
Stochastic processes and beyond
Mathematical prerequisites

The purpose of this set of problems1 is to list a few prerequisites and calculations on which some of your
previous-year fellows have stumbled. Of particular relevance are the remember recaps that conclude each
exercise.

1 Fourier transforms and series

Let fn be a function defined on an N -site lattice, n = 1, . . . , N (N is assumed to be even) with lattice

spacing a (L = Na is the total length of the lattice). We define f̃q =
∑N
n=1 e

iqnafn.

1.1 Show that if q = 2πk
Na , k = −N/2 + 1, . . . , N/2 then fn = 1

N

∑
q f̃q e

−iqna.

Answer: Start from the answer
∑
q e
−iqnaf̃q =

∑
q e
−iqna∑

m e
iqmafm =

∑
m fmNδn,m =

Nfn.

It should be appreciated that Fourier Transformation can be defined up to an arbitrary normalization
factor A through

f̃q =
1

A

N∑
n=1

eiqnafn and fn =
A

N

∑
q

f̃q e
−iqna,

and this is reflected in the variety of conventions found in the literature.

1.2 We denote x = na. We take the N → ∞ and a → 0 limits, with L = Na fixed. To this end, it is
convenient to adopt the convention A = 1/a. This is the limit of a continuous but finite interval.

Express f̃q as an integral involving f(x). How does one obtain f(x) if f̃q is given?

Answer: Start from the definition f̃q = a
∑N
n=1 e

iqnafn and convert the summation
∑
n into

an integral
∫ L

0
dx
a , which leads to f̃q =

∫ L
0
dxf(x)eiqx. Things work also backwards, as fn =

1
Na

∑
q f̃qe

−iqna converts into f(x) = 1
L

∑
q f̃qe

−iqx, but now q = 2kπ
L with k ∈ Z. If one

is seeking for a bit of rigor in going from the discrete sums to integrals, one may invoke the
Euler-Mclaurin formula.

1.3 We now consider N →∞ with L/N = a fixed. This is the limit of an infinite lattice. Show that in

this limit fn = a
∫ +π/a

−π/a
dq
2π f̃q e

−iqna (we are back to the convention A = 1).

1.4 Let f(τ) be a periodic function with period β, then prove that f(τ) =
∑
n∈Z f̃ωne

−iωnτ where

ωn = 2πn
β and where f̃ωn will be given in terms of f .

Answer: We use directly the results pertaining to a continuous but finite interval above to get

f̃ωn = β−1
∫ β

0
f(τ) eiωnτ dτ . The integral can be computed on any interval of length β.

1.5 Solve the Schrödinger equation for a free particle with Hamiltonian Ĥ = − ~2

2m
d2

dx2 in a one dimen-
sional box of size L (x ∈ [0, L]) first with periodic boundary conditions, second when the system is
bounded by impenetrable walls. For each case, find the eigenvalues ε and the eigenfunctions ψε(x).

It will be convenient to write ε = ~2k2

2m . Be very precise as to which range of values k may cover.

Answer: For periodic boundary conditions we find that εk = ~2k2

2m with k = 2πn/L and n ∈ Z,

with ψεk = 1√
L
eikx where the factor

√
L stems from normalization. For impenetrable boundary

conditions, the above relation for ε remains true, but a slight change of method is required. We
can directly solve the differential equation, with the requirement that ψ vanishes at x = 0 and

x = L. We find that k = nπ/L with n ∈ N∗ and ψεk =
√

2
L sin kx.

1prepared with F. van Wijland and M. Lenz
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Focus on circulant matrices. Consider a real matrix M such that its elements Mk` = mk−` are a periodic function
of k − ` only (0 ≤ k, ` ≤ N − 1, and m−1 = mN−1, m0 = mN etc.):

M =


m0 m1 m2 . . . mN−1

mN−1 m0 m1 . . . mN−2

mN−2 mN−1 m0 . . . mN−3

...
. . .

...
m1 m2 m3 . . . m0


Such a situation arises in problems that are invariant by translation (with cyclic boundary conditions). The matrix
M can be diagonalized by discrete Fourier transform. Indeed, we first define

M̃(q) =
∑
`

Mk` e
iq(k−`) with q =

2π

N
n, n = 1, 2, . . . N.

A key point is that M̃(q) exists and is independent of k because the summation does not depend on k. The above

equation can be rewritten
∑

`Mk` e
−iq` = M̃(q)e−iqk, meaning that the M̃(q) are the N eigenvalues of M .

The corresponding eigenvectors indexed by the values of q are (e−iq, e−2iq . . . e−Niq)T . Hence, Tr(M) =
∑

q M̃(q),

that will be used during the lectures. The above treatment also shows that M̃(q)M̃−1(q) = 1, assuming M

is invertible. Another interesting byproduct is that since the M̃−1(q) are available, the matrix M−1 is known
explicitly as well, and reads

M−1
k` =

1

N

∑
q

1

M̃(q)
e−iq(k−`).

The reason for this simplicity is that both M and M−1 are actually defined from a mere one-argument function

m(x). We note in passing that circulant matrices (of the same size) are diagonal in the same basis, and thus any

two such matrices do commute.

Remember that in the vectorial case, one defines Fourier transformation in d dimensions through

f̃(q) =
1

A

∫
Rd
f(x) eiq·x dx and f(r) = A

∫
Rd
f̃(q) e−iq·x

dq

(2π)d

One may choose A = 1. Integrations over q then go hand in hand with (2π)d factors, as above and below.
A useful relation is

∫
e−iq·x dq

(2π)d
= δ(d)(x) and it does not hurt to keep in mind Plancherel-Parseval

relation for two complex functions f and g∫
Rd
f(x) g(x) dx =

∫
Rd
f̃(q) g̃(−q)

dq

(2π)d
.

In quantum mechanics, one tends to like a symmetric f ↔ f̃ connection, which requires choosing A =
(2π)d/2. A similar goal may be achieved, say in 1 dimension, by working with ordinary frequency rather
than with angular frequency:

f̃(ν) =

∫
R
f(x) e2iπνx dx and f(x) =

∫
R
f̃(ν) e−2iπνx dν.

In doing so, 2π factors appear in the exponentials, but not elsewhere. Indeed,
∫
dνe−2iπνx = δ(x) and

Plancherel-Parseval relation reads∫
f(x)g(x) dx =

∫
f̃(ν)g̃(−ν) dν =⇒

∫ ∣∣f(x)
∣∣2 dx =

∫ ∣∣f̃(ν)
∣∣2 dν since

[
f̃(ν)

]∗
= f̃∗(−ν).

Attention should be paid to the domain of definition of the function f(x) to be Fourier-analyzed. For
d = 1:

• If x ∈ R, then q ∈ R.

• If f(x) is periodic of period L, then q = 2πn/L, where n ∈ Z. The Fourier transform becomes a
Fourier series. Let us check this with the traditional choice A = 1. We start from

f(x) =

∫
R
f̃(q) e−iqx

dq

2π
with the added constraint

∑
n∈Z

δ

(
n− qL

2π

)
.

We obtain

f(x) =
1

L

∑
n∈Z

f̃(2πn/L) e−i2πnx/L with f̃(q) =

∫ L

0

f(x)eiqx dx.

• If f is defined on an N -site lattice with constant a, then q = 2πn/(Na), where n = 0, 1, . . . N−1 (or,
if N is even, n = −N/2 + 1, . . . , N/2− 1, N/2. If N →∞ (infinite lattice) at fixed a, 0 ≤ q ≤ 2π/a
or equivalently −π/a ≤ q ≤ π/a. If N →∞ and Na = L is fixed, the q remain discrete and we are
back to a periodic function results with period L. Finally, beyond the one-dimensional case, more
complex lattices are met, leading to non-trivial so-called Brillouin zones in Fourier space, where q
vectors should be restricted.
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2 Green’s functions

You may have encountered Green’s function when trying to solve a linear problem involving a field created
by some sources (for instance, in the case of the Poisson equation −∆φ = ρ

ε0
where the charge density ρ

is given, and you try to compute the electrostatic potential φ). The connection with the previous section
is the following. Take a Gaussian variable x with an energy function 1

2x · (Γx) − h · x. If the external
field h is zero, then of course 〈x〉 vanishes as well. However, if h 6= 0, then 〈x〉 takes a nonzero value. It
is not hard to realize that Γ〈x〉 = h: this is a linear problem with a source h driving a nonzero response
〈x〉. Finding the response involves inverting Γ: 〈x〉 = Gh, where G = Γ−1 is the Green’s function. It is
always good to have a small mental library of common Green’s functions. If Γ(x,x′) is an operator, the
fact that G(x,x′) is its Green’s function means that

∫
dyΓ(x,y)G(y,x′) = δ(d)(x − x′). The Green’s

function G can be a distribution.

2.1 We seek for G when Γ(x,y) = δ(d)(x−y)(−∆x+r). Such a Γ appears in a number of contexts, from
particle physics to condensed or soft matter. In the present case, we have that (−∆x + r)G(x,y) =
δ(d)(x−y). This differential equation admits a solution that is translation invariant, G(x−y). Find
a Fourier representation of G.

Answer: We Fourier-transform the differential equation to get G(x− y) =
∫

dq
(2π)d

eiq·(x−y)

q2+r .

2.2 Compute the explicit form of G(x − y) in the d = 1 case in real space, for r > 0 and then for
vanishing r.

Answer: We find (e.g., using a contour integral) Gr(x−y) = e−
√
r|x−y|

2
√
r

for r > 0 and G0(x−y) =

− 1
2 |x−y| for r = 0. The latter corresponds to the one-dimensional Coulomb potential (think e.g.

of the potential created by an infinite uniformly charged plate), which is linear in the distance
x to the plate. Yet, some care is required since we face a divergence when r = 0. For a direct

calculation, we can regularize the divergence at q = 0, to compute G0(x) = −
∫
dq
2π

1−cos(qx)
q2 .

Changing variable to q̃ = q|x| (attention should be paid to the sign of x, that may interchange
the boundaries of integration), we get

G0(x) = −|x|
∫

dq̃

2π

1− cos(q̃)

q̃2
= −|x|

2
.

To compute the last integral, we integrate by parts :
∫
dq̃(1− cos q̃)/q2 =

∫
dq̃(sin q̃)/q̃ = π.

2.3 Let Γ(t, t′) = δ(t− t′) d
dt′ . Find G(t, t′).

Answer: G(t, t′) = Θ(t− t′) is the Heaviside step function. Note that it would be incorrect to
write the Γ operator as δ(t− t′) ddt : because of the derivative, these operators are not “diagonal”
(in their discretized version, they cannot be written in terms of diagonal matrices). As an
exercise, you may check that we have

δ(t− t′) d
dt′

=
d

dt
δ(t− t′).

This is compatible with the fact that δ(t− t′) ddt = − d
dtδ(t− t

′).

We finish with two more examples that connect with other areas of physics. First, Γ(x, t;x′, t′) = δ(t− t′)δ(x−
x′)

[
∂
∂t

−D ∂2

∂x2

]
, with D > 0. This yields the heat equation, that admits the diffusion kernel

G(x, t;x′, t′) = Θ(t− t′)
e
− (x−x′))2

4D(t−t′)√
4πD(t− t′)

d

as a Green’s function. The step function makes causality explicit.

Second, we consider Γ(x, t;x′, t′) = δ(t− t′)δ(x−x′)
[

1
c2

∂2

∂t2
− ∂2

∂x2

]
, the Green’s function of which turns out to

be problematic. Such a kernel Γ shows up in the Lorentz gauge, where Maxwell’s equations read � ~A = µ0
~j and

�φ = ρ/ε0; � is the three dimensional generalization of the wave operator 1
c2

∂2

∂t2
− ∂2

∂x2 . The question is tricky,

since Γ is strictly speaking not invertible. Depending on the subspace of functions one is working with, it does

admit different Green’s function (advanced, retarded, Feynman).
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3 Legendre transform

Let Z(h) =
∫
dxe−H(x)+x·h be a function of a vector h that can be interpreted as the canonical partition

function of a system characterized by the x degrees of freedom in some external field h. We use a
continuum notation for x, but these could also be discrete variables like Ising spins. The (opposite and
dimensionless) free energy is W (h) = lnZ(h).

3.1 Angular brackets 〈. . .〉 denote an average with respect to
e−H(x)+x·h

Z(h)
. Show that 〈xi〉 =

∂W

∂hi

∣∣∣∣.
3.2 Show that Gij = 〈xixj〉 − 〈xi〉〈xj〉 =

∂2W

∂hi∂hj

∣∣∣∣.
3.3 Let ξi(h) = ∂W

∂hi
. We denote by hi(ξ) the inverse function giving h as a function of ξ and we define

Γ(ξ) = ξ · h −W (h) but what we really mean is Γ(ξ) = ξ · h(ξ) −W (h(ξ)). This Γ depends on ξ
only. It is the Legendre transform of −W (see the comment below for the sign convention). Show
that ∂Γ/∂ξi = hi.

Answer: dΓ = −dW + hidξi + ξidhi = hidξi.

3.4 Let Γij = ∂2Γ
∂ξi∂ξj

evaluated at ξ = 〈x〉. Prove that G = Γ−1.

Answer: We start from ∂Γ
∂ξi

= hi and we differentiate a second time wrt ξj :
∂2Γ
∂ξj∂ξi

= ∂hi
∂ξj

. But

given that ∂hi
∂ξj

Gjk = ∂hi
∂ξj

∂ξj
∂hk

= δik, we have found that indeed ΓG is the identity matrix.

Physical meaning of Γ(ξ): In much the same way as W is the proper thermodynamic potential at fixed h,
we can see Γ as the thermodynamic potential in the conjugate ensemble in which one would be working at
fixed average 〈x〉. In a more standard language, in the canonical ensemble F (V ) = −kBT lnZ(V ) is the
free energy at fixed volume and the pressure is P = − ∂F

∂V , but working in the isobaric ensemble leads to

the free enthalpy G(P ) = F + PV being the natural potential, which verifies 〈V 〉 = ∂G
∂P . In the magnetic

language, these results apply as well (fixed magnetic field versus fixed magnetization).

Remember that there exist a number of variants for defining the Legendre transform, with different
conventions. A common choice, starting from a function f(h) is to define Γ = f(h)− hf ′(h), understood
as a function of “the slope” ξ = f ′(h). It is then important that f be convex, so that h can be expressed
univocally as a function of ξ. A similar convexity requirement should hold in the vectorial case, as treated
above (where Γ is the Legendre transform of −W ).
In the mathematical literature, the transformation is defined seemingly differently, through Γ(ξ) =
minh[f(h) − h ξ], and is known as the Legendre-Fenchel transform. The transformed function need not
be differentiable, nor convex. We do not enter in the distinction between Legendre and Legendre-Fenchel;
we restrict here to convex and differentiable functions f(h). For a given ξ, the minimum is reached for
f ′(h) = ξ and this definition coincides with the “physicist” one, with the bonus of a compact notation.
One also finds the definition Γ(ξ) = maxh[h ξ − f(h)], which changes a few signs, but makes sure that
the transform is convex-up itself, and can be itself Legendre transformed one more time to yield back the
original f(h).
Geometrical interpretation: Γ = f(h)− hf ′(h) is nothing but the y-intercept of the tangent to the graph
of f at abscissa h. This quantity Γ, expressed as a function of the slope f ′(h) = ξ, can then be sketched
graphically as in the picture below (it is useful to train oneself to be able to perform graphically the
transformation). The Legendre transform is an important tool in thermodynamics, statistical physics and
analytical mechanics.
Further reading : Making Sense of the Legendre Transform by Zia et al., https://arxiv.org/abs/0806.1147.

4 Functional derivatives

Let q(t) be a function of t and let S[q] be a functional of q. The functional derivative of S wrt q(t0) is
defined as follows. Let qε,t0(t) = q(t) + εδ(t − t0), then δS

δq(t0) = limε→0
1
ε (S[qε,t0 ] − S[q]). Another way

to put it is that when q → q + δq (meaning that the trajectory q(t) is perturbed by δq(t)), the functional
changes from S to S + δS, with

δS =

∫
δS

δq(t′)
δq(t′) dt′, (1)

to first order in δq. This relation defines the functional derivative δS/δq(t′), which is a functional of q and
a function of t′.

4.1 What is δq(t1)
δq(t2)?
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Answer: δ(t1 − t2), as obtained from the two definitions.

4.2 If S can be written in the form S[q] =
∫∞

0
dtL(q(t), q̇(t)), where L is a function of q(t) and q̇(t), prove

that δS
δq(t0) = ∂L

∂q −
d
dt
∂L
∂q̇ where everything is evaluated at t = t0. In mechanics, L is a Lagrangian

while S is an action.

Answer: We apply the definition and start from S[qε,t0 ] =
∫
dtL(qε,t0 , q̇ε,t0) which we expand

to first order in ε: S[qε,t0 ] = S[q] + ε
∫
dt
[
δ(t− t0)∂L∂q + δ̇(t− t0)∂L∂q̇

]
. After an integration by

parts and after using the δ(t−t0) distribution, we thus arrive at S[qε,t0 ]−S[q] = ε
[
∂L
∂q −

d
dt
∂L
∂q̇

]
,

which is the desired result.

4.3 If now S[φ] is a functional of a field φ living in d-dimensional space, such that S[φ] =
∫
dxL(φ, ∂µφ),

(where µ = 1, . . . , d refers to space directions), explain why δS
δφ(x0) = ∂L

∂φ − ∂µ
∂L
∂∂µφ

(at x0).

Answer: After defining φε,x0
(x) = φ(x) + εδ(d)(x − x0) we repeat the procedure sketched in

the previous section and arrive at the Euler-Lagrange equations for the field φ (with t → x,
q → φ and d

dt →∇·.

4.4 Let S[φ] =
∫
dx

(
1
2

(
dφ
dx

)2

+ r
2φ

2

)
. Determine δS

δφ(x1) and then δ2S
δφ(x2)δφ(x1) .

Answer: δS
δφ(x1) = −d

2φ
dx2 (x1) + rφ(x1) and thus δ2S

δφ(x2)δφ(x1) = δ(x1 − x2)
[
− d2

dx2
1

+ r
]
.

Remember the connection between functional derivatives and Euler-Lagrange equations. Besides, our
first order expansion Eq. (1) can be pushed one order higher:

δS = S[q + δq]− S[q] =

∫
δS

δq(t′)
δq(t′) dt′ +

1

2

∫
δ2S

δq(t′)δq(t′′)

∣∣∣∣
q

δq(t′) δq(t′′) dt′ dt′′.

Side comment: functional derivatives and functional integrals have nothing to do with each other, in the
sense that our introductory discussion does not involve any functional integration, but simple integration
instead.

Remember also the “be wise, discretize”: should you feel at a loss with a functional, the discrete for-
mulation will be more transparent. After having overcome the difficulty (such as computing a derivative),
you can go back to the continuum limit and proceed. . .
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