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Abstract
We compare two widespread formulations of the mean-field approximation
based on minimizing an appropriately built mean-field free energy. We use
the example of the anti-ferromagnetic Ising model to show that one of these
formulations does not guarantee the existence of an underlying variational
principle. This results in a severe failure where straightforward minimization
of the corresponding mean-field free energy leads to incorrect results.

In statistical physics the mean-field approximation is one of the most common and easy-to-
use frameworks. It is also one of the most powerful and often the only available one. It
allows one to convert the study of a many-body problem of interacting degrees of freedom
into that of independent degrees of freedom. There are several manners of performing a
mean-field approximation. Our purpose is not to review them nor to discuss the corresponding
well-documented pitfalls [1–6]. Among those various mean-field versions, the one that is
based on a rigorous variational principle plays a special role. Our purpose in the present
paper is to confront this rigorous, albeit cumbersome approach with simpler and widely used
formulations. We would like to analyse a hazardous ambiguity in the concept of free energy
in those apparently more physical formulations which, to the best of our knowledge, has
not been noted before. The reason why these conceptually erroneous statements that can be
found in many places in the literature [2, 7] have never been challenged is that pedagogical
presentations are usually confined to the ferromagnetic Ising model, which has a scalar-order
parameter, and for which, somewhat luckily, the dangers we will point out remain hidden.

We have chosen to illustrate our discussion with the anti-ferromagnetic Ising model
on a two-dimensional square lattice of N sites, say with periodic boundary conditions3, for

3 In the present case, the model is exactly solvable by mapping it onto its ferromagnetic counterpart, for which the
solution may be found in [8]. Yet, we use it as a pedagogical testbench.
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Figure 1. A two-dimensional anti-ferromagnet for T � TN . The spins align almost perfectly in
opposite directions on two sub-lattices a and b of the original lattice.

our discussion would be pointless with a scalar-order parameter. The N spins si = ±1,
i = 1, . . . , N are interacting according to the following Hamiltonian:

H = +J
∑
〈i,j〉

sisj , (1)

where the sum
∑

〈i,j〉 runs over the 2N distinct pairs of nearest neighbour sites, and where the
constant J > 0 is the anti-ferromagnetic coupling. The high-temperature phase of the system
is paramagnetic (mi = 〈si〉 vanishes). As the temperature is decreased below the so-called
Néel temperature TN , anti-ferromagnetic order sets in: the spins align in opposite directions
on two square sub-lattices, as shown in figure 1. The lattice sites are conveniently divided into
two subsets a and b, as already depicted in figure 1.

We begin with a reminder of the variational formulation of the mean-field approximation
(route 1), and then present a more standard approach (route 2) and the accompanying difficulties
in interpreting the related free energy.

Route 1: variational procedure. The idea [9–11] is to introduce a trial Hamiltonian Hmf

depending on the original degrees of freedom {si} and on two parameters ma and mb the
physical meaning of which will become clear later. An intuitive choice for Hmf is

Hmf = +4Jmb

∑
i∈a

si + 4Jma

∑
j∈b

sj . (2)

Then one splits H into

H = Hmf + (H − Hmf) (3)

so that the free energy F of the system reads

F = Fmf − kBT ln〈e−β(H−Hmf)〉mf . (4)

Here, βFmf = − log Zmf, where Zmf is the partition function associated with (2), β = 1/(kBT )

is the inverse temperature with kB being the Boltzmann constant and the angular brackets
〈· · ·〉mf denote an average using the Gibbs measure related to Hmf, that is with weight
exp(−βHmf). The exponential being convex, one is led to the inequality

F � Fmf + 〈H − Hmf〉mf . (5)

Equation (5) often appears under the name of Bogoliubov inequality and may be used to find
the best set of parameters ma and mb that render φ(ma,mb) = Fmf + 〈H −Hmf〉mf minimum,
that is as close as possible to the exact free energy F.4 It is important to note here that the best

4 We note that the Bogoliubov bound (right-hand side of equation (5)) is the same for all the trial Hamiltonians of
the form Hmf + h(ma, mb), where h(ma, mb) is an arbitrary function.
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Figure 2. Plot of the trial free energy φ(ma, mb) at T = 2.2J/kB < TN as a function of ma along
the ma = −mb direction. Note the presence of degenerate global minima at finite magnetization.

approximation for F is not Fmf(ma,mb), but φ(ma,mb). Using that 〈si∈a〉mf = −tanh 4βJmb

and 〈sj∈b〉mf = −tanh 4βJma , we arrive at

βφ(ma,mb) =

βFmf︷ ︸︸ ︷
N

2
[−ln(4 cosh 4βJma cosh 4βJmb)

+ 4βJ tanh 4βJma tanh 4βJmb

+ 4βJ (ma tanh 4βJma + mb tanh 4βJmb)]. (6)

Extremizing φ leads to the set of equations

∂φ

∂ma

= 0,
∂φ

∂mb

= 0 (7)

⇒ ma = −tanh 4βJmb, mb = −tanh 4βJma. (8)

The latter system of equations has a unique solution ma = mb = 0 at β � βN = 1
4J

(TN = 4J/kB) and possesses an additional set of two nonzero solutions for β > βN (TN is
identified as the Néel temperature). In the high-temperature phase, the paramagnetic solution
ma = mb = 0 becomes the global minimum of φ, just as the nonzero solution ma = −mb �= 0
does in the low-temperature phase (one can verify that the matrix of the second derivatives of
φ is positive definite at those extrema). Also note that for β > βN the paramagnetic state is a
saddle point of φ with the unstable direction along the ma = −mb line (see figure 2). Right
at the minimum, the expression of φ reads

φ(ma,mb) = Fmf − 2NJmamb, (9)

where ma and mb are the solutions to the system in (7).
At this stage we have simply postulated a trial Hamiltonian Hmf without providing much

of a physical motivation. It is a posteriori clear that Hmf describes a system of independent
spins in an external magnetic field. For spin si of sub-lattice a, this magnetic field is interpreted
as the mean magnetization resulting from the four nearest neighbours on the sub-lattice b, as
is confirmed by the fact that at the minimum of φ one can indeed verify that

〈s∈a〉mf = −tanh 4βJmb = ma, 〈s∈b〉mf = mb. (10)

In practice, however, the variational procedure is not physically transparent and is
mathematically rather heavy. Furthermore, it must be supplemented with a reasonable input
of physical intuition when postulating a trial Hamiltonian, lest the outcome of the calculation
should be dull. Hence, for all these reasons, in spite of φ(ma,mb) being a bona fide mean-field
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free energy, it is rarely used in standard courses. The purpose of the following is to present an
alternative and widely used formulation of the mean-field approximation [2, 7], which at first
glance appears more satisfactory on physical grounds, but that conceals a number of hazards
that we wish to point out.

Alternative formulation. Replacing in the original Hamiltonian H the spins s� with ma or b +δs�

and neglecting terms quadratic in the δs�s, we obtain our new mean-field Hamiltonian H′
mf

H′
mf = −2NJmamb + 4Jmb

∑
i∈a

si + 4Jma

∑
j∈b

sj . (11)

In the present formulation, the mean-field approximation can be viewed as neglecting
correlations between nearest neighbour spin fluctuations. The difference between the above
H′

mf and the Hmf that appears in (2) lies in the additional constant term −2NJmamb that
features a temperature dependence through the magnetizations ma and mb that must carefully
be kept track of. It is easily checked that following the above variational procedure route 1
with H′

mf instead of Hmf leads to the same results (see footnote 4). At this stage, another route
can be followed that differs from the variational procedure. We decompose this second route
into two steps.

Route 2a: Self-consistency. From the mean-field Hamiltonian H′
mf, it is easy to deduce both

the mean-field partition function Z′
mf and the average magnetization. We find

Z′
mf = 2N e2NβJmamb (cosh(4βJma) cosh(4βJmb))

N/2 (12)

and

ma = 〈si∈a〉 = 1

Z′
mf

∑
{s�}

si e−βH′
mf = −tanh(4Jβmb) (13)

mb = 〈sj∈b〉 = −tanh(4Jβma). (14)

This system of equations is exactly the one found in (10). The self-consistency equations (13)
and (14) have only the paramagnetic solution when T � TN , while a nonzero solution
continuously develops as T is lowered below TN . It is then argued that below TN , which is
identified with the Néel temperature, the ma = mb = 0 solution is unstable while the solution
ma = −mb �= 0 becomes stable and is the physically relevant one. Either more precise
discussions about stability issues are discarded or one finds in standard textbooks the following
assertion to justify the choice of the nonzero solution below TN : it becomes stable below the
Néel temperature (this is true), as can be checked by studying the minima of the free energy.
This is the last sentence that we would now like to discuss.

Route 2b: free energy landscape. From the expression of the partition function given in
(12), one can easily deduce an expression for the free energy φ′(ma,mb) as a function of the
magnetizations on the two sub-lattices

φ′(ma,mb) = −kBT log Z′
mf = N

(
−2Jmamb − 1

2β
ln[4 cosh(4βJma) cosh(4βJmb)]

)
.

(15)

We now express that we search for the states that minimize the free energy φ′:
∂φ′

∂ma

= ∂φ′

∂mb

= 0. (16)

Within the framework of the simpler ferromagnetic case, this is precisely the wording adopted,
e.g. in [2]. It is then usually commented upon that equations (16) are equivalent to those
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Figure 3. Plot of the dimensionless free energy φ′
mf/(JN) as a function of ma and mb in [−1, 1]2,

below the Néel temperature at T = 3TN/4.
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Figure 4. Plot of the dimensionless free energy φ′
mf/(JN) as a function of ma along the ma = −mb

line (left) and along the perpendicular direction crossing the saddle point at ma = −mb � 0.77
(right). The same parameters as in figure 3.

obtained by resorting directly to the self-consistency conditions. A plot of the free energy
landscape as a function of the order parameter usually follows. And indeed for T < TN it may
be seen that the paramagnetic state becomes a global maximum of φ′ considered as a function
of independent variables (ma,mb).

However, below the Néel temperature, the nontrivial state (ma,mb) deduced from (13)
and (14) is simply neither a local nor a global minimum of the free energy φ′(ma,mb):

(i) there exist other states, at the boundaries of the magnetization domain, that have a lower
free energy;

(ii) (ma,mb) as given by the nonzero solution of (13) and (14) does not even correspond to a
local minimum.

It is instructive to examine the shape of the free energy landscape as a function of the order-
parameter components (ma,mb), as plotted in figure 3. We find that the state that globally
minimizes the free energy φ′ is the fully ordered ferromagnetic ma = mb = 1 state (or
equivalently ma = mb = −1), whatever 0 � T < TN . Furthermore, the anti-ferromagnetic
state corresponds to a saddle point of the free energy landscape. This is best appreciated in
figure 4. With the chosen parameters, the correct anti-ferromagnetic state has ma � 0.77. We
have clearly come across an unexpected hazard of the mean-field approximation. Finally, note
that by artificially dividing a regular ferromagnetic Ising model on a square lattice into two
sub-lattices with independent average magnetizations, one would come across the same kind
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of problem for the mean-field free energy (the ferromagnetic state would become a saddle
point, the global minimum would correspond to the fully anti-ferromagnetic state, etc).

Discussion. We now come back to the variational formulation and we wish to underline that
when one evaluates φ at its global minimum one finds that

φ(ma,mb) = φ′(ma,mb), (17)

where ma and mb are the functions of temperature solution to the system (13, 14) or (10).
This tells us that it is perfectly legitimate to follow route 2a using the numerical value of φ′ at
the values given by (13, 14) for finding the physical solution to the problem. In other words,
route 2a with the further computation of φ′ for the self-consistent magnetizations is correct.
However, it should be prohibited to freely vary the magnetizations ma and mb as in route 2b
to study the free-energy φ′ landscape and to rely on the latter landscape to discuss stability
issues. There is indeed no variational principle underlying the derivation of φ′. This is at
variance with the safe route 1 relying on φ. This also means that route 2 can never be used to
discuss metastability issues, even when restricted to self-consistent magnetizations.

The inconsistency we have brought forth for route 2b appears only when the mean-field
order parameter is not a scalar (as is the case in the ferromagnetic model): ordering phenomena
on more complex substructures of the original lattice would inevitably lead to similar results.
The key point in our second formulation of the mean-field approximation (route 2) is that by
their very definition, ma and mb are the average magnetizations: they cannot be considered
as freely varying variables. They are functions of the temperature determined by the self-
consistency equations. It is curious to note that the physical solution (ma,mb) to the problem
(which is by definition a minimum of φ) corresponds to a saddle point of the function φ′.

Therefore, we would like to conclude by warning that there is in principle no physical
meaning to the mean-field free energy φ′ seen as a function of a freely varying order parameter.
Comparing mean-field free energies is meaningful only for solutions of the self-consistency
equations. We have shown this below the Néel temperature, but similar problems arise in the
high-temperature limit. Indeed, expanding the free energy equation (15) in the vicinity of
β = 0 yields φ′

mf � −2JNmamb from which one could be tempted to conclude erroneously
that the stable state is fully ferromagnetic when it is of course paramagnetic!
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