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7.5 Measurement of g(r) by Diffraction

Let us now consider how pair correlation functions can be measured.
The measurement will have to probe distances of the order of or
smaller than Angstroms. Thus, if radiation is used, its wavelength
must be smaller than 1 A; such wavelengths are obtained with X-rays
or neutrons. The elementary theory of X-ray scattering is similar to
that for neutrons. We treat X-rays here.

A schematic view of an X-ray scattering experiment is shown in
Fig. 7.7. The scattered wave at the detector due to scattering from
one atom at R, is

[atomic scattering
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(This is the spherical wave, first Born approximation.) If the detector
is far from the scattering center,

|RD - Rsl = IRD - Rcl)

where R, is the center of the scattering cell. For that case, the
scattered wave at the detector is

f(k) |Rp — R | 7! g™on Rog=k "Ry,
where
k= l(out - kin

is the momentum transfer (within a factor of #) for the scattered
X-ray, and f(k) is the atomic scattering factor. (It depends upon k.
Why?) Now consider the vector diagram in Fig. 7.8. Since photons
scatter nearly elastically, |Ki,| = |kouw|- As a result,

k = |k| = (47/A;y) sin (8/2).
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Fig. 7.7. X-ray scattering.
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Fig. 7.8. Vector addition.

Exercise 7.15 Derive this formula for elastic scattering.

Since each atom in the system scatters, we have a superposition of
waves at the detector:

eikout ¢ l‘D N
—ik - l'j

total scattered wave) =f(k) ————— D, e ,
( )=f( )IRC—RDI,-=1

where r; is the position of the jth atom. The intensity is the square of
the magnitude of the total wave, and the observed intensity is the
ensemble average of that square:

1(8) = observed intensity at detector
= [If (k)I*/IR. — Rp|’]NS (k),
where

sk)=N"'( S explik- (1, - ).

Lj=1

The quantity S(k) is called the structure factor. It is related in a
simple way to the Fourier transform of g(r).

To see why, expand the sum over particles in S(k) into self, / =},
and distinct, [ #j, parts. There are N of the former and N(N — 1) of
the latter. Thus,

S(k)=1+N"IN(N — 1)(e™ @)
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As a result, the measured structure factor determines the Fourier
transform of g(r). Since Fourier transforms are unique, S(k) can be
inverted to determine g(r).

Exercise 7.16 Verify the algebraic details in this deriva-
tion and continue the reduction to show that

S(k)=14 (4np/k) fo dr sin (kr)rg(r).

7.6 Solvation and Chemical Equilibrium in Liquids

One of the most important aspects of liquid state science in the fields
of biophysics and chemistry is the role of liquid environments in
affecting conformational and chemical equilibria of solutes in solu-
tion. This is the subject of solvation, and here, too, reduced
distribution functions are closely related to experimental observations
of solvation.

To describe the relationship, we begin by deriving a formula for
the chemical potential for a simple structureless solute species
dissolved in a fluid at low solute concentrations. The total partition
function is

0 = QD QDY ~(NarN) j dra f drPs

X exp [—BUs(r™s) — BU,s(r™s, r™)],

where Q$Y0Q4? is the ideal gas partition function for the solvent-
solute mixture (it depends upon the numbers of solute and solvent
molecules, N, and N, respectively, the volume V, and temperature
T), the potential energy Us is the potential energy for the pure
solvent (it is a function of the solvent configurations, ™), and U, is
the contribution to the potential energy due to the coupling between
solvent and solute species. In this equation for the partition function
we have left out a contribution to the potential energy due to the



