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Complement

On the fluctuation relation

The 1990s have witnessed remarkable progress in the domain of non-equilibrium statistical mechanics. One of the
most celebrated results is the so-called Jarzynski relation, that will be derived below. Some non-equilibrium averages
can consequently be now expressed in terms of equalities, that have been verified experimentally in a wealth of small
systems where fluctuations are important. The approach presented here complements the derivations provided in
class for stochastic processes: here, we start from a first principle standpoint, with deterministic systems obeying
Hamiltonian dynamics.

�
We consider a classical Hamiltonian system, initially in thermal equilibrium at temperature T . One of our goals

here is to show that the free energy difference between two states of the system can be obtained from non equilibrium
averages, taken over a large number of realizations of the same experiment, where an external parameter λ is modified
(λ can be, for instance, the system volume, or any other quantity that can be controlled by the experimentalist).
Between the initial time t = 0 and the final time tf , λ changes from λ = 0 (the system is then in the macroscopic state
A0) to λ = 1 (the system is then in the macroscopic state A1), following a temporal evolution λ(t) that is given once
and for all. During that operation, the work received by the system reads

W = H1(Γ(tf ))−H0(Γ(0)) (1)

where Γ(t) denotes the point in phase space where the system sits at time t, and Hλ is the Hamiltonian, parameterized
by λ. The partition function associated to Hλ at temperature T is denoted Zλ. From a realization of the experiment
to the next (in all realizations, the system is brought from state A0 to state A1), the work W fluctuates, e.g. because
initial conditions correspond to different starting points Γ(0) in phase space. We denote (. . .) average values taken over
all possible realizations of the experimental protocol, that is encoded in the function λ(t) (it is not necessary to specify
its time dependence). In the following, we suppose that at t = 0, the system is decoupled from the thermostat and
subsequently evolves following Hamilton equations of motion.

1) Jarzynski equality

a) We have

e−βW =

∫
e−βW ρ(Γ(0)) dΓ(0) (2)

where β−1 = kT and the integral runs over all phase space. What is the expression of the probability density
ρ(Γ(0)) ?

b) In expression (2), the work W only depends on Γ(0). Using definition (1), and invoking some properties of
Hamiltonian systems, show that

e−βW = e−β∆F . (3)

where ∆F is the free energy difference F (A1)−F (A0). It is important to note that when the protocol stops
at t = tf , the system is generically out of equilibrium. Yet, the right hand side of the previous equality
involves an equilibrium object only. The central identity (3) bears the name of Jarzynski, and we shall admit
that it remains valid when the system remains in contact with the thermostat during the experiment.

c) Obtain from (3) an inequality between W and ∆F . It should be familiar. . .

2) Limiting cases

a) In the reversible limit (where tf →∞ and the system can be considered at thermal equilibrium at all times),
what is the expression of W ? How can this result be compatible with equality (3) ?

b) We would like to explicitly check the above result. First express W as an integral of ∂Hλ/∂λ and show that

∂ logZλ
∂λ

= −β
〈
∂Hλ
∂λ

〉
λ

, (4)

where the meaning of the average 〈...〉λ should be specified. Conclude.

c) Conversely, in the limit where the transformation is instantaneous (tf → 0+), (3) has a particular meaning.
Under such circumstances, we indeed have

W = H1(Γ(0))−H0(Γ(0)) (5)

and it can be noted that the definition (2) yields e−βW =
〈
e−βW

〉
0
. Show that Jarzynski’s equality is

recovered.
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3) Crooks relation

We denote p(W ) the probability density function of W , obtained from the ensemble of realizations of the exper-
imental protocol. We then have

e−βW =

∫
e−βW p(W ) dW. (6)

It is possible to derive a more general relation than Jarzynski’s. It relates the probability density pF (W ) holding
for the “direct” experiment, to pB(W ) characteristic of the “inverse” process. F – not be confused with the free
energy – stands here for “forward”, and B stands for “backward”, in which case the system goes from state A1

to A0, where λ changes from 1 (at t = 0) to 0 (at t = tf ) following the law λ(tf − t).

a) On general grounds, it is possible to express the probability density function of a given random variable
from an appropriate average of a Dirac distribution. Specifically, this gives here :

pF (W ) =
1

Z0

∫
e−βH0(Γ(0)) δ [W −H1(Γ(tf )) +H0(Γ(0))] dΓ(0). (7)

In such conditions, how is pB(W ) defined ?

b) Show that

pF (W ) e−βW = e−β∆F pB(−W ) . (8)

We again assume here that during the transformation, the system is decoupled from the thermostat, and we
admit that the results obtained still hold when the system remains in thermal contact with the heat bath.
Eq. (8) is our second key result. It actually subsumes previous considerations, as we now prove.

c) Show that Jarzynski equality (3) can be readily recovered from (8).

d) Discuss briefly the reversible limit.

4) The case of Gaussian fluctuations - Fluctuation/dissipation relation

We are interested here only in the direct process (“forward”). In the limit where the transformation is sufficiently
slow (without being necessarily reversible), p(W ) takes a Gaussian form. We denote W its mean, and σ the
corresponding standard deviation.

a) Show that equation (3) implies that
W = ∆F + β σ2 /2 (9)

b) In what sense can the previous relation be coined “fluctuation-dissipation” ? Briefly discuss the reversible
limiting case.

5) . . . where one measures the length of time’s arrow . . .

Reminder : the Kullback-Leibler distance between two discrete probability distributions {pi} and {qi} reads :

D(p||q) =
∑
i

pi log

(
pi
qi

)
. (10)

Generalize the above definition in the continuous case, and give the expression of the distance between the
distributions pF (W ) and pB(−W ). Establish then a connection between the irreversibility on the one hand, and
the distinguishability of forward and reverse protocols (as measured by their distances) on the other hand.

6) Application to single molecule experiments

Figure 1 represents work distributions as measured in experiments where an RNA strand in a folded configuration
(forming an hairpin) is unfolded by a mechanical force applied on both ends (denoted 3’ and 5’ on figure 1). The
reverse process (folding) is spontaneous (with mostly negative values of W ). The results shown have been obtained
using two different experimental protocols : one is fast (data at 20 pN s−1, corresponding to the circles), and the
other is slow (data at 7 pN s−1, corresponding to the triangles).

a) Invoking Crooks relation, the free energy difference for unfolding can be directly read on figure 1. What is
this difference ?

b) How can the offset between folding and unfolding curves be explained ? Are the data shown in figure 1
compatible with the body of results obtained earlier ?
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Figure 1: Left : plots of probability densities pF (W ) (continuous curves) and pB(−W ) (dashed curves) in an experiment
of unfolding/refolding of an RNA strand. Right : the RNA strand in its hairpin configuration. Doctored from Collin
et al., Nature 437, 231 (2005).
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