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Lee and Yang zeros - short correction

1) With ferromagnetic interactions, J > 0, and spins tend to align to minimize energy.

2) The partition function is a sum of exponentials, and therefore strictly positive. It cannot vanish
when B is a real magnetic field.

3) With Hamiltonian H = −J S1S2 −B(S1 + S2), we sum over the 4 configurations to get,

a) with K = βJ ,

Z2(T,B) = eKe2βB + 2e−K + eK−2βB

b) exp(−2βB)Z2 = eK + 2e−K z + eK z2

c) The two zeros of Z2 are complex conjugate :

z± = −e−2K ± i
√
1− e−4K . (1)

We have z+z− = 1, as already visible on the polynomial itself (the coefficients of z0 and z2 terms
are equal), and the two zeros are on the unit circle (|z+| = |z−| = 1)

4) With N fixed and finite, we see that all zeros are on the unit circle, but there can be no zero strictly
on the real axis, which is the physical line associated to real magnetic fields. Thus, the partition
function is analytic on the whole real axis, which is incompatible with a phase transition.

5) A phase transition point has to lie in the vicinity of a zero, and the only possibility for having a
transition is when the real axis is pinched by the set of zeros, when N → ∞. This can solely occur
at z = 1, meaning that a phase transition can take place at B = 0 only .

6) For all situations indicated with an arrow on the graphs, the non-closing gap “protects” the real

axis : no pinching of the real axis =⇒ no phase transition .

7) We know that Ising model exhibits a finite-temperature transition in d = 2, but not in d = 1.

a) Hence, panel A1 is for 1d and panel A2 is for 2d .

b) In panel A2, the pinching occurs for 0.4 < K < 0.6, i.e. 2/5 < K < 3/5. The critical K is thus

in this range. In terms of temperature, this means 1.66 < kTc/J < 2.5

c) Mean-field discards fluctuations, that have the tendency to destroy order. Hence, there is a
temperature range where mean-field predicts order, while fluctuations have already washed it
out, so that

T true
c < Tmf

c

d) Within mean-field, we get kTmf
c = qJ where q is the number of neighbors of a given spin. Here,

q = 4 and the mean-field critical temperature is larger than the true one. Its exact value was
found by Onsager to be kTc/J = 2/ log(1 +

√
2) ≃ 2.27. The true critical K is close to 0.44.

8) The argument was seen in class. . . We consider an infinite system with B 6= 0 (and real). In the
vicinity of the critical point, we assume a scaling relation between ξ, its value for B = 0 (i.e. |t|−ν

where t = T − Tc), B and the relevant scale for B, that reads mδ. Remembering that m ∝ tβ, we
arrive at

ξ

|t|−ν
= ψ

(
B

tβδ

)
(2)
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where ψ is some unknown scaling function. At the expense of introducing another such function ψ̃,
we can thus also write

ξ = B−ν/(βδ) ψ̃

(
B

tβδ

)
. (3)

At Tc but B 6= 0, ξ is expected to remain finite, which means that ψ̃(∞) is finite. This in turn
implies

ξ ∝ B−ν/(βδ) at T = Tc . (4)

9) In our case, we seek for a scaling relation between ξ(b = 0), L, bmin and its relevant measure tβδ.
We can thus essentially repeat the above argument :

L

|t|−ν
= ψ

(
bmin

tβδ

)
=⇒ L = b

−ν/(βδ)
min ψ̃

(
bmin

tβδ

)
and bmin ∝ L−βδ/ν (5)

where the last relation is found at t = 0. The exact values of the critical exponents yield βδ/ν =
15/8 = 1.875. This is compatible with the results of Figure 3...

10) . . . yet, one may argue that a power law with exponent -2 would be equally convincing. The goal of
Fig. 4 is to help discriminating the two behaviors. Figure 4 shows on the right hand side a rather
nice straight line at small 1/L, which may indicate a relation like

bmin ∝ L−1.875

(
a− b

L

)
(6)

where a and b are positive constants. There is a sort of “outlier” point at 1/L = 0.25, that could not
be spotted as such in Fig. 3. This indicates that the kind of plot provided on Fig. 4-left is a rather
stringent test, magnifying numerical inaccuracies. On the other hand, the right hand side figure
does not say much except that the power law -2 might be associated with a sub-leading correction
that would differ from 1/L. Anyway, it turns out that exponent 1.875 is the correct one, and it is
well compatible with the data reported.

Note here the surprising fact that with small systems, having 3 6 L 6 10, we already have a decent
idea of thermodynamic limit behavior (even restricting to 3 6 L 6 5).

11) The critical exponents reported have the same value for d = 6 and d = 7, which hints at du = 6 .
On the other hand, the “standard” ferromagnetic upper critical dimension is 4.

12) The data shown indicate that bmin decreases with K, and vanishes for K > Kc : bmin = 0 for T < Tc
and increases with T for T > Tc.

13) For B = 0, symmetry m→ −m. . . , a4 > 0, seen in class.

14) The condition F ′(M) = 0 reads

b − tM∗ + a4M∗3 = 0 . (7)

15) The relation b(M∗) is sketched in Figure C1. Note that b and M∗ tend to “anti align” at large |b|,
a consequence of having the field and the magnetization both complex (i2 = −1).

It makes sense that the system’s response is singular for the field where ∂M∗/∂b diverges. This
admits a simpler formulation : in addition to F ′(M) = 0 that sets M∗, bmin corresponds to
F ′′(M) = 0. Thus, introducing Mmin as in Fig. C1

F ′′(Mmin) = 0 =⇒ M2
min =

t

3 a4
. (8)

16) Going back to Eq. (7), this gives

bmin = tMmin − a4M 3
min =⇒ bmin ∝ t 3/2 (9)

2



-3 -2 -1 0 1 2 3
-6

-4

-2

0

2

4

6

b

b
min

- b
min

M∗

Mmin−Mmin

Figure C1 – Dependence of b with M∗ as encoded in Eq. (7), and graphical meaning of bmin.

17) We are looking for the relation between δM∗ = M∗−Mmin and δb = b− bmin. To this end, we can
Taylor expand F ′(M∗) = 0 in the vicinity of Mmin :

0 = δb + F ′(Mmin) + F ′′(Mmin) δM∗ +
1

2
F ′′′(Mmin) δM∗2 = δb+ 3 a4Mmin δM∗2. (10)

This is indeed the parabolic behavior expected in the vicinity of the point (Mmin, bmin) (with proper

signs, see Fig. C1). We conclude that δM∗ ∝ δb 1/2 , or δ′ = 2 .

18) Proceed as in class, upgrading Landau free energy into a Ginzburg-Landau functional

F{M} =

∫
dr

[
− t

2
M2(r) +

a4
4

M4(r) + bM(r) + λ(∇M)2
]

(11)

where λ is a positive rigidity term.

19) Same story. Consider b to be position dependent as well ; the correlation function is then Γ(r, r′) =
δM(r)/δb(r′) where

0 = b(r) − tM(r) + a4M3(r) − λ∇2M. (12)

We get
0 = δ(r− r′) + (−t+ 3a4M∗2 − λ∇2)Γ(r− r′), (13)

that has been written for a homogeneous system where M is no longer position dependent, and has
value M∗. This is familiar looking, and can be solved by Fourier transform to yield the formula of
the text.

We have ξ−2 = (−t+3a4M∗2)/λ. This can be computed explicitly, introducing M∗ = Mmin+δM∗

but it is more convenient to note that ξ−2 is proportional to F ′′(M∗), and therefore of order δM∗ :
F ′′(M∗) = F ′′(Mmin) + (...)δM∗ ∝ δM∗. Hence,

ξ−2 ∝ δM∗ =⇒ ξ ∝ (δM∗)−1/2 =⇒ ξ ∝ (δb)−1/4 and ν ′ =
1

4
. (14)

This indeed is what can be read in Fig. 5 of the main text. The correlation length diverges when
b→ bmin.

20) Another Taylor expansion in the vicinity of Mmin yields

δFmf = F(M∗)−F(Mmin) = 0 + 0 +
1

6
F ′′′(Mmin)(δM∗)3 ∝ (δM∗)3

∝ (δb)3/2, (15)

making use of δM∗ ∝ δb 1/2.
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21) The scaling argument seen in class applies, allowing to write the fluctuation-induced correction
Ffluct as kTV/ξd where V is the volume of the system, and plays no role here. Alternatively, one
can proceed more technically, and compute explicitly the fluctuation correction to the saddle point.
It takes the form

kT

2
V

∫
dq

(2π)d
log

(
ξ−2 + λq2

)
, (16)

leading again to the ξ−d dependence on δb.

22) Given that ξ ∝ (δb)−1/4, we can see when the fluctuation correction indeed is a correction :

Ffluct ≪ δFmf ⇐⇒ ξ−d ≪ (δb)3/2 ⇐⇒ (δb)d/4 ≪ (δb)3/2 ⇐⇒ d > 6 (17)

We recover du = 6 . All this is compatible with Fig. 5 : mean-field is trustworthy for d > 6.

23) Done in class. Define the transfer matrix T

T =

(
eK+βB e−K+βB

e−K−βB eK−βB

)
or T =

(
eK+βB e−K

e−K eK−βB

)
(18)

or yet another equivalent choice (there are infinitely many, all having the same trace and determi-
nant, and thus the same eigenvalues in the present 2× 2 case). The partition function follows

ZN = Tr [TN ] = λN+ + λN− . (19)

24) When does ZN vanish ?

ZN = 0 =⇒ 1 +

(
λ−
λ+

)N

= 0 =⇒
∣∣∣∣
λ−
λ+

∣∣∣∣ = 1 (20)

Without finding explicitly the zeros, we can see that the latter relation forces B to be imaginary.
Indeed,

λ−
λ+

=
eK chβB −

√
e2K sh2(βB) + e−2K

eK chβB +
√
e2K sh2(βB)2 + e−2K

(21)

and we make use of the |a+ b| = |a− b| =⇒ ab ∈ iR property 1, to write that

ch2(βB)
[
e4K sh2(βB) + 1

]
6 0. (22)

Since ch2 = 1 + sh2, it follows that sh2(βB) = sh2(βB). The inequality (22) is polynomial in sh2 ;
the expression on the left hand side is negative when sh2 lies between the two roots -1 and −e−4K .
From sh(ib) = i sin(b), it follows that B is purely imaginary. Thus, z = e−2βB lies on the unit circle.

Next, having a LY zero requires B = ib with e−2K < sin(βb) < 1. The smallest value of b admissible
is bmin with

sin(βbmin) = e−2K . (23)

It might be objected that we have proceeded through necessary conditions, so that we only get
a lower bound for bmin. This is a fair point. The complete calculation of all zeros nevertheless
corroborates our finding.

25) We expand λ−/λ+ in powers of δb = b− bmin in the vicinity of bmin. For b = bmin, the square root
term in λ± vanishes, meaning that

√
... = O(δb)1/2. Thus, λ−/λ+− 1 = O(δb)1/2 meaning that ξ−1

is of order (δb)1/2, and finally that ν ′ = 1/2 .

26) At each temperature, a circle remains, but it is no longer of unit radius. Ising model thus appears
as somewhat specific with respect to LY zeros. Pinching of the real axis at the critical temperature
is also visible. This has to happen, but teaches us that phase transitions, again, are only possible
at zero field for the Potts model under study.

1. in other words, a equals ib times a real number ; this simply means that going from complex numbers to vectors, ~a

and ~b have to be perpendicular ; a and b define the hypotenuse of a right triangle having right angle at the origin.
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