TD3: Uses and applications of the renormalization group

Statistical Mechanics — iCFP M2

The purpose of this set of problems is to learn how to implement the renormalization group ideas
on simple physical systems, such as interacting spins. We will begin by real-space methods as applied
to the Ising model. The XY model which follows does not display a bona fide critical point but it
can nevertheless be approached with renormalization methods. Among classical references, we direct
the interested students to Leo P. Kadanoff [Statistical Physics: Statics, Dynamics, and Renormalization,
World Scientific, Singapore, (2000)].

1 Real space renormalization of an Ising model

1.1 Warm-up on the one-dimensional Ising chain

A one-dimensional Ising model has Hamiltonian H = —J ZZV:I 0i0;+1, where J > 0, 0; = 1 and where
i=1,...,N, with o1 = o1 (periodic boundary conditions are used). The lattice spacing a is taken to
be unity. The partition function of the Ising chain is denoted by Z(K, N,a), where K = 8J.

1.1.1 Prove that for three spins o, ¢’ and ¢”, one can always write
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where A and K’ are functions of K. Show that one can write tanh K’ = (tanh K)2.

1.1.2 Use the identity in 1 to show that Z(K,N,a) = AN?Z(K',N' = N/2,a’). What is a’? How would
you interpret In A?

1.1.3 The calculation in 2 can be interpreted as a renormalization procedure with a scaling factor b. What
is b? By iterating the procedure, one obtains a recursion relation on the coupling K, after n steps
(Ko = K =3J, K; = K, etc.). What are the fixed points of the recursion relation? What is their
physical meaning? Why are the terms “high-temperature” or “low-temperature” used when describ-
ing these fixed points (here and throughout, the temperature has however been kept a constant)?

1.1.4 We define the dimensionles correlation length as E = ¢/a. Show that E’ = E /2. Taking advantage of
the fact that tanh K’ = (tanh K)?, show that this yields ¢ oc 1/[—log(tanh K)].

1.2 The Niemeijer-Van Leeuwen decimation procedure

In the early days of the renormalization, Niemeijer and Van Leeuwen [Phys. Rev. Lett. 31, 1411 (1973)]
came up with an explicit, albeit approximate, procedure to integrate out a fraction of the degrees of
freedom in a two-dimensional spin system. This is what we want to explore in this section. We consider
a two-dimensional Ising model with N spins living on a triangular lattice with spacing a. The exchange
energy J normalized by the temperature is again denoted by K.

1.2.1 The lattice is divided, as shown in figure 1, into triangular plaquettes. A spin variable S; = +1 is
associated to each plaquette I = {iy,1i2,i3} via a majority rule: S; = sign(o;, + 0i, + 04;). What
is the number N’ of plaquettes and what is the spacing a’ of the triangular lattice the plaquettes
make up?

1.2.2 The Hamiltonian H = —J ) (i, 0i0 of course features interactions between spins ¢; belonging to
the same plaquette I, but it also features interactions between spins o; and o; belonging to differ-
ent nearest neighbor plaquettes I and J. We thus split the Hamiltonian into H = H; + Hs, with
Hy = Y>rhi(I) and Hy = }77 5y ho(I,J). With these loose notations hi(I) actually denotes a
function of the spins pertaining to plaquette I (same for hy(I,J)). For a given triangular plaquette
I = {iy,1ia,i3} write the expression of hi(I) as a function of {oy,, 0,, 04, }. Similarly, for two nearest
neighbor plaquettes I = {i1, 2,43} and J = {j1, j2, j3}, write ha(I, J) as a function of {o;,,04,, 04, }
and {Ujd 042> Uja}'
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Figure 1: The original spins o; lie at the black bullets while the plaquette spins lie at the empty circles.
They form a triangular lattice materialized with dashed lines.
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We would like to rewrite the original partition function Z in terms of a summation over the {Sr}
configurations rather than over the {o;} configurations, be it at the expense of modifying the Hamil-
tonian. As a step in that direction, we note that
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where 3’ denotes a sumation over all {o;} configurations at fixed plaquette configurations S; =
sign(}_,c;04). Let Z({S1}) = Z{{ai} e AHUoH | Determine the approximate expression of Z({S;}),
denoted by Z7, when the plaquette-plaquette interactions are discarded.

Justify that

Z(K,N,a) = Y Z(e Pl2), (3)
{s1}
where (...); = Z% Zf{ai} e #H1 . How would you interpret the average brackets (...);?

In general, determining (e=##2), is a formidable task. Express the latter average in terms of the
cumulants of Hs with respect to the measure (.. .);.

We now implement the Niemeijer-Van Leeuwen approximation which consists in dropping all cumu-
lants of order > 2. What is the physical content, in terms of plaquette-plaquette interactions, of the
second cumulant (which is neglected)?

Let o; be a spin belonging to a plaquette I. Show that
3K 4 oK
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Within the proposed approximation, show that Z(K,N,a) = (35 + 3¢~ K)N' Z(K’', N’,a’), where
K’ = f(K) is to be identified.

Find the fixed points of f. Discuss their stability and their physical meaning. Find the critical
temperature (within the proposed approximation); compare it with the mean-field value. The exact
result is close to 3.6 J/k

Let v be the exponent governing the divergence of the correlation length as criticality is approached.
Find the value of v predicted by the Niemeijer-Van Leeuwen approximation and compare it with
both its mean-field counterpart and the exact value (Voxact = 1).

A few years later, Van Leeuwen and his collaborators [Phys. Rev. Lett. 40, 1605 (1978)] came up with
a decimation scheme exact in the limit of very large systems. While the specifics of the calculation itself
are tedious, the idea was to begin with an IV spin system and to eliminate, at each step of the decimation
procedure, an infinitesimal fraction of spins.


http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.40.1605

2 The Kosterlitz-Thouless transition

2.1 Introduction

The Nobel Prize in Physics 2016 was divided, one half awarded to David J. Thouless, the other half
jointly to F. Duncan M. Haldane and J. Michael Kosterlitz “for theoretical discoveries of topological phase
transitions and topological phases of matter”.
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Figure 2: Kosterlitz and Thouless

The Kosterlitz-Thouless transition that we want to investigate here was discovered back in 1972. This
transition both differs and resembles other phase transitions that you may have encountered. The summary
provided by the Nobel committee says: “In 1972 J. Michael Kosterlitz and David J. Thouless identified
a completely new type of phase transition in two-dimensional systems where topological defects play a
crucial role. Their theory applied to certain kinds of magnets and to superconducting and superfluid films,
and has also been very important for understanding the quantum theory of one-dimensional systems at
very low temperatures”. Interested readers are directed to the Nobel Prize in Physics website. The goal of
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Figure 3: What do interacting spins have to do with vortices? Why are there little boats in the cartoon?
Answering this question is the topic of the present problem. The little arrows depicted here do not
represent spins, but the gradient of the angle € introduced below.

this problem is to guide you through the pecularities of the Kosterlitz-Thouless transition. We will adopt
the XY model of interacting spins language.

An XY model consists of two-dimensional vectorial and classical spins S; localized at the vertices x of a
regular lattice with N sites (N = (L/a)? where a is the lattice spacing) and interacting via a ferromagnetic
interaction H = —J ) (x.3) Sx - Sy. The XY model is relevant to the description of superfluid helium
or hexatic liquid crystals. In the specific two-dimensional case, correlations decay as a power law at low
temperature, while above a certain critical temperature, they become short-range. While the nature of
correlations changes drastically according to the temperature regime, there is nevertheless no ordering
transition. Our purpose here is to convince ourselves of the existence of qualitatively different correlation
regimes, and then to analyze the predictions of the renormalization group in the scale invariant regime.
Throughout the text, we will make extensive use of the properties of the Green’s function G of the
Laplacian in two dimensions. These are gathered at the end. Some of the derivations are rather technical;
these have been made explicit in the grey box. The focus will be on physical interpretation.

2.2 Correlations at low and high temperatures

2.2.1 Each spin Sy being characterized by an orientation 6, what are the symmetries of the Hamiltonian?


https://www.nobelprize.org/nobel_prizes/physics/laureates/2016/

2.2.2 What is the ground state of H?

2.2.3 Why is H = % Z<x7y> (6x — 0y)? a good approximation for H in the low temperature limit?

2.2.4 Show that in the low temperature regime (6x0y) = +G(x —y) where G(r) is defined in the
appendix. We shall call Zg, the partition function in this approximate so-called spin-wave regime.
We will use the notation K = §J.

2.2.5 How does the spin-spin correlation C'(x,y) = (Sx - Sy) behave in this low temperature regime? Is
there any spontaneous magnetization? The properties of G(r) are given in the appendix.

2.2.6 Prove that [ 92 cos(6; — 6) cos(6 — 02) = % cos(6; — 62).

2.2.7 Let N(0,r) be the number of shortest paths connecting 0 to an arbitrary point r = (x,y). Justify
that N (0,r) = (Ix\‘:lly\). The combination |z|+ |y| is sometimes labeled ||r||;. This is the Manhattan
distance between the origin and r (which is also called the 1-norm). Argue that A/(0,r) has upper

bound 2/l
2.2.8 We now sit in the high-temperature limit. After justifying that Z ~ I%H@c,y)(l +
K cos(0x — 0y)), show that to leading order in an expansion in powers of K as K — 0
O, ) ~ N, ) (5 /2) - o)

where ||r||; denotes the Manhattan distance between spins x and y. We admit that we can restrict
to those non-vanishing contributions in (5) that are of lowest order in K. Define and express the
correlation length ¢ in terms of K. We are interested in the K dependence only.

2.3 Towards a Coulomb gas within the Villain approximation

Our goal is to establish a connection between the original XY model and a system of charges interacting
via a Coulomb potential in two space dimensions. This section is mostly technical at first sight. However,
the effective electric charges that appear in reformulating the partition function can be seen as vortices
of the local magnetization field that we start from. The first two questions have to do with the Villain
approximation, while the remainder is a series of steps and mappings connecting the Villain model with a
Coulomb gas. You are urged to read through the various technical steps to get a feel of how the Coulomb
gas emerges in technical terms.

. . . 2 ;
2.3.1 The Bessel function of imaginary argument I,,(z) = [ 98z cos6+ind Keosu —

=)y 5 allows us to expand e
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roe eI, (K). What is the K regime in which one can approximate I,,(K) =~ %?
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2.3.2 We will henceforth use that e s ~ \/ZTTK Yo oo €72 . With physical symmetries in sight,

what is the advantage of the latter approximation with respect to the simpler approximation
eK(:osu ~ eK—KuZ/Q?

Our starting point is the partition function, written in the form

Hx dex K cos(0x—06
z - / s T e (6)
(x,)

Sometimes the notation D@ instead of the heavier 1?2’;31?\," is used. We note that ] (x,y) 18 equivalent

to Hx7 .y with u = z or y refering to the bond relating x to its nearest neighbor. We also denote
e, and e, the units vectors along x and y respectively. We now introduce a two-dimensional vector
field n(x) with integer components. Let’s argue why the partition function of the XY model, up to
an overall multiplicative constant, can be written in the form

dex = in,, (x —n, (x)2
7 = / 1;‘[2’;_)1\, H Z e u )auexe w(x)°/2K (7)

X,=T,Y ny, (x)=—00
where 0, refers to a discrete derivative along the space direction p = x or y (also denoted by 1 or 2):
0,0(x) = Oxye, — Ox. To do so, we first realize that for each bond of nearest neighbor lattice sites x
and x + e, we have

+o0 K
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where G is the Green’s function of the discrete Laplacian. We find it convenient to rewrite Z with
the help of a more regular function G(r) = G(r) — G(0). After substitution we get
7 — Z;w Z e*27T2KG(O)(Zx m(x))2€—27r2K ey m(x)G(x—y)m(y)

{m(x)}
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At this stage, nothing constrains the configurations of the integer field m(x). However, given that
G(0) ~ ;- ln§ we see that in the large L limit configurations which have ) _m(x) # 0 are killed.
Hence our conclusion that only neutral configurations of m enter the partition function,
namely those which verify > m(x) = 0. An explicit expression for G is not available, but its large
distance behavior is well-known, while it is regular at short distances. Without any loss for the
description of large scale phenomena, we extrapolate the large distance asymptotics of G downto the
lattice scale by using the approximate expression G(r) ~ —5-In @ — 1 (see the Appendix). This is
useful in the second line of Eq.(16).

At last, we are ready for the Coulomb gas identification: the quantity Z, = Z/Z is the partition
function of a two-dimensional Coulomb gas with charges 2mv/.J m(x) sitting at the lattice sites whose
density is governed by y = e~ K/2 that plays the role of a fugacity in that it controls the density of
charges. This partition function

Z=20 3 yEnm0 K Ty ) In(beyll/a)m(y)
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is close enough to the partition function one would write out of the box for a two component Coulomb
gas in the grand-canonical ensemble. The specifics of the fugacity term differ, though, especially at
higher densities of charges.

Tt is high time we endow the field m(x) with a physical meaning that connects to the original prob-
lem of interacting spins. The quantity m(x) can be viewed as the circulation of the local magnetization
field around some location x and it can thus be interpreted as a vorticity field. This interpretation can
be traced back in the series of technical steps we have just gone through (6 — n — p — {¢,m} — m).
It would of course deserve a bit more work to be fully clarified, but this is at least consistent with
the knowledge one has from hydrodynamics where vortices a distance r apart interact via a Inr in-
teraction. As y increases, more and more charges appear while y — 0 has a vanishing number of such
charges (or vortices) which eventually stop interacting with each other. The former regime in which
vortices proliferate is found in at high temperatures: correlations decay exponentially fast. At low
temperatures, by contrast, quasi long range order sets in, characterized by power law correlations.

24

Real-space renormalization

We will now focus on the Z, partition function that cannot be evaluated exactly. In the low fugacity

limit,

the behavior of the system is well understood, which suggests to attempt a y — 0 expansion of Z,.

Below, one should not confuse the fugacity y with a Cartesian coordinate.

24.1

24.2

We begin with the correlation function C'(x,y) = (Sx - Sy) and with one more accepted result. It is
possible to show (see the beautiful 1977 paper [Phys. Rev. B 16, 1217 (1977)] by José, Kadanoff,
Kirkpatrick and Nelson, equation (5.1)) that a blunt expansion of C in powers of y leads to the
expression

Cx,y) o ||x — y|| (18)
with .
1 1 dr sr\3—27K
= — a2 [ & (7) . 19
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For what K regime is the perturbation expansion in powers of y well-defined (for lack of a better
word)?

We introduce b > 1 and split the integral in the right hand side of (19) into faL dr...= f;a dr...+
JiEdr.. .. We define K’ by K'=1 = K1 4+ 4xy? [ 40 (2)77™ \We thus arrive at

L
. d -\ 3—27K
Ke_ﬂ‘l — K/*l +47T’3y2/ l (7) .

(20)
ba @

a

Upon rescaling ba into a, show that the relationship between Keg, K’ and gy’ in (20) is strongly

reminiscent of (19) between K., K and y, from which one can define the renormalized fugacity
/ 2—mK

y =b 1.
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2.4.3 Assuming the elimination of short scale fluctuations between a and ba is infinitesimal, with b = e,
show that the running couplings K (¢) and y(¢) evolve according to

dK dy

— = —Any’K? = (2—-7K)y. 21

. I R RISV (21)

2.4.4 As a consistency check, the flow equation on ¥ can be recovered in a simpler way. First show that
2r K

asy — 0,72, =2/Z,, =1+ Zé fOL d?*zd?y (ﬁ) . The double space integral avoids the

[lx —y|| < a region.

2.4.5 Show now that, after splitting in the double integral into two regions ( ||x—y|| < ba and ||x—y]|| > ba)
it is possible to rewrite Z, in the form

y12 a 2 K
1+ —4/ d*zd?y () (22)
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2K
where I = ¢ ~* faHx—y||<ba d?zd?y (ﬁ) . The (14 y2I) prefactor is not renormalizing any of

Zy=(1+y*I)

the y or K couplings. In your opinion, what does it renormalize? Recover from this analysis that
/ 2—mK
Yy =uyb .

2.4.6 Recall the relationship between y and K at the microscopic level (before any sort of renormalization).
Plot the y(K) function in the (K,y) plane. This is the so-called line of initial conditions. Explain
the latter terminology.

2.4.7 The RG flow is made up of the two equations (21). What are the fixed points of the RG flow?
Position the fixed points in the same (K, y) plane as in the previous question.

2.4.8 Show that if K remains in the vicinity of 2/7 we must have
167%y? — (2 —7K)* = C,

namely that the flow lines are hyperboles in the (K, y) plane. Draw the asymptotes in the (K, y)
plane along with a few possible trajectories.

2.4.9 Recall that our approach is based on a small y (virial) expansion. Discuss the stability of the fixed
points and provide their physical interpretation.

2.4.10 What can you say about the nature of spin-spin correlations at each of these fixed points?

2.5 Correlation length from the high temperature region

We want to exploit the RG flow to predict the temperature dependence of the correlation length in the
high-temperature phase.

2.5.1 What is the correlation length in the low temperature phase?

2.5.2 How would you define the critical temperature T.? Carry out a graphical check of your definition
by plotting the fixed points reached by the flow depending on whether T > T, or T < T,.

2.5.3 Justify that as T — T, we must have C' ~ a(T —T.), where a is a constant whose sign will be given.

2.5.4 In this regime close to the critical point, find K (¢) by direct integration of the flow between ¢ = 0
and /.

2.5.5 How would you define the correlation length €7 Prove that as T — T.F,

£ ~ exp (%) . (23)

2.6 The roughening transition of an interface

Let’s take a step back with respect the the XY model and consider now an apparently completely different
problem involving the interface between a crystalline phase and, say, its vapor. We refer the interested
reader to Burton et al. [Philos. Trans. R. Soc. 243A, 299 (1951)] for the physical context, and to
Nozieres and Gallet [J. Phys. France 48, 353 (1987)] for more recent experiments. The interface, assumed
to be devoid of overhang, is characterized by a height h(r), where r lies at a vertex of an underlying
two-dimensional lattice (assumed to be square for simplicity), as shown in figure 4. A defining property
of h is that, given it describes the height of the crystal, it can only assume integer values.


http://rsta.royalsocietypublishing.org/content/243/866/299.short
http://jphys.journaldephysique.org/articles/jphys/pdf/1987/03/jphys_1987__48_3_353_0.pdf

Figure 4: The height h(r) takes up discrete values. A kink is present when two neighboring lattice sites
r and r’ on the projected 2d plane have different crystal heights. The figure is taken from J. D. Weeks
chapter in The roughening transition, in Ordering in Strongly Fluctuating Condensed Matter Systems, T.
Riste Ed., Springer, (1980).

2.6.1 A possible Hamiltonian characterizing the interface is H = o3, o (h(x) — h(y))?. What is the
physical meaning of this Hamiltonian?

2.6.2 What are the symmetries of H? Is there anything in common with those of the Hamiltonian of the
XY model?

2.6.3 Show that the partition function of the interface is identical to that of an XY model with a value
of K to be given in terms of o and 8. Hint: stare at Eq.(12).

2.6.4 Qualitatively discuss the behavior of {(h(r) — h(0))?) as r — oo as a function of temperature.

2.6.5 What would you term the “roughening transition”?

Appendix
Let G(r) be the Green’s function of the two-dimensional Laplacian on a square lattice with N = (L/a)?
sites, defined by
- Z r+ae,) + G(r —ae,) — 2G(r)) = dr 0 (24)
p=z,y
where a is the lattice spacing, and a 1/N contribution to the right hand side (a uniform background) has
been neglected. Introducing the Fourier transform G(q) defined by

= e 97G(r) (25)

we have that for q # 0,
~ 1
G(a) =

26
4 — 2cos ag, — 2 cosagy, (26)

The Fourier modes are indexed by q = 2%(n,,n,), where n, and , are integers between —L/(2a) and
L/(2a). The direct space Green’s functlon is

elar

G .
() N Z 4 — 2cosagy — 2cos agy
q#0

(27)

When injecting this form into (24), one indeed checks that up to the aforementioned (and not specified)
1/N contribution to the right hand side, we have the Green’s function sought for. We shall not prove any
of the properties below, but we freely use them

—c+o(1) (28)

where G(r) = G(r) — G(0) and where ¢ = 5= (v + 3 In2) ~ 1.
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