

Contents

1	From the central limit theorem to Stirling's formulaand back	1
2	Consistency of Itō-Doblin and Stratonovich calculus	1
3	Itō-Doblin, Stratonovich and Wick	1
4	The Wiener process from the scaling limit of a random walk	2
5	<u>Markovian or non Markovian?</u>	2
6	Position and velocity processes in the Langevin equation	2
7	Doob's theorem (1942)	2
8	Fokker-Planck from Itō-Doblin calculus	3
9	Several solutions to the diffusion equation	3
10	Ornstein-Uhlenbeck, linear response, fluctuation-dissipation theorem	4
11	Two generalized Feynman-Kac relations	5
12	Martingales for the asymmetric random walk	6
13	Algebraic area enclosed by a random walk	6

1 From the central limit theorem to Stirling's formula...and back

- 1) We take here advantage of the stability of Poisson random variables upon addition, to deduce Stirling's approximation for n! when n is large, from the central limit theorem.
 - a) We denote $\mathcal{P}(\lambda)$ the law of a Poisson random variable with parameter λ . What is the law for the sum of two independent such variables? In the remainder, we take $\lambda = 1$ for simplicity.
 - b) We define $S_n = \sum_{i=1}^n x_i$ where the x_i are IID Poisson variables $\mathcal{P}(\lambda = 1)$. How does the central limit theorem constrain the distribution of S_n for n large?
 - c) By computing the probability that $n 1/2 < S_n < n + 1/2$ in two ways, show that when $n \to \infty$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \tag{1}$$

- 2) We consider the simple random walk starting from the origin, where at each discrete time n = 1, 2..., a jump ± 1 is made, with equal probability 1/2. Take n even.
 - a) What is the probability to return to the origin after n steps?
 - b) Use Stirling's formula to show that this probability behaves for large n as $\frac{\sqrt{2}}{\sqrt{\pi n}}$
 - c) What is the probability that the walker is at position m after n steps, with $m = 0, \pm 2, \pm 4 \ll n$?
 - d) Recover the central limit theorem result for the above probability. Beware "the factor 2".

1

2 Consistency of Itō-Doblin and Stratonovich calculus

For a Langevin equation with additive noise, such as

$$\frac{dx}{dt} = \mu F(x) + \sqrt{2D} \eta(t) \quad \text{with} \quad \langle \eta(t) \rangle = 0 \quad \text{and} \quad \langle \eta(t) \eta(t+\tau) \rangle = \delta(\tau), \tag{2}$$

and an arbitrary function $\varphi(x)$, check the consistency of Itō-Doblin and Stratonovich calculus for computing

$$\left\langle \frac{d\varphi(x(t))}{dt} \right\rangle.$$
 (3)

3 Itō-Doblin, Stratonovich and Wick

We consider the Wiener process x(t) with diffusion coefficient D. It this process Gaussian? Invoking Wick theorem, compute the explicit time dependence of $\langle x^4 \rangle$ and $\langle x^6 \rangle$. Recover this results from both Itō-Doblin and Stratonovich routes, computing

 \diamond

 \diamond

$$\left\langle \frac{dx^4}{dt} \right\rangle$$
 and $\left\langle \frac{dx^6}{dt} \right\rangle$. (4)

4 The Wiener process from the scaling limit of a random walk

We consider the symmetric random walk on \mathbb{Z} , with probabilities 1/2 to jump left or right, at each step. Starting from the origin, the walker has position x_n after n steps. From x_n , we define by linear interpolation the continuous time process $x_c(\tilde{n})$, where \tilde{n} is now real, and $x_c(\tilde{n}) = x_n$ when $\tilde{n} = n$ is an integer. From this, we introduce the process

$$x_{\varepsilon}(t) = \varepsilon x_c \left(\frac{t}{\Delta t}\right).$$
(5)

What is the appropriate scaling limit, where $\varepsilon \to 0$, $\Delta t \to 0$, such that $x_{\varepsilon}(t) \to W(t)$, the Wiener process?

 \diamond

5 <u>Markovian or non Markovian?</u>

Our interest goes to a persistent random walk in 1D, where the probability to make a step in the same direction as the previous one is p > 1/2. With probability 1 - p, the step is made in the reverse direction. Does the position of the walker after n steps, x_n , define a Markov process? How can define a Markov process here?

 \diamond

6 Position and velocity processes in the Langevin equation

We start with the 1D Langevin equation:

$$m\frac{d^2x}{dt^2} = -m\gamma\frac{dx}{dt} + R(t),\tag{6}$$

where R(t) is a Gaussian process with $\langle R(t) \rangle = 0$ and $\langle R(t_1)R(t_2) \rangle = \Gamma m^2 \delta(t_1 - t_2)$. The goal is to study here the position and velocity processes that ensue, x(t) and v(t). Two types of initial conditions will be addressed: (i) at t = 0, x(0) = 0 and $v(0) = v_0$ (fixed initial velocity);

(ii) at t = 0, x(0) = 0 and v(0) are distributed according to the equilibrium Maxwellian.

1) Velocity process.

- a) Express v(t) as a function of R(t), for a given realization of R(t).
- b) Characterize explicitly the process, ie write the *n*-times probability densities for all n, for each of the initial conditions (i) and (ii). Is v(t) Markovian? Gaussian? Stationary?
- 2) Position process.
 - a) Express x(t) as a function of v(t).
 - b) Characterize explicitly the process x(t), for each of the initial conditions (i) and (ii). Is x(t) Markovian? Gaussian? Stationary?

 \diamond

7 Doob's theorem (1942)

The goal here is to show that a Gaussian stationnary process is Markovian iff its autocorrelation function is exponential.

- 1) We consider first a Gaussian, stationnary and Markovian process. For the sake of simplicity, we take the mean value to vanish and the variance to be unity, without loss of generality.
 - a) Write explicitly the one-time probability distribution function p(x).
 - b) Write the transition probability $p(y, \tau | x, 0)$. It involves four parameters that we set out to determine in the following questions.
 - c) Express the normalization condition of the transition probability.
 - d) Write the consistency condition fulfilled by p(x) and $p(y, \tau | x, 0)$.
 - e) Show then that

$$p(y,\tau|x,0) = \frac{1}{\sqrt{2\pi(1-\gamma^2)}} e^{-\frac{(y-\gamma x)^2}{2(1-\gamma^2)}},$$
(7)

where γ is some parameter.

- **f)** Using previous results, compute the correlation function $\langle x(0)x(\tau)\rangle$ as a function of γ . What the physical sugnificance of γ ?
- **g**) Write Chapman-Kolmogorov equation for the process, and show that the correlation function is exponential.
- 2) Show the reciprocal statement: a process that is Gaussian, stationnary, and with an exponential correlation function, is Markovian.

8 Fokker-Planck from Itō-Doblin calculus

We consider the Langevin equation $\dot{x} = \mu F(x) + \sqrt{2D}\eta(t)$ where $\eta(t)$ is a Gaussian white noise with correlation $\langle \eta(t)\eta(t')\rangle = \delta(t-t')$. Take an arbitrary test function $\varphi(x)$ and compute $d\langle \varphi(x)\rangle/dt$. Using the fact that

 \diamond

$$\langle \varphi(x(t)) \rangle = \int dx P(x,t) \varphi(x)$$
 (8)

where P(x,t) is the position p.d.f at time t, derive the Fokker-Planck equation for P(x,t).

9 Several solutions to the diffusion equation

We aim here at solving the diffusion equation

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}, \qquad t \ge t_0, \qquad \text{with the initial condition} \quad P(x, t_0 | x_0, t_0) = \delta(x - x_0). \tag{9}$$

We thus work with the conditional density $P(x, t|x_0, t_0)$.

1) A first approach is to search for a scaling solution, with a form that would exhibit diffusive scaling. This amounts to choosing

$$P(x,t|x_0,t_0) = \psi(t)\varphi\left(\frac{x-x_0}{\sqrt{t-t_0}}\right).$$
(10)

Show that normalization of P specifies the time dependence of $\psi(t)$. Injecting the above form into (9), otain and solve the ordinary differential equation fulfilled by φ , to get finally

$$P(x,t|x_0,t_0) = \frac{1}{\sqrt{4\pi D(t-t_0)}} \exp\left[-\frac{(x-x_0)^2}{4D(t-t_0)}\right].$$
(11)

2) A second method consists in taking the Laplace transform of Eq. (9). With $\tau = t - t_0$, we introduce

$$\widetilde{P}(x,s) = \mathcal{L}_s\left[P(x,\tau)\right] = \int_0^\infty P(x,\tau) \, e^{-s\tau} \, d\tau.$$
(12)

Solve for $\widetilde{P}(x,s)$. Using the inverse Laplace transform

$$\mathcal{L}_s^{-1}\left[\frac{e^{-a\sqrt{s}}}{\sqrt{s}}\right] = \frac{e^{-a^2/(4\tau)}}{\sqrt{\pi\tau}},\tag{13}$$

recover Eq. (11). For completeness, show relation (13), e.g. with a complex analysis approach.

3) A third method bears some similarities with quantum mechanics. We consider the operator $\hat{H} \equiv -D \partial^2 / \partial x^2$. Assume first that the spectrum of \hat{H} is discrete, with a set of eigenvalues λ and associated eigenfunctions $\psi_{\lambda}(x)$. We assume that the latter form a complete set:

$$\sum_{\lambda} \psi_{\lambda}(x) \psi_{\lambda}^{*}(x_{0}) = \delta(x - x_{0}), \qquad (14)$$

where the star denotes complex conjugate. Write the orthogonality condition between the eigenfunctions. Show that

$$P(x,t|x_0,t_0) = \sum_{\lambda} e^{-\lambda(t-t_0)} \psi_{\lambda}(x) \psi_{\lambda}^*(x_0).$$
(15)

Show that in the present case though, the spectrum is continuous, indexed by wavenumber k such that $\lambda = Dk^2$, with (normalized) eigenfunctions

$$\psi_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}.$$
(16)

Rewriting Eq. (15) in the present situation as

$$P(x,t|x_0,t_0) = \int_{-\infty}^{\infty} e^{-Dk^2 t} e^{ik(x-x_0)} \frac{dk}{2\pi},$$
(17)

recover the solution (11). This method leads here to a Fourier Transform approach (check this).

10 Ornstein-Uhlenbeck, linear response, fluctuation-dissipation theorem

The Ornstein-Uhlenbeck process describes the velocity relaxation of a Brownian object subject to viscous friction, in the absence of an external force. Alternatively, the same framework also applies to an overdamped dynamics in a harmonic potential

$$U(x) = \frac{\kappa}{2} x^2. \tag{18}$$

We will assume that a small x-independent force is applied to the "particle", so that

$$\frac{dx}{dt} = -\mu\kappa x + \mu f(t) + \sqrt{2D}\,\xi(t),\tag{19}$$

with $\xi(t)$ a Gaussian white noise:

$$\langle \xi(t) \rangle = 0 \qquad ; \qquad \left\langle \xi(t)\xi(t') \right\rangle = \delta(t - t'). \tag{20}$$

- 1) What is the physical meaning of D and μ ? How are they related at equilibrium? Equilibrium refers here to the suspending fluid in which the particle is immersed.
- 2) Solve Eq. (19) for the trajectory x(t), with initial conditions $x = x_0$ at $t = t_0$. Compute $\langle x(t) \rangle$ for $f(t) \neq 0$.
- **3)** Express $\langle x(t)x(t')\rangle_{eq}$ for f=0, *i.e.* at equilibrium. Check that the results only depends on t-t'.

On general grounds, the fluctuation-dissipation theorem relates a correlation function at equilibrium to the response function associated to a small externally applied force. Here, we are interested in the response of x(t) to f(t), and the response function (which actually is an xx response function) is defined as

$$\langle x(t) \rangle = \int_{-\infty}^{t} \chi(t - t') f(t') dt'.$$
(21)

The fluctuation-dissipation theorem states (with $\beta^{-1} = kT$ and $\theta(t)$ the Heaviside function) that

$$\chi(\tau) = -\beta \,\theta(t) \,\frac{d}{d\tau} \left\langle x(\tau)x(0) \right\rangle_{\rm eq} \,. \tag{22}$$

- 4) Before checking explicitly the above relation between correlation and response functions, we consider a static force $f(t) = f_0$, to realize that Eq. (22) hides the equipartition theorem. First, what is $\langle x \rangle$ in this case? No calculation is necessary, just a sensical remark on the behavior of springs under constant tension. Check that you recover this expectation from the results of question 2 (take $t_0 \to -\infty$ since we look at the static response). Second, making use of Eqs. (21) and (22), together with an integration by parts, show that $\langle x^2 \rangle_{eq} = kT/\kappa$.
- 5) Compute $\chi(\tau)$ for an equilibrium system, that thus has had enough time to relax. Check that the fluctuation-dissipation theorem (22) is obeyed.
- 6) Discuss the Brownian limit $\kappa \to 0$.

 \diamond

11 Two generalized Feynman-Kac relations

We consider the overdamped Langevin process

$$\frac{dx(t)}{dt} = \mu F(x,t) + \sqrt{2D}\,\xi(t) \tag{23}$$

where $\xi(t)$ is a Gaussian white noise with $\langle \xi(t) \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = \delta(t-t')$.

1) Two arbitrary functions V(x,t) and f(x,t) being chosen, we define the functional of the trajectory:

$$Q(x_0, t, t_0) = \left\langle f(x(t), t) e^{-\int_{t_0}^t V[x(\tau), \tau] d\tau} \right\rangle$$
(24)

where $t_0 \leq t$ and the average over trajectories, represented by the bracket above, is performed for a fixed initial condition $x(t_0) = x_0$. Show that

$$\frac{\partial Q}{\partial t_0} + D \frac{\partial^2 Q}{\partial x_0^2} + \mu F(x_0, t_0) \frac{\partial Q}{\partial x_0} - V(x_0, t_0) Q = 0$$
(25)

with the condition $Q(x_0, t_0, t_0) = f(x_0, t_0)$ (sometimes called the terminal condition, since it corresponds to $t_0 = t$). To this end, one may introduce the auxiliary propagator

$$p(x,\Omega,t|x_0,\Omega_0,t_0) \quad \text{where} \quad \Omega(t,t_0) = \Omega_0 + \int_{t_0}^t V[x(\tau),\tau] \, d\tau, \tag{26}$$

obeying a backwards Fokker-Planck equation.

In the case where V = 0, what evolution equation do we get?

2) We consider a variant, with the functional

$$Q(x_0, t, t_0) = \int_{t_0}^t dt' \left\langle f(x(t'), t') e^{-\int_{t_0}^{t'} V[x(\tau), \tau] d\tau} \right\rangle,$$
(27)

where the bracket is again an average over trajectories starting from $x(t_0) = x_0$. Show that

$$\frac{\partial \mathcal{Q}}{\partial t_0} + D \frac{\partial^2 \mathcal{Q}}{\partial x_0^2} + \mu F(x_0, t_0) \frac{\partial \mathcal{Q}}{\partial x_0} - V(x_0, t_0) \mathcal{Q} + f(x_0, t_0) = 0.$$
(28)

12 Martingales for the asymmetric random walk

We are interested in the asymmetric random walk on \mathbb{Z} , with probabilities p and q = 1 - p to jump right and left respectively. The walker starts at $X_0 = 0$ and its position after n steps is denoted X_n . Show that

 \diamond

$$M_n \equiv \left(\frac{q}{p}\right)^{X_n}$$
 and $M'_n \equiv X_n - n(p-p)$ (29)

are martingales. Knowing this, use Doob's stopping time theorem to compute the probability that the walker leaves a predefined interval [-a, b] by the right boundary at b (we take a > 0). Same question with the left boundary at -a. What is finally the mean exit time from the interval? Check that you recover previously known results.

 \diamond

13 Algebraic area enclosed by a random walk

Among all possible symmetric random walks on the square lattice (\mathbb{Z}^2) , we restrict to those forming closed paths (i.e. ending at their starting point, see Fig. 1).

1) Show that there are $\binom{n}{n/2}^2$ such walks. To this end, one can partition these walks according to k, the number of steps made along the x axis. There are conversely n - k steps made along the y axis. Note that n and k should be even. It may be useful here to use the relation

$$\sum_{j=0}^{p} \binom{p}{j} \binom{p}{n-j} = \sum_{j=0}^{p} \binom{p}{j}^{2} = \binom{2p}{p}$$
(30)

which stems from counting in two ways the number of teams of p players one can form out of a group of 2p players. Among the 2p players, p have a cap, and p do not. Thus, in the team formed, there can be $j = 0, 1 \dots$ up to j = p players with a cap.

Figure 1: A few closed random walks on \mathbb{Z}^2 with: a) n = 4 steps and enclosed area $\mathcal{A} = -1$; b) n = 10 steps and $\mathcal{A} = 6$; c) n = 20 steps and $\mathcal{A} = -1 + 7 \times 1 + 2 = 8$. In panel c), the unit cell indicated with a 2 is enclosed twice by the walk and contributes a +2 to \mathcal{A} ; 7 cells are enclosed once and clockwise, 1 cell is enclosed once counterclockwise.

2) For each closed walk, we define the algebraic area \mathcal{A} as the total oriented area spanned by the walk, as it traces the lattice. A unit lattice cell enclosed counterclockwise (resp. clockwise) counts +1 (resp. -1). Besides, if the cell is enclosed more than once, its area is counted with its multiplicity, see Fig 1. We denote $C_n(\mathcal{A})$ the number of walks of n steps that have algebraic area \mathcal{A} ($\mathcal{A} = 0, \pm 1, \pm 2...$ and $C_n(\mathcal{A}) = C_n(-\mathcal{A})$ by symmetry). The trick is to introduce two hopping operators, r (one step to the right, along x) and u(one step up, along y), which provides a natural way to represent a given walk: $ru^{-1}r^{-1}u$ for the path in Fig. 1-a). The operators do not commute and it is convenient to declare ru = Qur, where $Q \neq 1$ is some arbitrary number. With this rule, check that a closed walk, defined by a sequence of r, r^{-1} , uand u^{-1} yields $Q^{\mathcal{A}}$. From this remark, it follows that when selecting the u and r independent part in $(r + r^{-1} + u + u^{-1})^n$, we obtain $C_n(\mathcal{A})$:

$$(r+r^{-1}+u+u^{-1})^n = \sum_{\mathcal{A}=-\infty}^{\infty} C_n(\mathcal{A}) Q^{\mathcal{A}} + \dots$$
 (31)

where ... is for terms that explicitly depend on the operators (such as r^n , $r^{n-1}u$ etc.) and are associated to non-closed walks. For instance, $(r + r^{-1} + u + u^{-1})^4 = 28 + 4Q + 4Q^{-1} + ...$ meaning that among the $\binom{4}{2}^2 = 36$ closed walks of 4 steps, $C_4(0) = 28$ enclose a vanishing area, $C_4(1) = 4$ enclose an area +1 and $C_4(-1) = 4$ enclose an area -1 (you may check explicitly the latter two results).