

Discrete random walks

A First results

1) Return probability of a random walk in 1D.

We consider a one-dimensional biased random walk on \mathbb{Z} , with a probability p to jump to the right, 1-p to jump to the left, at each time step. The walk starts from the origin O, and we are interested in the return probability to O, denoted R. We also introduce R_{\rightarrow} , the probability to visit site O after an arbitrary amount of time, starting from the nearest site on its right (site 1). Likewise, we denote R_{\leftarrow} the probability to visit O, starting from the site on its left (site -1).

- **a)** Relate R to R_{\rightarrow} and R_{\leftarrow} .
- b) By partitioning on the number of visits to site 1, compute R_{\rightarrow} . Similarly, obtain R_{\leftarrow} .
- c) What is the expression of R? What does this expression become for a symmetric walk (p = q = 1/2)?

2) Exit time from an interval.

The random walker described above is introduced at t = 0 at a site ℓ inside the interval [0, N], ie $0 < \ell < N$. The walker is removed as soon as it reaches one of the extremities 0 or N. We denote $T(\ell)$ the random variable associated to the lifetime of the walker.

- a) By partitioning on the first step of the random walk, write a finite difference equation obeyed by the probability $P(T(\ell) = n + 1)$.
- b) What is then the equation fulfilled by the mean life time $\langle T(\ell) \rangle$? What are the associated boundary conditions?
- c) Solve the above equation. Distinguish the cases $p \neq q$ and p = q = 1/2. What is found in the case of a symmetric walk?

B The generating function formalism

1) The generating functions $P(\mathbf{s} | \mathbf{s_0}; \xi)$ and $F(\mathbf{s} | \mathbf{s_0}; \xi)$

For a discrete time random walk, we define the following probabilities

- $P_n(\mathbf{s} | \mathbf{s_0})$: probability to be at site **s** after *n* jumps, given that the walk started at site $\mathbf{s_0}$;
- $F_n(\mathbf{s} \mid \mathbf{s_0})$: probability to be at site **s** for the first time at step n, given the walk started at site $\mathbf{s_0}$.

We also define the associated generating functions by

$$P(\mathbf{s} \mid \mathbf{s_0}; \xi) \equiv \sum_{n=0}^{+\infty} P_n(\mathbf{s} \mid \mathbf{s_0}) \xi^n, \text{ and } F(\mathbf{s} \mid \mathbf{s_0}; \xi) \equiv \sum_{n=0}^{+\infty} F_n(\mathbf{s} \mid \mathbf{s_0}) \xi^n.$$

In the remainder, we adopt the convention : $P_0(\mathbf{s} | \mathbf{s_0}) = \delta_{\mathbf{s}, \mathbf{s_0}}$ and $F_0(\mathbf{s} | \mathbf{s_0}) = 0$.

- a) Write the normalization conditions fulfilled by the probabilities $P_n(\mathbf{s} | \mathbf{s_0})$ and $F_n(\mathbf{s} | \mathbf{s_0})$. Introduce $R(\mathbf{s} | \mathbf{s_0})$, the probability to visit \mathbf{s} , starting from $\mathbf{s_0}$, after an arbitrary number of steps.
- **b)** By partitioning on the instant of the first visit to site **s**, write a relation between the $P_n(\mathbf{s} | \mathbf{s_0})$ and the $F_n(\mathbf{s} | \mathbf{s_0})$.
- c) Write then the generating function $F(\mathbf{s} | \mathbf{s_0}; \xi)$ as a function of $P(\mathbf{s} | \mathbf{s_0}; \xi)$.

2) Characterization of recurrent random walks

State a necessary and sufficient condition on the generating function $P(\mathbf{s} | \mathbf{s}_0; \xi)$ such that the return probability to the starting site \mathbf{s}_0 be 1.

3) Mean number of returns to a given site

For a walk starting from $\mathbf{s_0}$, we introduce the boolean variable $I_n(\mathbf{s}|\mathbf{s_0})$, equal to 1 if site \mathbf{s} is occupied after n steps, and equal to 0 otherwise. Show that $P(\mathbf{s} | \mathbf{s_0}; 1)$ represents the mean number of visits to site \mathbf{s} for a walk starting at site $\mathbf{s_0}$. In particular, what can we say concerning the mean number of returns to the starting point $\mathbf{s_0}$ for a recurrent walk? A non recurrent walk?

4) Conditional mean first passage times

For a walk starting at site \mathbf{s}_0 , we define $\tau(\mathbf{s} | \mathbf{s}_0)$ as the mean number of steps until the (first) visit to site \mathbf{s} , given that this site is indeed reached during the walk. Relate $\tau(\mathbf{s} | \mathbf{s}_0)$ to the generating function $F(\mathbf{s} | \mathbf{s}_0; \xi)$.

5) Application to the one-dimensional biased random walk

Our interest goes to the 1D biased random walk, with probabilities p and q = 1 - p for right and left jumps respectively. What are the generating functions $P(\mathbf{s_0} | \mathbf{s_0}; \xi)$ and $F(\mathbf{s_0} | \mathbf{s_0}; \xi)$? Deduce from this

- the probability to return to site $\mathbf{s_0}$, $R(\mathbf{s_0} | \mathbf{s_0})$;
- the mean number of returns to the starting site $\mathbf{s_0}$;
- the conditional mean first return time $\tau(\mathbf{s_0} \mid \mathbf{s_0})$.

It is convenient to use here

$$\frac{1}{\sqrt{1-4y}} = \sum_{n=0}^{\infty} \binom{2n}{n} y^n.$$
 (1)

C Translationally invariant random walks

In this section, we apply the above formalism to the study of discrete random walks, that are invariant by translation on a cubic lattice in dimension d. We denote $P_n(\ell)$ the probability to be at position ℓ after n steps, given that the walker started from **0**; $p(\ell - \ell')$ is for the probability to jump from position ℓ' to ℓ in one step. Besides, we adopt the convention $P_0(\ell) = \delta_{\ell,0}$.

1) Discrete Fourier transform and structure factor

- **a)** Write the recurrence relation between P_{n+1} and P_n .
- b) Introducing the discrete Fourier transforms

$$\widetilde{P}_{n}(\boldsymbol{k}) \equiv \sum_{\boldsymbol{\ell}} e^{i\boldsymbol{\ell}\cdot\boldsymbol{k}} P_{n}(\boldsymbol{\ell}) \quad \text{and} \quad \lambda(\boldsymbol{k}) \equiv \sum_{\boldsymbol{\ell}} e^{i\boldsymbol{\ell}\cdot\boldsymbol{k}} p(\boldsymbol{\ell}),$$
(2)

(the latter being referred to as the "structure factor" of the random walk), compute $P_n(\mathbf{k})$. By inverse Fourier transformation, find $P_n(\ell)$.

c) From the previous question, obtain an integral representation of the generating function

$$P(\ell;\xi) \equiv \sum_{n=0}^{\infty} P_n(\ell)\xi^n.$$
(3)

2) 1D biased random walk

We go back to the 1D biased walk with probabilities p and q = 1 - p. Calculate the generating function $P(\ell; \xi)$, and then the generating function of first passage probabilities:

$$F(\boldsymbol{\ell};\boldsymbol{\xi}) \equiv \sum_{n=0}^{\infty} F_n(\boldsymbol{\ell})\boldsymbol{\xi}^n.$$
(4)

What is then the probability to visit, being patient enough, an arbitrary site on the lattice?

3) Pólya's theorem

We consider a *d*-dimensional isotropic random walk on \mathbb{Z}^d (with jumps to the nearest neighbors, so-called "Pólya random walk").

a) Making use of the following representation of modified Bessel functions with integer index n

$$I_n(z) = I_{-n}(z) = \frac{1}{\pi} \int_0^{\pi} e^{z \cos \theta} \cos(n\theta) d\theta,$$
(5)

show that the generating function $P(\ell;\xi)$ can be cast as

$$P(\boldsymbol{\ell};\boldsymbol{\xi}) = \int_0^\infty e^{-t} \prod_{j=1}^d I_{|\ell_j|}(t\boldsymbol{\xi}/d) \,\mathrm{d}t, \qquad \text{where } \ell_j \text{ is for the } j^{\text{th}} \text{ Cartesian component of the vector } \boldsymbol{\ell}. \tag{6}$$

b) Knowing the asymptotic expansion

$$I_n(z) = \frac{e^z}{\sqrt{2\pi z}} \left\{ 1 - \frac{4n^2 - 1}{8z} + \mathcal{O}\left(\frac{1}{z^2}\right) \right\} \quad \text{for } z \to \infty,$$

$$\tag{7}$$

show that if d = 1 or d = 2, the walk is recurrent, while for $d \ge 3$ it is not ("Pólya's theorem").