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Should be written on a separate paper. It will be graded over 10 points.
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Introduction.
In the 1950s, soon after Onsager’s work on Ising model, T.D. Lee and C.N. Yang had an idea that, as
surprising as it may seem at first glance, has shed new light on the study of phase transitions. Their
approach was initially couched for a lattice gas, but it holds equally well for a magnet in a fixed magnetic
field. They realized that the partition function Z can fruitfully be viewed as a function of the external
magnetic field B, not only when B is real (as is of course the experimentally relevant case), but more
interestingly when B is a complex number. It soon appeared that the distribution of zeros of Z in the
complex plane does reveal original information about the phase transition in the canonical ensemble.

In the following, we are interested in the spin 1/2 Ising model with nearest neighbor interactions, on
some d-dimensional lattice. The Hamiltonian reads

H = −J
∑
〈i,j〉

Si Sj −B
N∑
i=1

Si, (1)

where the summation with brackets runs over pairs of nearest neighbors, and there are N distinct spins
Si, each taking two possible values Si = ±1.

1) We will here always consider ferromagnetic interactions. What does this mean ?

2) Is it possible for Z to vanish when B is a real magnetic field ? N is supposed fixed here.

3) We start with a system of N = 2 spins, with Hamiltonian H = −J S1S2 −B(S1 + S2).

a) Introducing the inverse temperature β = 1/(kT ), write the partition function Z2(T,B).

b) Show that exp(−2βB)Z2 is a polynomial of degree two in z = exp(−2βB).

c) What are the two zeros of Z2 ? Conclude that the two corresponding values of z = exp(−2βB)
are on the unit circle (centered at the origin, and having radius 1).

The statement : unit circle phenomenon and real axis pinching
What is remarkable is that the above result is general, and is referred to as Lee and Yang theorem : the
partition function ZN for an arbitrary ferromagnetic Ising model with N spins, vanishes for N values
of z = exp(−2βB), that all lie on the unit circle. These zeros can be degenerate. The theorem holds on
any lattice, any space dimension d, and is not restricted to nearest neighbor interactions. It implies that
the zeros of ZN , in the variable B, are purely imaginary quantities, and we shall thus introduce their
imaginary part b such that B = i b. Figure 1 illustrates the unit circle phenomenon, where each small
disk denotes the location of a zero z of ZN .

To make sense out of the Lee and Yang theorem, we need to remember a bit of complex analysis. Seen
as a function of z, the partition function will be a smooth, non singular function (mathematicians would
say “analytic”), for z in any region outside the Lee and Yang (LY) zeros. This holds in particular in the
thermodynamic limit N →∞. Thus, one needs to have an accumulation of LY zeros in the z-plane, at a
phase transition point where Z is by definition not analytic.
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4) When B is real, is it possible to have a phase transition with N finite (i.e. non divergent) ?

5) In light of these results, what are the real values of B for which a phase transition can be observed ?
Keep in mind that when B is real, z is real as well, and of course positive.
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Figure 1 – Location of Lee and Yang zeros in the z-complex plane, for a system of N = 68 spins, where z
is related to the magnetic field through z = e−2βB. There are thus 68 zeros for each value of the coupling
constant K = J/(kT ). The zeros go in conjugate pairs, so that the set of points shown enjoys reflection
symmetry with respect to the x-axis. One panel (A1 or A2) if for a one-dimensional system, while the
other (A2 or A1) is for a two-dimensional square lattice. You will have to find out which is which. For
all numerical results shown in this paper, periodic boundary conditions have been enforced. The vertical
arrows indicate a gap that does not close in the thermodynamic limit, see Fig. 2. Please, pay attention
to the pinching 1 of the real axis, as K increases, in panel A2.

In Fig. 1, some spacings between successive zeros along the unit circle are visible, and can be discriminated
in two categories : either the spacing tends to 0 for large N , or it tends to a finite value. The latter case
is represented by an arrow in Fig. 1. The fact that the arrow remains of finite size while N →∞, while
other gaps do close, is shown in Fig. 2.

6) We focus on the situation reported in Fig. 2. For these parameters, is there a phase transition (for
real B) ?

7) One of panels A1 and A2 in Fig. 1 is for d = 1 and the other for d = 2.

a) Which is which ? Explain.

b) From Fig. 1, estimate roughly the critical K and then the critical temperature, Tc, of the two
dimensional model.

c) How should Tc compare to its mean-field counterpart Tmfc ? Why ?

d) What is the value of Tmfc on the 2d square lattice (no heavy calculation asked ; you can simply
recall the result, or rederive it briefly) ? Check if the expected inequality holds.

Before studying the behavior of the system for b close to the “edge” bmin, we investigate how the gap
closes, at Tc, in the thermodynamic limit, assuming that the rather small systems addressed here provide
indeed fair indication. The results are shown for d = 2 in Figs. 3 and 4, starting with N as small as 9.

8) For T = Tc, one can relate the divergence of the correlation length ξ to the magnetic field B (B
is real here). Sketch the corresponding scaling argument, from which a power law involving the

1. pinching = pincement
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Figure 2 – LY zeros as in panel A1 of Fig. 1, for K = 2, and different values of N . The gap shown by
the arrow remains in the thermodynamic limit, while the other smaller gaps between consecutive zeros
do vanish. Except for small N (results not shown), the size of the arrow (almost) does not depend on N .
The arrow length can be written 2 sin(2βbmin) where bmin > 0 is the smallest (positive) imaginary part
of the LY zeros (in the B variable). Here, one has bmin 6= 0 for all N .

standard exponents β, δ and ν does appear (as is customary, do not confuse this β with the inverse
temperature). Given that Onsager’s solution yields the exact results β = 1/8, δ = 15, and ν = 1,
what is then the exponent in the relation ξ ∝ Bsomething, where the symbol ∝ means “equal up to
a constant” ?

9) We assume that a similar relation does hold in our case, between bmin and system size L. In light
of Fig. 3, does this make sense ? Try to back up the argument.

10) (subsidiary) Fig. 4 actually yields a more refined, plausible, information, dealing also with the
sub-leading correction in L of bmin. How can this refined relation between bmin and L be written ?

Lee-Yang edge singularity
An interesting feature of Lee and Yang’s idea applied to our spin model, is that it allows to extend the
notion of criticality for temperatures larger than Tc. Indeed for B = i bmin and at any T > Tc, it can
be shown that the magnetic response is singular, associated to a new set of critical indices. This is the
so-called Lee and Yang edge singularity. These indices are the focus of our interest in the remainder. In
particular for B → ibmin, the (complex) magnetization behaves like

δm = m(T,B)−m(T, ibmin) ∝ (B − i bmin)1/δ′ (2)

and the correlation length, defined as usual from the spin-spin correlation function, diverges like

ξ(T,B) ∝ |B − i bmin|−ν
′
. (3)

At the “critical point” (meaning B = i bmin and T > Tc), the correlation function reads

Γ(r) ∝ 1

rd−2+η′
. (4)

The exponents δ′, ν ′, η′ do not depend on the details of the lattice, but they do depend on space dimension
d. They could a priori depend also on T , but it turns out that they do not ; their values are given in
Figure 5.
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Figure 3 – Behavior of bmin at T = Tc, as a function of system size, for a L × L square lattice having
N = L2 spins. Note the log-log scale. The three lines are guides to the eye and to the brain, having slopes
1.5, 1.875 and 2. A more detailed information is available in Fig. 4.
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Figure 4 – Reprocessing of the same data as in Fig. 3, to test two slightly different scaling behaviors.
As a function of 1/L, we show L1.875 bmin (left) and L2 bmin. The scale of the plots is now linear.

11) From Figure 5, what can you guess concerning the upper critical dimension du associated to this
transition ? Do you remember what is the upper critical dimension of the standard Ising ferroma-
gnetic transition ? (a simple “yes” will not be taken for an answer. . . )

12) How does bmin behave with T , both for T < Tc and T > Tc ? A rough and pictorial answer is
sufficient : simply plot bmin as a function of T in a qualitative manner.

We will start by a mean-field treatment yielding the critical exponents, before analyzing the one-dimensional
case. We will finally explicitly check that for d > du, fluctuations discarded at mean-field level are indeed
irrelevant.

Landau approach to the edge
In Landau spirit, we write the free energy as a function of magnetization as

f(m,B, T ) =
t

2
m2 +

a4

4
m4 −Bm. (5)

where t = T −Tc denotes the distance to the critical temperature, and will be positive. Strictly speaking,
the prefactor of the quadratic term in the expansion is not exactly t, but some a2 that behaves like t for
small t.

13) Justify briefly the form chosen in Eq. (5). What is the sign of a4 ?
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Figure 5 – Dependence of critical exponents η′ and ν ′ on space dimension.

Considering complex fields B = ib and anticipating that m = iM turns out complex as well, we focus on
the free energy F as a function of the real quantity M :

F(M) = − t
2
M2 +

a4

4
M4 + bM. (6)

14) For a given t > 0 and b, we denote by M∗ the value adopted by the system. What is the equation
encoding the dependence of the magnetization of the system on b, t and a4 ?

15) Sketch graphically the connection between b and M∗ (it may prove easier to plot b as a function
ofM∗). Note that there exists a magnetic field such that ∂M∗/∂b diverges. This singular behavior
defines bmin and the associatedMmin. Indicate bmin andMmin on your graph (because of symmetry,
this corresponds to two points). Note that ±Mmin stand for two specific values ofM∗, but to avoid
cumbersome notation, the ∗ index is dropped in Mmin.

16) Show that bmin ∝ tΩ. What is the exponent Ω ?

17) Knowing bmin, compute the value of exponent δ′.
Hint : For all calculations of this type, it is convenient to work with F(M), keeping in mind
the vanishing of the first and second derivatives : F ′(Mmin) = 0 and F ′′(Mmin) = 0, where
m(T, ibmin) = iMmin. Then, introducing δM∗ =M∗ −Mmin and δb = b− bmin is useful.

18) From Eq. (6), how should one proceed to compute the correlation function Γ(r), from which expo-
nents ν ′ and η′ follow ? No calculation asked, just a roadmap and a functional.

19) Show the correlation function to be given by

Γ(r) ∝
∫
dq

e−iq·r

ξ−2 + q2
(7)

where ξ−2 ∝ −t+ 3a4M∗2. Relate ξ−2 to δM. What is the value of exponent ν ′ appearing in Eq.
(3) ?

20) Show that for b→ bmin, δFmf = F(M∗)−F(Mmin) behaves like some power law of δb = b− bmin.

21) In view of computing the upper critical dimension du, we estimate the fluctuation-induced correction
to the mean-field prediction δFmf, as being proportional to ξ−d, in terms of scaling with respect to
δb. Why ? (subsidiary) How could one perform a calculation of the free energy “beyond the saddle
point” ?

22) Using the results of the two previous questions, compute the upper critical dimension. Is your result
compatible with the data in Fig. 5 ?
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The one dimensional case
The edge singularity occurs in d = 1 as well, where its study, together with its mean-field counterpart,
provides “bounds” for intermediate dimensions. We therefore address the regular 1d lattice where each
of the N spins has two neighbors, with periodic boundary conditions (SN+1 = S1).

23) Briefly explain why the partition function can be put in the form ZN (T, h) = λN+ + λN− with

λ± = eK chβB ±
√
e2K sh(βB)2 + e−2K (8)

24) Noting that λ+ and λ− do not vanish, prove the zeros of ZN to be imaginary magnetic fields. It can
be used that if |a− b| = |a+ b| where a and b are complex numbers, then ab is purely imaginary (b
being the complex conjugate of b). Prove that

sin(βbmin) = e−2K , (9)

which leads to the vanishing of the square root in Eq. (8).

25) By a technique akin to that leading to ZN through (8), it can be shown that the correlation length
is given by exp (−1/ξ) = λ−/λ+. From this, compute exponent ν ′.

Figure 6 – Location of LY zeros, for a magnetic model where 62 spin variables no longer take two values
as within spin 1/2 Ising, but three (this is the so-called three-state Potts model). The different symbols
correspond to different temperatures. The discs, triangles up, squares, diamonds and triangles down are
for x = 2xc, xc, 2xc/3, xc/2 and xc/4 respectively, where x = eβJ and the subscript c denotes the critical
value. From Kim and Creswick, Phys. Rev. Lett. 81, 2000 (1998).

26) Going beyond Ising modelology, what do you conclude from Fig. 6 ?

Epilogue. Our zheroes got the Nobel prize in 1957, a couple of years after this work, but this was for
another achievement (parity violation in particle physics). Recently, imaginary magnetic fields have been
produced in the real world, which allowed to study Lee-Yang phenomenology in the lab, hitherto viewed
as unphysical [Peng et al. Phys. Rev. Lett. 114, 010601 (2015)].
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