t + ∆] − ϕ [X (t) , t ]

= ϕ′
x [X (t) , t + ∆] (X (t + ∆) − X (t))

+
1
2
ϕ′′

x2

[
X ′, t + ∆

]
(X (t + ∆) − X (t))2

+ϕ [X (t) , t + ∆] − ϕ [X (t) , t ] ,

for X ′ betweenX (t) andX (t + ∆). Consequently:∫
|y−x|>ε

dG(x, y, s, t) = o (∆)

uniformly in every region of the plane(y, t) which is the image by the transfor-
mationy = ϕ (x, t) of a region of the plane(x, t) which does not contain singular
points and in whichϕ′

x andϕ′′
x2 are bounded.

Likewise

A =
1
∆

∫
|z−Y|<ε

[z − Y (t)]dzG (Y (t) , z, t , t + ∆)

= ϕ′
x [X (t) , t ] a (X (t) , t) + ϕ′

t [X (t) , t ]

+
1
2
ϕ′′

x2 [X (t) , t ] σ2 (X (t) , t) + Ξ (∆) ,

σ̄2 =
1
∆

∫
|z−Y|<ε

[z − Y (t)]2dzG (Y (t) , z, t , t + ∆)

= ϕ′′
x2 [X (t) , t ] σ2 (X (t) , t) + Ξ (∆) .

The expressionsΞ (∆) in the preceding formulae converge to zero uniformly in
every region which does not contain singular points in whichϕ′

x , ϕ′′
x2 andϕ′

t are
bounded, andϕ′

x andϕ′′
x2 are continuous with respect tot .

An important particular case.Let

Y (t) = ϕ (X (t) , t) =
∫ X(t)

0

dx
σ (x, t)

.

Assume thatσ′
t exists as well asσ′

x , and thatσ′
x is continuous with respect tot .

One then has

A =
a (x, t)

σ
−

∫ x

0

σ′
t

σ2
dx − 1

2
σ′

x ,

σ̄2 = 1 .

Remark.One might consider more complicated changes of variables by intro-
ducing instead oft andx functionsϕ (t , x), etc. But we shall not need these.

. . .

XXI. Assume that a, σ and1/σ are continuous, forα ≤ x ≤ β, τ1 ≤ s ≤ τ2. Con-
sider two particles whose random movement obeys the same law{F (x, y, s, t)},
the two particles moving independently from each other. Let X1 (t) and X2 (t) be
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the positions of the particles at time t. If one hasα < α′ < X1 (τ1) < X2 (τ2) <
β′ < β, then the probability that the two particles meet before timeτ2 tends to 1
if X1 (τ1) − X2 (τ1) → 0.

Proof. SupposeX1 (τ1) < X2 (τ1), and let Z (t) = X1 (t) − X2 (t). If, at some
time t , one hasZ (t) > 0, it implies that the two particles have met beforet .
The probability distribution ofZ (t) − Z (τ1) is, if (t − τ1) is very small, and
α′ < X1 (τ1) < X2 (τ1) < β′, X2 (τ1) − X1 (τ1) < ε, very close to a Gaussian
distribution. One then proves XXI in a quite similar manner to V, and one verifies
that the probability for the particles to have met before timeτ > τ1 tends to 1
uniformly with respect toX1 (τ1) and X2 (τ1)

(
α′ < X1 (τ1) < X2 (τ1) < β′) if

X2 (τ1)−X1 (τ1) → 0. In case one may takeα andβ = 0, a different method allows
to prove that the probability in question is of the form 1 + 0(X1 (τ1) − X2 (τ1)),
which probably extends to the general case.

. . .

XXIII. Theorem. If F (x, y, s, t) is continuous with respect to x, for every y,
whatever(s, t) in [S, T] , and if X (t) is a. s. continuous for S≤ t ≤ T for every
value of X(s), then F(x, y, s, t) is monotone with respect to x.

Proof. We consider again two moving particles whose random movement obeys
the same lawF (x, y, s, t), the two particles moving independently from each
other. LetX1 (t) andX2 (t) be the positions of the two particles at timet . Assume
X1 (s) < X2 (s). The probabilityF (x, y − 0, s, t) is the probability thatX1 (t) be
< y, X1 (s) being =x, andF (X2 (s) , y − 0, s, t) is the probability thatX2 (t) < y.
X (u) being a. s. continuous, three cases only are possible (apart from movements
with zero total probability).

1st case: one hasX1 (u) ≤ X2 (u) for all u betweens and t ;
2nd case: one hasX1 (u) = X2 (u) for (at least) oneu < t ;
3rd case: one hasX1 (u) < X2 (u) for all u < t , but X1 (t) = X2 (t).

In the first and second cases, ifX2 (u) is < y, X1 (u) is a fortiori < y. The
probability thatXi (u) < y in the case where the curvesX1 (u) andX2 (u) meet
is – taking into account the fact that the probability such that max

s≤u≤t
|X1 (u)| > K

or max
s≤u≤t

|X2 (u)| > K goes to 0 ifK → ∞, and that by hypothesisF (x, y, s, t)

is continuous with respect tox - the same forX1 (u) andX2 (u).
It follows that

F (x, y − 0, s, t)

is monotone with respect tox. The same is true forF (x, y + 0, s, t), and by
hypothesis

F (x, y, s, t) = F (x, y + 0, s, t) ,

which ends the proof of the theorem.
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5 Reading notes

5.1 Kolmogorov’s equation and the conditions (1), (2), (3), (4), (5)

The theory of Kolmogorov’s equation begins with the fundamental paper (1931)
by Kolmogorov, the sources of which are fairly well known: the mathematical
theory of Markov chains, published from 1907 onwards by Markov, and whose
aim is to extend the limit theorems of probability theory to cases where the
independence hypothesis does not necessarily hold, met a rather cold welcome
from the international mathematical community. It was taught by S. Bernstein
in Kharkov during the first world war, but one cannot find any other echo from
this beautiful contribution from Markov, which does not even acquire a name;
indeed, the term “Markov chain” dates from 1929 and this is no coincidence.
(During the International Congress of Mathematicians in Bologna (1928), when
Hadamard and Hostinský presented their works about the ergodic principle in
the framework of card shuffling, as initiated by Poincaré, Ṕolya informed them
about the previous works of Markov concerning chains of events: the “Markov
chains” had been baptized!)

On the other hand, since the very beginning of the century, and indepen-
dently from Markov’s mathematical works, theoretical physicists had developed
Markovian-type computations which, they believed, were likely to explain all
sorts of diffusion phenomena, or even all physical phenomena as soon as one
relaxes the analytical determinism to replace it by a determinism of another kind,
which does not fix the evolution of the system from the present to the immedi-
ate future, but yields a (well-determined) probability distribution for the imme-
diate future, if the present is given, (Einstein 1905; Chapman 1928; Ornstein-
Uhlenbeck 1930; Schrödinger 1932, 1946; Nelson 1967 etc.). For diverse reasons,
many other scientists have been interested in discrete or continuous Markovian
schemes, Bachelier being one of the first, but also mathematical actuaries, namely
those in the Scandinavian school (Cramér 1930), in order to describe the evolu-
tion of a client’s account, or the mathematical biologists who created the genetics
of populations (Fisher 1930), or again the telecommunication engineers (Brock-
meyer et al 1948). But, at the end of the twenties, Markov’s theory began to
interest mathematicians again, independently from any idea of applications. The
mathematician analysts of the new generation, belonging to the Moscow and
Paris Schools in particular, saw there a sort of natural extension of the theory of
functions studied in the Paris Baire-Borel-Lebesgue School, where one is inter-
ested in the “arbitrary functions”, those which, following Dirichlet, associate to
one value of the variablex, a “well determined” value of the functionf (x).

Since the fairly mysterious idea of choosing a number at random took a pre-
cise analytic meaning in the setup of the new theory of functions, it became
possible to get interested in functions obeying certain laws of (“determinations”
in) probability, instead of satisfying “analytical expressions” as Euler or Lagrange
phrased it. Indeed, as early as 1905, Borel suggested replacing the time-honored
“geometrical probability” by the Borel measure associated with the Lebesgue
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integral, and, quite soon afterwards, Paul Lévy and Richard von Mises (inde-
pendently) defined a “probability law” in a general finite dimensional euclidian
space as a positive measure with unit mass in the sense of Borel-Lebesgue-Vitali-
Fubini-Young-Riesz-Hausdorff-Radon-Carathéodory-Hahn-etc. This might have
been a starting point for the mathematical construction of a theory of functions
defined at random: a differential and integral stochastic calculus, a stochastic
Fourier theory, in short a stochastic analysis, of which the well advanced study
of Markov chains would give a first sketch in the discrete variable case.

The continuous variable case presented, of course, more difficulties, but it
had an almost obvious interest. Already, Bachelier, as he studied quotations in
the Bourse of Paris, and adapted the methods of the classical theory of the gam-
blers’ ruin, introduced, in his way, the general diffusions, homogeneous in space.
In particular, he showed the link between these new “continuous probabilities”
and the theory of heat: when all is fair (one might say in equilibrium) and con-
tinuous, probability diffuses as heat, (Taqqu 2001). Wiener, on his side, and
this time in a strictly mathematical mode, remaining inside the new theory of
functions, constructed, around 1923, the law of probability of diffusions which
are homogeneous in space and time, which are now called “Brownian motions”.
His first construction, too complicated to be usable, was improved at the begin-
ning of the thirties by Wiener himself, Paley and the Polish School, Steinhaus,
Marcinkiewicz, Zygmund, Kac,...The mathematical theory of Brownian motion
took its shape in a rigorous analytical framework, including Lebesgue’s measure,
“independent functions”, Wiener’s measure, which constitute a well identified set
of well known mathematical objects (Kahane 1997, 1998).

Kolmogorov’s paper (1931), inspired by the works of Bachelier about ho-
mogeneous diffusions, and by those of Hostinský-Hadamard on Markov chains,
aims at defining a unified analytical set up for all “stochastically defined pro-
cesses”. The objective is to study the probabilistic Markovian schemes, as gen-
erally as possible, in dimension one, (then in higher dimension in (1933a)), in
the discrete and continuous cases, i. e. the systems of “well-defined” proba-
bilities which satisfy Chapman’s equation – whose probabilistic interpretation
and analytical nature are clear. Kolmogorov develops in particular a remarkable
study of continuous time-space which we very briefly discuss below. This ar-
ticle and its companion (1933a) mark the birth of the mathematical theory of
diffusions. All immediately posterior works by Bernstein, Khinchin, Petrowski,
Feller, Kolmogorov and of course Doeblin, which we shall now discuss, are di-
rect descendants of the former, one way or another: it would also be of interest to
study in detail the further developments of Kolmogorov’s problem, which indeed
motivated an important part of the theory of probability in the second half of the
XXth century. However, describing the fundamental works of Itô, Doob, those of
the Russian, American, Japanese, French,... schools is an unreasonable task, and
we shall simply refer the reader to the main introductions of (Ikeda-Watanabe
1981, 1996; Stroock-Varadhan 1979, 1987; Dynkin 1965; Kendall 1990; Shiryaev
1989; Ventsel 1994), and, with the advent of the new millenium (Meyer 2000;
Varadhan 2001; Watanabe 2001, etc.).
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5.1.1 The local conditions (1), (2), and Kolmogorov’s theory

The local conditions (1) and (2) in the Pli had been introduced by Kolmogorov
in his second memoir (1933a), they already appeared in Kolmogorov’s 1931
memoir in a global form. We shall follow the 1933 text of Kolmogorov, allow-
ing ourselves to modify very slightly the notation in order to bring them closer
to Doeblin’s; we briefly detail the original computations of Kolmogorov with
the help of Doeblin’s movementX, which Kolmogorov has clearly in mind,
but without writing it down in 1931–1933. It may be useful to recall that Kol-
mogorov’s axioms date from 1933, (1933b) and that, without it, the letterX has
an intermediary status, somewhere between a physical concept, a financial or
actuarial metaphor, or again some kind of mathematical object, whose properties
may be clear for a number of scientists among whom one should of course find
Kolmogorov himself, but which are resolutely vague, or empty, for the great
majority of them.

In 1931 as well as in 1933, Kolmogorov aimed at deriving from Chap-
man’s equation, under well defined mathematical conditions, the (so-called Kol-
mogorov!) parabolic equations, for which he hopes to find probabilistic solutions
and their behavior at infinity as in the case of chains.

Thus, letF (x, y, s, t) = Pr{Xt < y/Xs = x}, whereX is a continuous move-
ment in the sense of Doeblin,F being the only object featured in the computations
and theory under study by Kolmogorov. We assume, as does Kolmogorov, thatF
has a densityf (x, y, s, t) with respect toy, which is as many times differentiable
as one desires. The functionsF , as well as the functionsf , are interrelated by
Chapman’s equation:

f (x, y, s, t) =
∫

f (x, z, s, s + ∆) f (z, y, s + ∆, t) dz.

Let us assume that∆ is small, and let us see how this equation allows us to
recover Kolmogorov’s PDE equation, under some reasonable conditions, (1933a,
§1).

(As Kolmogorov and Doeblin), we let ourselves be guided by the behavior
of the movementX in the neighborhood ofs. Since the movement is continuous,
the only “probable” valuesz of X are nearx. So, letU be a neighborhood ofx,
and write:

f (x, y, s, t) =
∫

f (x, z, s, s + ∆) f (x, y, s + ∆, t) dz

+
∫

U
f (x, z, s, s + ∆) {f (z, y, s + ∆, t) − f (x, y, s + ∆, t)} dz (a)

+
∫

R−U
f (x, z, s, s + ∆) {f (z, y, s + ∆, t) − f (x, y, s + ∆, t)} dz

The first integral equalsf (x, y, s + ∆, t). In order to estimate the second
integral, it suffices to develop the term between{ } with Taylor’s formula, written
up to order 2:
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f (z, y, s + ∆, t) − f (x, y, s + ∆, t)

= (z − x)
∂f
∂x

(x, y, s + ∆, t) +
1
2

(z − x)2 ∂2f
∂x2

(x, y, s + ∆, t) (b)

+o (z − x)2

that is, integrating on the setU , and under conditions onf which imply conditions
1 and 2 (except in certain points called singular by Doeblin), one finds that the
second integral is equal to[

a (x, s)
∂f
∂x

(x, y, s, t) +
1
2
σ2 (x, s)

∂2f
∂x2

(x, y, s, t)

]
∆ (c)

+
∫

U
o (z − x)2 f (x, z, s, s + ∆) dz .

Then, Kolmogorov imposes a “Lindeberg condition” onX, which is sufficiently
strong so that the integral part of this last expression and the last integral in the
preceding sum areo (∆). Therefore, we have established the first equation of
Kolmogorov: f as a function ofx ands solves the equation:

L(u) (x, s) =
∂u
∂s

(x, s) + a (x, s)
∂u
∂x

(x, s) +
1
2
σ2 (x, s)

∂2u
∂x2

(x, s) = 0 . (d)

Likewise, Kolmogorov shows thatf as a function ofy and t satisfies the
adjoint, so called Fokker-Planck equation, as it has been obtained (without precise
mathematical conditions) in statistical physics a few years earlier.

At this point it suffices to look for some adequate probabilistic solutions of
the parabolic equationL (u) = 0, and to study them, which is precisely what
Kolmogorov does in a number of particular cases [1931, 1933a], whilst asking
the following questions (1931, p. 452):

1) Unter welchen Bedingungen existiert eine solche Lösung der Gleichung
(133) [which refers to Fokker-Planck equation]?

2) Unter welchen Bedingungen kann man behaupten, dass diese Lösung wirk-
lich den Gleichungen(85)und (86) [Chapman’s equation for the probability den-
sity f ] gen̈ugt?

Such is “Kolmogorov’s problem”, which Doeblin studies in the Pli.

5.1.2 On condition (3) and Feller’s memoir

In 1936, Feller replaced the Lindeberg-Kolmogorov condition by condition (3)
of the Pli. This (Feller) condition plays a very important role in the theory: under
conditions (1), (2), (3) and some adequate conditions of analyticity, Feller showed
thatF solves the equationL (u) = 0, as a function ofx ands, and thatf solves the
adjoint equation as a function ofy andt . He then proved a very general theorem
of existence and unicity in the set-up of the Hadamard-Gevrey theory. Indeed,
the theory of parabolic equations developed considerably at the beginning of the
XXth century, by S. Bernstein, E. Holmgren, E. E. Levi, J. Hadamard, M. Gevrey,
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among others, renewed the historical works of Laplace, Fourier and Dirichlet.
In particular, they considered anew the study of existence and uniqueness and
the difficult boundary problems. The famous Goettingen School immediately
incorporated these questions into its program, and it is conceivable that Feller, a
brilliant representative from the Goettingen School, was able to go further than
Kolmogorov’s works on Kolmogorov’s equation14.

One of the aims of Doeblin in his works on Kolmogorov’s equation was
to establish a theorem of existencewithout the strong analytical conditions of
Feller. He proceeds using approximation in distribution from Feller’s case, using
in particular a result on uniform continuity onF , theorem XXII.

The celebrated Feller memoir (1936), which was the starting point of Fortet
and of many others, is strictly analytical in nature – nothing stochastic appears
explicitly, whereas, on the other hand, condition (3) is clearly a strong continuity
condition on the movement: the present being given, variations of amplitude
bigger thanη during a time interval of length∆ have probabilityo (∆). It is quite
clear that Feller, as well as Kolmogorov, thought first in terms of the movement
X, but they computed the lawf , and wrote analytical theorems. There is no
indication, or published version, of any construction by Kolmogorov and Feller
of a continuous version of their movements which would allow them to discuss
its trajectories, and to deduce results from this approach, even after 1933, when
Kolmogorov’s axioms got published and the theory of random functions began
to develop.

5.1.3 Bernstein’s theory and Doeblin’s conditions (4), (5)

It is time to say a few words about Bernstein, who had an important influence on
Doeblin. Serge Bernstein was one of the great mathematicians of the first half of
the 20th century – his mathematical production is considerable, and does not need
to be recalled here. Although during the first world war, Bernstein got interested
in probability theory in order to earn his living (he was an actuary) as well as
for pedagogical reasons (he taught probability and statistics to J. Neyman), he
soon became fascinated by the mathematical and physical aspects of the theory.
As such, he is the author of one of the first (non set-theoretic) axiomatics of
probability theory, and he published in the twenties some important papers about
asymptotic normality in cases of weak dependence (1926). As early as 1931, he
set about Kolmogorov’s equation. There, he clearly saw an occasion to construct
a probabilistic solution to the parabolic equations, of which he was one the
world’s best specialists.

14 Kolmogorov knew very well that the analytic solution of “his” problem was to be found in
Göttingen; he had asked for a Rockefeller grant in 1932: “to pursue studies in the field of theory
of probability and analysis at the Dept. of Mathematics of Göttingen with Prof. R. Courant”. Kol-
mogorov’s fellowship was scheduled to start in May 1, 1933. It was too late, Courant had been
dismissed by the Nazis in April 1933. Following the advice of Hermann Weyl, Kolmogorov decided
not to go to G̈ottingen but to Paris with Hadamard. But Kolmogorov never obtained his visa from
the Soviet authorities, [Siegmund-Schultze 2001, p. 132].
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Bernstein might have started from one of the very rare, non-analytic com-
mentaries of Kolmogorov (1931, p. 448). After obtaining the equationL (u) = 0,
and having shown the important role played by the conditions (1) and (2) related
to a and σ, Kolmogorov added (we still keep Doeblin’s notation): “The true
meaning ofa andσ is the following:a (x, s) is the mean speed of the variation
of the parameterx during an infinitely small time interval, whileσ (x, s) is the
differential dispersion of the process. The dispersion of the difference(y − x)
during the time interval∆ is

σ (x, s)
√

∆ + o
(√

∆
)

= 0
(√

∆
)

,

while the mean of this difference is:
a (x, s) ∆ + o (∆) = 0(∆) .”

It was tempting to build a theory of stochastic differential equations, using
this commentary as a foundation. As early as 1932–1933, Bernstein considered
stochastic difference equations of the form:

∆yi = a (yi , ti , αi ) ∆ti + σ (yi , ti , αi )
√

∆ti

the αi ’s indicating that a random choice is being performed at timeti , indepen-
dently of the past, once the present is given.

It then suffices to study the asymptotic behavior of the laws of the solutions
of these equations to obtain, under some adequate conditions, a probabilistic
solution to the Fokker-Planck equation associated to the mean values of the
random dataa andσ (Bernstein 1938, p. 11).

Bernstein’s works had been published in French by Doeblin in one of the
fasciculesof the Colloque of probability theory which was held in Geneva in
October 1937, and was the first international congress entirely devoted to the
theory of probability and its applications. These works do not seem to have
impressed Doeblin very much, as he thought the conditions of Bernstein far too
restrictive; however, these works contain a study of the infinite branches of the
movements which is quite original and which, almost certainly, contributed to
the construction by Doeblin of his theory of regular movements.

Bernstein examined the particular case of the equation
∆y = y2∆t + α

√
∆t

in which α takes the values + 1 or− 1 with probability 1/2, (Bernstein 1938, pp.
6–9). He then observed that, starting from 0 at time 0, and letting∆t converge
to 0, the probability thaty is infinite at time t = 6 is greater than 0.0061.
Thus, with strictly positive probability, there has been “explosion” (for a given
time) following the terminology used in the fifties. To prevent this phenomenon,
one needs to impose thata (x, s) grows at infinity at most asx; this is the
condition of “quasi-linearity” of Bernstein, which is found later in the “classics”
(McKean 1969, p. 66, problem 2; Ikeda-Watanabe 1981, Chap. IV, Theorem 2.4,
for example).

One may understand why Doeblin added to the conditions (1), (2), (3), the
conditions at infinity (4), (5) which allow (random) explosions which cannot
happen too brutally, so that after a change of scale inx one still can construct by
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interpolation a continuous version ofX. The contemporaries of Doeblin, notably
Feller and Fortet, limit themselves to bounded data. The conditions (4) and (5)
allow one to go beyond these limitations. We have not found whether they have
any posterity.

5.2 Doeblin’s theory of regular movements, his representation theorem

Doeblin’s theory of regular movements is deliberately a pathwise one. LetX be
a continuous movement, defined up to a change of scale, whose law satisfies the
conditions (1) to (5); there are many of them, at least under Feller’s hypotheses
(1936). Then Doeblin proves that any such movement is locally Gaussian, and
hence possesses a number of the regularity properties of Brownian motion. We
discuss this point in detail below. Before doing so, let us observe that Doeblin
is one of the very first authors to seriously treat Kolmogorov’s problem using
this new “point of view”, and is the first who goes so far in this direction. His
results will be only rediscovered fifteen or twenty years later, and some of them
still do not have any equivalent. The only comparable study, although made a
little later, is due to Robert Fortet (1941, 1943) who treats the caseσ = 1 and
a bounded satisfying Feller’s conditions. From the start, Fortet, like Doeblin
shows the existence of a continuous version of his movements and works on
the space of continuous functions. He stresses in his 1943 memoir that this is
indeed a “new point of view” (1943, Chap. II) which allows him to compute in
all rigor what he calls, following Bernstein, the absorption probabilities, whose
links with the boundary problems of parabolic equations had been indicated by
Bernstein himself in his plenary Zürich paper (1932) and which Doeblin treats,
in his framework, in§XVII of the Pli. Some similarities between the memoirs of
Fortet and Doeblin are noteworthy, and may be partly explained by the fact that
both actively participated in the “Śeminaire Borel” at IHP, which was devoted
in 1937–1938 to the theory of random functions. Lamperti (1966, 1977) writes
that Fortet’s memoir opened a new era in diffusion theory. Doeblin certainly
belongs to this era, since 1938 at least, by anticipation. A comparison of the
texts of the two authors shows that although their point of view is the same,
their methods are different and have little intersection, Fortet remaining more
analytically inclined than Doeblin. Apart from this same new viewpoint, the most
remarkable resemblance between the memoirs of Doeblin and Fortet lies in the
fact that the two authors prove, each of them in his own set-up, a “representation
theorem” of the solutions of Kolmogorov’s problem starting from the Brownian
motion of Wiener-Bachelier, which clearly manifests the mathematical strength
of their viewpoint. This was followed by Itô’s representation theorem (1946)
which then played a determining role.

From the pathwise viewpoint, the idea of associating with a diffusionX a
“compensated” processZ which follows the trajectories of a standard Brownian
motion is a natural one. It is (consequently) absent from the great memoirs of
Khinchin, Kolmogorov and Feller, but the idea of compensation is present in the
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works of Lévy on additive processes (1934, 1937, Chap. VII] and mostly (1948,
Chap. III, no. 17, 2◦, p. 72), as well as in the works of Lévy and Doeblin on the
sums of random variables, and even, between the lines, in the seminal paper of
Kolmogorov (1931), for example in his solution of the (Lévy) “Bachelier case”,
§16, p. 453.

However, Doeblin’s method goes much further and the change of time which
he adopts seems to be original. It is usually attributed to (Volkonskii 1958;, see
e.g. Dynkin 1965; Williams 1979). In any case, there does not seem to be much
use for random time-changes in the study of diffusions before the end of the
fifties. Another comparable example, although coming later, was proposed by
Lévy towards 1943 to prove the conformal invariance of the planar Brownian
curve (Ĺevy 1948, Th́eor̀eme 56.1, this example being analysed in B. Locker’s
thesis 2001). It is of course well known that Bachelier and Lévy use stopping
times freely in their fine study of linear Brownian motion, see (Lévy 1939, 1948;
Chung 1989), but these random times allowed them mainly to obtain decompo-
sition formulae via the strong Markov property, which does not correspond to
the use made here by Doeblin.

Lemma IX is a version of the Dubins-Schwarz (1965) – Dambis (1965) theo-
rem. The only related result at that time was Lévy’s characterization of Brownian
motion, (1937, no. 52), which was then relative to the continuous processes with
independent increments and not to martingales, see Loève, (1955/1977), vol II
pp. 210–212 where one finds the full Lévy theorem, first stated in Lévy (1948),
thm. 18.6. Doeblin’s proof relies again upon a central limit theorem for weakly
dependent variables, which is due to Bernstein (1926).

The notion of (positive) martingale and its denomination (which Doeblin
does not use) are due to Ville, in his 1939 thesis. It was considered by Lévy
under another name since 1934 (e.g., 1937, no. 65); in fact Lévy called the
martingale property “condition C”). Hence, “martingale methods” were part of
the probabilistic working kit at the end of the thirties, at least in Paris, and Doeblin
knew, of course, the works of Lévy and Ville on this topic. Nonetheless, the use
which Doeblin makes here of the martingale property seems to be original; it is,
at the very least, remarkable.

The systematic study of martingales really began with Doob’s fundamental
paper (1940) which establishes the convergence theorem and with his 1953 book.
From then on, it played a central role in the theory of probability of the sec-
ond half of the XXth century. Let us recall that Jean Ville (1910–1989) was,
with Doeblin, the main organizer of the séminaire Borel of probability, founded
in 1937–1938 in IHP. This śeminaire was clearly at the origin of some of the
themes developed in the Pli. After the war, Ville left the University and martin-
gale theory to embrace a career of scientific consultant for telecommunications.
In 1956, he became Econometrics Professor at the Sorbonne, while continuing his
consultancy activities. Ville, as well as Fortet, kept a luminous memory of Wolf-
gang Doeblin; his obvious superiority, his way of understanding mathematics,
which was so intuitive, and at the same time his astonishing technical virtuosity,
impressed them both very much, as was also the case with Lévy and Lòeve.
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5.3 The change of variables formula in the theory of diffusions

In his 1931 paper, Kolmogorov devoted the 17th section, entitled “Eine Trans-
formation”, to changes of variables in space and time in Kolmogorov’s equation.
The aim of such formulae is to make precise how the coefficientsa andσ are
transformed when, for example,x is changed inϕ (x, t). Kolmogorov showed in
a particular case how it is possible to reduce his equation to the heat equation.
Feller (1936) developed the same idea (which, in fact, is classical in the theory of
parabolic equations) and he introduced the “important particular case” considered
by Doeblin.

Doeblin’s new point of view consists in working directly on the movement
X (t) which is being changed inY (t) = ϕ (X (t) , t). It is then natural to express
the increment ofY in term of those ofX and t , with the help of the formula of
finite increments. Whenϕ is regular enough

∆Y = ϕ′
x∆X +

1
2
ϕ′′

xx (∆X)2 + ϕ′
t∆t

From there, Doeblin deduces (here, we assume thatY is integrable, to obtain a
simpler formula):

E
(
∆Y/X (t) = x

)
= L (ϕ) (x, t) ∆t + o (∆t)

and, whenY is square integrable:

E
(
(∆Y)2 /X (t) = x

)
=

(
σϕ′

x

)2
(x, t) ∆t + o (∆t)

These formulae summarize all the stochastic information contained in Kol-
mogorov’s equation (see e.g., Stroock 1987, pp. 25–26).

Clearly, Doeblin’s formula of finite increments is a sort of Itô’s formula
without Itô’s integral, in the context of the theory of “regular movements”. Should
therefore Doeblin be credited as the inventor of this formula, or at least be
recognized as a pioneer?

In fact, this situation is very commonly encountered in the history of Math-
ematics. It suffices to think about Taylor’s formula, or the formula of changes
of variables in multiple integrals, or Stokes formula, and what about the “Heine-
Borel” theorem? Who is the pioneer of what? It appears very quickly that this
question does not have a great meaning or importance, even if for the different
persons concerned it is of great interest, and may be the starting point of involved
arguments. What is truly important is to understand the moment, the place, the
occasion when a theory and/or the problems which nourish it, necessitates the
introduction of a formula and/or a new computation, even calculus, as if the
problems contained in themselves these key formulae, and the scientists devoted
to solving these problems found and experienced these formulae in the middle of
their investigations, although at first they were not particularly impressed with the
radical originality of these important formulae. Itô himself explains in (1951b)
how his formula appears surreptitiously in his first works of 1942–1944 about
Kolmogorov’s problem, without his noticing its importance and novelty, and that
he published the formula only in his later works (1950, 1951b), after practising
it sufficiently.
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It is most likely that the same formula has been used in different forms,
independently even from Itô’s theory, as soon as Kolmogorov’s problem was
clearly posed, and attempts were made to solve it using a stochastic approach,
in a more or less clear way. Doeblin did exactly this in 1938–1940, but was he
the first?

Let us look again at the princeps paper of Kolmogorov (1931), and let us
follow his proof of the second fundamental equation (that of Fokker-Planck).

Let R (x) a function of the variablex assumed to be regular and 0 at infinity.
Kolmogorov’s computation, translated into the Doeblin set-up, may be written
as follows (1931, p. 449):
first, observe that:

(+) E
(
∆R (X (t)) /X (t) = y

)
= L (R) (y, t) ∆t + o (∆t) ,

where:

L (R) (y, t) = a (y, t) R′ (y) +
1
2
σ2 (y, t) R′′ (y) .

It then suffices to integrate the equality (+) with respect to the probability
f (x, y, s, t) dy, and then integrate by parts to obtain:

1
∆t

E
(
∆R (X (t)) /X (s) = x

)
= −

∫
∂

∂y

[
a (y, t) f (x, y, s, t)

]
R (y) dy

+
∂2

∂y2

[
σ2 (y, t) f (x, y, s, t)

]
R (y) dy + o (1)

which is, sinceR is a test function, the Fokker-Planck’s equation:

∂

∂t
f (x, y, s, t) = − ∂

∂y

[
a (y, t) f (x, y, s, t)

]
+

∂2

∂y2

[
σ2 (y, t) f (x, y, s, t)

]
.

In 1932, in his Z̈urich paper (delivered in his absence), Bernstein showed how
a similar method, which also hinges, as in Doeblin’s work, upon the equality of
finite increments, leads to the first Kolmogorov equation for the distribution
function F (x, y, s, t) (Bernstein 1932, p. 300).

Other examples may be found in Lévy’s writings during the war and in his
treatise (1948, e.g., Chap. III,§16; see Locker 2001).

A. Shiryaev told us that, one day, he asked Kolmogorov how he had been
able to derive his equations without being aware of Itô’s formula. Kolmogorov
smiled and advised Shiryaev to read his 1931 memoir closely. This led Shiryaev
to call the change of variables formula (at least for one-dimensional diffusions)
the Kolmogorov-It̂o formula (Shiryaev 2000, p. 263).

As is well known, the next step in what we might call, following the above
discussion, the Kolmogorov-Doeblin formula, is Itô’s construction of stochas-
tic integrals, and of diffusions as solutions of stochastic differential equations.
Indeed, It̂o, since 1942, integrates directly the equation of the movement:
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dX (t) = a (X (t) , t) dt + σ (X (t) , t) dB (t) .

If a and σ satisfy a Lipschitz condition and are quasi-linear in the sense of
Bernstein, one can define a processX (t), a. s. continuous, via the formula

X (t) = X (0) +
∫ t

0
a (X (s) , s) ds+

∫ t

0
σ (X (s) , s)dB (s)

Under some additionnal regularity conditions bearing ona and σ, it is shown
that the law of X satisfies Kolmogorov’s equation (e.g. McKean 1969, Chap.
3). Hence Kolmogorov’s problem is explicitly solved in this case, and this was
one of the main motivations of Itô, as of Bernstein, ..., Doeblin. The change of
variables formula now takes the (complete) Itô form:

dY (t) = ϕ′
x (X (t) , t) dX (t) +

1
2
ϕ′′

x2 (X (t) , t) (dX (t))2 + ϕ′
t (X (t) , t) dt

= L (ϕ) (X (t) , t) dt +
(
σϕ′

x

)
(X (t) , t) dB (t)

In particular, if (X (t)) is the standard Brownian motion:

dY (t) =

(
ϕ′

t +
1
2
ϕ′′

x2

)
(X (t) , t) dt + ϕ′

x (X (t) , t) dX (t)

This Itô formula should be understood as the infinitesimal element of a Itô in-
tegral; It̂o integrals are missing in Doeblin’s theory, as in the theories of all
other preceding authors. It is well known that, in the thirties, Paley and Wiener
use a notion of stochastic integral in their works of generalized Fourier analysis
(McKean 1969). Ĺevy, on his side, has developed his own theory of stochastic
integrals to compute the law of the area of the planar Brownian curve, start-
ing from 1939 (Locker 2001). However, none of these stochastic integrals is
well adapted to Kolmogorov’s problem. This is the main import of Itô during
the war, and of Gihman slightly after, and differently (see for this topic, e.g.,
Ikeda-Watanabe 1981).

Of course, one may ask why Doeblin did not develop his own theory of
stochastic integrals, even if it is impossible to answer this question. We have
learnt from Laurent Schwartz (personal communication) that Doeblin intended
to develop such integrals since 1938. However he did not do it. Perhaps, he
estimated that it would not allow him to solve Kolmogorov’s problem in all its
generality. In 1938, Bernstein’s theory, which is based on stochastic difference
equations, and Feller’s theory, which is based on the parabolic PDE, already
solved Kolmogorov’s problem under conditions which were quite comparable to
Itô’s. To go further, one had to abandon the idea of a simple global representa-
tion of the movements. It is plausible that Doeblin, who was meditating on these
themes for the previous four years, and whose ability to construct proofs was
exceptional, understood that a general theory of the stochastic integral would not
be yet able to solve the problem he was considering. In fact, it took about 25
years for It̂o’s theory to be really accepted and used: McKean’s book (1969)
was the first book to present a systematic overview of Itô’s stochastic integra-
tion. Then, It̂o’s theory proved its versatility and efficiency, in connection with
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Doob’s martingale theory, so that, enriched by the works of a large number of
scientists during the fifties and the sixties (e.g., Meyer 2000), Itô’s formula would
become the cornerstone, from the seventies onwards, of a myriad of applications
of stochastic calculus, of which Wolfgang Doeblin, in his memoir “Sur l’équation
de Kolmogorov” was one of the heralds.

5.4 Coupling: some properties of continuity and monotonicity of F

In his Sect. XXI, Doeblin introduces, in the framework of his “regular move-
ments”, an original technique of coupling, which he had already experienced in
his theory of Markov chains, namely: to show the ergodic principle of Markov
chains, according to which the final distribution does not depend on initial con-
ditions, Doeblin considers two independent samples of the same chain starting
from two different statesa and b. Under some adequate hypothesis, the two
chains meet with probability one, and from then on, they start anew and become
indistinguable in law; the ergodic principle follows.

Using his coupling method Doeblin proves in Sect. XXII that the set of
functionsF (x, y, s, t) are uniformly continuous whena, σ and 1/σ are uniformly
bounded. Theorem XXII is one of the keys of the theorems of existence of the
regular movements.

In Sect. XXIII, Doeblin aims at showing thatF (x, y, s, t) is non increasing
in x. He begins with two independent movements with lawF , one of which
starts fromx, and the other fromx′ < x. Between timess and t , the two
movements may cross, or remain constantly one below the other; in the first
case, their probability to remain belowy is the same, whereas in the second case,
the lower movement has more chances to remain belowy than the upper one,
hence the result. Integrating by parts (§ XXIV), it follows that G (x, y, t , s) =
1 − F (x, y, s, t) is the law of a regular movement for the reversed time (see
McKean 1969, p. 58, Problème 4, for a similar method and result).

It took a long time (35 years?) for Doeblin’s coupling method to be
(re)discovered and used, either in the discrete time, or for diffusions (see Pitman
1976; Lindvall 1977, 1983, 1992; Brémaud 1999; Thorisson 2000).

5.5 Other important results of the Pli, which are not reproduced here

To keep this account of the Pli within reasonable length, and to avoid an often
high level of technicality, we have not reproduced here the most advanced results
of Doeblin about diffusions; we refer the reader to [14], but, nonetheless, here
is a brief summary:
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Existence theorems

Theorem XXV. If a, σ and 1/σ are bounded and continuous, there exists a
regular solution of Kolmogorov’s problem for the coefficientsa andσ.

Extensions of Theorem XXV
– If a and σ are continuous, andσ is bounded and vanishes only for a fi-

nite number of time values, there exists a regular solution of Kolmogorov’s
problem for the coefficientsa andσ.

– If a andσ are continuous, if for a dense set of values ofs, σ (x, s) is different
from 0 for everyx, and the coefficientsa andσ are limits of bounded contin-
uous coefficients for which the laws of the associated regular movements are
uniformly tight, then there exists a regular solution of Kolmogorov’s problem
for the coefficientsa andσ.

Uniqueness theorem(in the manner of Kolmogorov 1933a,§3)

Theorem XIX. If a, σ and1/σ are continuous, and if there exist a regular solution
of Kolmogorov’s problem, which is sufficiently differentiable, it is unique and it
satisfies the first equation of Kolmogorov with coefficients a andσ.

Absorption theorem(in the manner of Khinchin (1933, Chap. III,§2)

Theorem XVII. If a, σ and1/σ are continuous, ifv (x, s) denotes the probability
for a regular movement starting from(x, s) to reach the left part of a given contour
C before it reaches its right part,v (x, s) is the solution of the first Kolmogorov’s
equation, which is 0 on the right and equal to 1 on the left of the contour C (time
being represented on the vertical axis).

Theorems for large values, XIII and XIII’ (in the manner of Doeblin) (state-
ments too long to be written completely). For uniformly bounded coefficients,
the law of the max of|X (t) − X (s)| is controlled by the law of the max of the
absolute amplitude of a standard Brownian motion.

Corollaries XIII and XIII′. Very general criteria for non-explosion which extend
those of Bernstein (1938) and Doeblin [CR10].
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[CR1] Sur les sommes de variables aléatoires ind́ependantes̀a dispersions
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consacŕe à la th́eorie des probabilités et pŕesid́e par M. Maurice Fŕechet, Geǹeve 11 au 16
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Döblin, A.: Briefe. Olten: Walter-Verlag 1970
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Itô, K.: On stochastic differential equations. Mem. Amer. Math. Soc.4, (1951a)
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