
Stochastic processes / Examination
January 2023

Electronic calculators, cell phones, and documents of all kinds are not allowed. Concise but explicative answers
are expected throughout ; no bonus for verboseness. Write as neatly as possible and always specify clearly which
question you are answering. No question will be answered during the exam, for the sake of quietness and equity:
if you detect what you believe to be an error or an inconsistency in the assignment, explain so in your answer,
and move on; you are also judged on your ability to understand the questions raised. The different sections are
independent.

A Exercises

1) Minimizing a cumulant. We consider here a random variable X such that X and −X are equally probable.

a) Write the definitions of the moment and the cumulant generating functions for X.

b) Obtain the expression of the fourth cumulant c4 in terms of the relevant moments of X. One can use
that for |ε| � 1, log(1 + ε) = ε− ε2/2 +O(ε3).

c) We define the rescaled cumulant as

c̃4 =
c4〈

(X − 〈X〉)2
〉2 . (1)

What is the minimal possible value for c̃4? Provide an explicit probability distribution realizing this
minimum.

2) Let us consider the discrete time dynamics where a 1D random walker makes a jump ηi at step i. At time
n, the walker’s position is xn = η1 + η2 + . . . + ηn. Each jump η has a vanishing mean (〈η〉 = 0), and is
broadly distributed with a Pareto index µ < 2 at large |η|. Is the random walk sub-diffusive, diffusive, or
super-diffusive? No lengthy calculation expected. What if 〈η〉 6= 0?

3) Discuss concisely an example of a sub-diffusive process.

B Itō-Doblin and Stratonovich for additive and multiplicative noises

1) For a Langevin equation with additive noise, such as

dx

dt
= µF (x) +

√
2Dη(t) with 〈η(t)〉 = 0 and 〈η(t)η(t+ τ)〉 = δ(τ), (2)

and an arbitrary function ϕ(x), check the consistency of Itō-Doblin and Stratonovich calculus for comput-
ing 〈

dϕ(x(t))

dt

〉
. (3)

2) What about when the diffusion coefficient D is x-dependent?

C Large deviations for a lattice random walk

Consider a one-dimensional random walk on Z. At each discrete time step i, the walker’s position changes by a
jump ηi which can take three possible values: xi = xi−1 + ηi, with

ηi =


−1 with probability 1/3

0 with probability 1/3
1 with probability 1/3

. (4)

The walker starts at x0 = 0 and the jumps are independent from step to step.
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1) Compute the mean value 〈xn〉 of the position and its variance at step n.

2) At large times n, how is xn distributed (we restrict here to the typical fluctuations)?

3) How far does the previous “typical” behaviour extend, for the position distribution P (x, n)?

4) We are interested in the large deviations of P (x, n), in the scaling limit where n → ∞ and x → ∞ with
z = x/n fixed. The corresponding rate function is denoted φ(z).

a) What is the connection between P and φ?

b) Without calculations, provide the values of φ(−1), φ(0), φ(1). Explain.

c) Calculate the rate function using the Gärtner-Ellis approach, where φ(z) is expressed as the Legendre
transform of the large n limit of the scaled cumulant generating function

κn(t) =
1

n
log
〈
etxn

〉
. (5)

Does κn(t) depend on n; why? Sketch the graph of φ(z). In which range does z vary? Does φ feature
specific symmetry properties?

d) Show that the “typical” behaviour of question 2 is precisely recovered.

e) If one wants to check φ obtained using Sanov theorem, what are the main steps involved (no calculation
asked)?

5) In which sense can the large deviation function φ(z) be related to the entropy of a physical system? Define
explicitly the system in question.

D Constrained stochastic processes and effective Langevin equations

Among all possible trajectories of a Brownian motion that emerge from X = 0 at time t = 0, our interest goes
to those that come back to X = 0 at time tf > 0, where tf is fixed; these are called bridges, with the position
denoted by B(t). A naive algorithm to create these bridge trajectories would be to generate a large number
of Brownian paths for 0 ≤ t ≤ tf and retain only those that do return to the origin at tf. This would be both
inefficient, and lead to incorrect statistics for any finite sample.

1) On intuitive grounds, sketch a graph of the variance of B(t) versus time t for 0 ≤ t ≤ tf.

We propose here a more powerful approach, where B(t) is the solution to an effective Langevin equation, that
automatically takes into account the global constraint. Besides, the approach generalizes to the generation of
other stochastic processes, such as excursions where X remains positive at all times, before going back to 0 at
tf, see Fig. 1.

Figure 1: From [1]. Left: sketch of two Brownian bridges starting at the origin, in the time interval 0 ≤ t ≤ tf.
Right: a typical excursion, with a positive position during the whole time window of interest.

The idea is illustrated in the one-dimensional setting of the overdamped Langevin equation

dx

dt
=

1

mγ
F (x(t), t) +

√
2D ξ(t) (6)

2



where x denotes the position of the Brownian object driven by an external force F (x, t), m its mass, D the
diffusion coefficient and ξ(t) is the standard Gaussian white noise.

2) What is the physical dimension of the (positive) quantity γ? How is it related to the other quantities,
including the temperature T of the fluid in which the Brownian particle (no demonstration asked)? How
is the latter relation called?

3) What is the Fokker-Planck equation fulfilled by P (x, t|x0, t0), the probability density that the particle be
at point x at time t? We are here interested in the forward dynamics, involving derivatives with respect
to x and t.

We introduce P̃(x, t), the probability density over all possible paths starting at x0 = 0 at time 0 and ending at
position xf = 0 at time tf, to find the particle at point x at time t.

4) Show that
P̃(x, t) = N P (0, tf|x, t)P (x, t|0, 0). (7)

What is the expression of N ?

5) For the sake of convenience, we use the notation Q(x, t) = P (0, tf|x, t). Write the Fokker-Planck equation
obeyed by Q.

6) Knowing both the equations obeyed by P and Q, show that the equation ruling the dynamics of P̃(x, t)
reads

∂tP̃(x, t) = −D∂x

[
(βF (x, t) + α∂x logQ) P̃

]
+ D∂2xP̃, (8)

where α is a coefficient to be specified.

7) Show that the above Fokker-Planck equation corresponds to a Langevin dynamics with an additional
potential proportional to − logQ(x, t), on top of the external force F . Discuss physically the minus sign
in front of the log. We refer to this equation as the conditioned Langevin process.

It is the additional force in ∂x logQ that guarantees proper sampling, i.e. that the trajectories starting at
(x = 0, t = 0) and ending at (0, tf) are statistically unbiased.

8) Application to the free Brownian bridge.

a) When F = 0 (free Brownian motion), what is the explicit form of Q(x, t)?

b) What is then the conditioned Langevin equation, for generating bridges? Discuss its content on physical
grounds.

9) Application to the free Brownian excursion.
Here, the situation is more subtle and requires to consider first a final point xf > 0, with all trajectories
remaining in the half-space x > 0. We thus take Q(x, t) = P (xf, tf|x, t) and again F = 0. It can be shown
that the propagator Q now obeys

Q(x, t) =
1√

4πD(tf − t)

[
exp

(
− (xf − x)2

4D(tf − t)

)
− exp

(
− (xf + x)2

4D(tf − t)

)]
. (9)

(Bonus question: why is that so?)

a) Taking the limit xf → 0 with the above expression for Q, write the constrained Langevin equation
leading to excursions. What is the effective potential appearing? Discuss.

b) Compare the two situations, bridge versus excursion.

10) Application to the free Brownian meander.
We introduce a last category of constraint, where it is demanded that the trajectory starting from the
fixed position x(0) = 0 remain positive at all times, without a requirement on the end point x(tf). What
is then Q for free motion (i.e. for F = 0)? Express the result in terms of the error function

erf(x) =
2√
π

∫ x

0
e−t2dt. (10)

Which constrained Langevin dynamics does this give rise to?

−→ [1] Going further: S.N. Majumdar and H. Orland, J. Stat. Mech. P06039 (2015).

3


	Exercises
	Ito-Doblin and Stratonovich for additive and multiplicative noises
	Large deviations for a lattice random walk
	Constrained stochastic processes and effective Langevin equations

