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Circling again with Lee and Yang

Should be written on a separate paper. It will be graded over 10 points.
One can often proceed with a given question without having answered the previous ones.

La rédaction pourra se faire en français pour ceux qui le souhaitent.

Previously, in the statistical mechanics course. . .
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we presented the perspective brought by T.D. Lee and C.N.
Yang on Ising model phase transition. They studied the beha-
viour of the partition function Z as a function of a complex
external magnetic field B, and realized that the distribution
of its zeros does reveal original information about the phase
transition in the canonical ensemble. More precisely, Lee and
Yang showed that the partition function ZN for an arbitrary
ferromagnetic Ising model with N spins, vanishes for N values
of z = exp(−2βB), that all lie on the unit circle. These zeros
can be degenerate. The theorem holds on any lattice, any space
dimension d, and is not restricted to nearest neighbor interac-
tions. It implies that the zeros of ZN , in the variable B, are
purely imaginary quantities, and we shall thus introduce their imaginary part b such that B = i b. An
interesting feature of Lee and Yang’s idea (LY) is that it allows to extend the notion of phase transition
and of criticality for temperatures T exceeding the critical one (Tc).

In the following, we are interested again in the spin 1/2 Ising model with ferromagnetic nearest
neighbor interactions, on some d-dimensional lattice. The Hamiltonian reads

H = −J
∑

〈j,k〉

Sj Sk −B
N∑

j=1

Sj , (1)

where the summation with brackets runs over pairs of nearest neighbors, and there are N distinct spins
Sj , each taking two possible values Sj = ±1.

1) We start with an explicit check of LY result. Consider a system of N = 3 spins (and periodic
boundary conditions), with Hamiltonian H = −J (S1S2 + S2S3 + S3S1) −B(S1 + S2 + S3).

a) Introducing the inverse temperature β = 1/(kT ), write the partition function Z3(T,B).

b) Show that exp(−3βB)Z3 is a polynomial of degree three in z = exp(−2βB).

c) Z3 admits a simple root ; which one ? Keeping in mind that the two other roots have to be
complex conjugate, conclude that the values of z = exp(−2βB) for the three roots are on the
unit circle (centered at the origin, and having radius 1).

2) The partition function ZN (T,B) exhibits terms of various power in z. What are the smallest, and
largest powers ? What is therefore the interest of considering, as in the following, the quantity
PN (z) = ZN exp(−NβB) ? Pay attention to the fact that z is defined as exp(−2βB), and not as
exp(−βB).

3) We denote as zj = exp(−2βibj) the zeros of PN (z). Up to a function that does not depend on B,
write PN as a function of z and the {zj}16j6N . No heavy calculation asked.

4) From PN and its relation with ZN , compute the magnetization per spin m(T,B).
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5) In the thermodynamic limit N → ∞, we introduce the density of zeros, in the b-variable, as ρ(b).

This function is normalized to unity :
∫ π/2
−π/2 ρ db = 1. Show that

m(T,B) =

∫
ρ(b)

tanh[β(B − ib)]
db (2)

- π / 2 0 - π / 2b

0

0.2

0.4

0.6

0.8

ρ(
b

)

Figure 1 – Plot of ρ(b).

The “angular” variable b is in [−π/2, π/2] ; an important
feature is that there may exist a gap in the distribution ρ(b),
for b ∈ [−bmin, bmin], see an illustration in Fig. 1 for K =
1, d = 1, where the arrows indicate the values ±bmin (the
edges). For T < Tc, the gap closes and bmin = 0. For T > Tc,
bmin increases with T .

LY edge singularity : scaling relations
Our interest goes for a while to the behavior of the system for b close to the “edge” bmin. For B = i bmin

and at any T > Tc, it can be shown that the magnetic response is singular, associated to a new set
of critical indices. This is the so-called LY edge singularity. In particular for B → ibmin, the (complex)
magnetization behaves like

δm = m(T,B)−m(T, ibmin) ∝ (B − i bmin)
1/δ′ (3)

and the correlation length, defined from the spin-spin correlation function, diverges like

ξ(T,B) ∝ |B − i bmin|
−ν′ . (4)

On the other hand, for |b| → b+
min

the density ρ(b) behaves like

ρ(b) ∝ (b− bmin)
σ, (5)

while it vanishes for |b| < bmin. At the “critical point” (meaning B = i bmin and T > Tc), the large-distance
correlation function reads

Γ(r) ∝
1

rd−2+η′
. (6)

The exponents δ′, ν ′, η′ do not depend on the details of the lattice, but they do depend on space dimension
d. They could a priori depend also on T , but it turns out that they do not ; their values are given in
Figure 2. Whenever legitimate, we assume the system to be spatially homogeneous.

6) Invoking the fluctuation-response connection between the susceptibility χ and
∫
Γ(r) dr, show that

1−
a1
δ′

= ν ′(2− η′) (7)

where a1 is a constant to be given. To begin with, one may work out the dependence of χ on
B − i bmin.

7) We assume that the fluctuations of the intensive order parameter over a coherence volume (of
measure ξd where d is space dimension), are of the same order of magnitude as its mean value

δm = m(T,B)−m(T, ibmin). (8)
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Figure 2 – Dependence of critical exponents η′ (diamonds) and δ′ (stars) on space dimension.

Show then that
1

δ′
=

ν ′

a2

(
d− 2 + η′

)
(9)

where a2 is a constant to be given. Can such a relation hold in all space dimensions ?

8) (can be skipped, keeping the main result in mind) The goal of this question is to show that σ = 1/δ′.
To this end, we consider B to be imaginary (B = ĩb), with |̃b| < bmin. Making use of relation
(2) to compute m(T, ĩb) − m(T, ibmin), and changing variables from b to x = (b − bmin)/δb where
δb = bmin − b̃, one can proceed expanding 1/ tanh(α) into 1/α + O(α) for small α, and conclude.
Here, we do not pay specific attention to the values of σ that make the integrals convergent.

9) From the previous questions, prove that

σ =
1

δ′
=

d− 2 + η′

d+ 2− η′
and ν ′ =

2

d+ 2− η′
. (10)

Are these results compatible with the data reported in Fig. 2 ?

In the remainder, we will perform a mean-field treatment yielding the critical exponents, before studying
the one-dimensional case. We will finally establish that the spontaneous magnetization of the system, for
T < Tc, is nothing but ρ(0) up to a prefactor.

Mean-field analysis
We denote c the number of nearest neighbors of a given site on the lattice. We perform here a mean-field
treatment.

10) Write the magnetization is a self-consistent fashion, as m = tanh(. . .). What is the critical tempe-
rature Tc of the paramagnetic/ferromagnetic transition taking place at B = 0 ?

11) Show that the susceptibility can be written

χ =
. . .

1− βJ c (1−m2)
. (11)

12) The above expressions for m and χ remain valid for complex fields B, and in particular at the edge.
Explain why one has

1−m(T, ibmin)
2 =

T

Tc
. (12)

Making use of tanh(x) = x− x3/3 +O(x5), find how bmin depends on t = T − Tc, for small t.
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13) Compute δ′.

14) Are we working here at T < Tc or T > Tc ?

15) How should one proceed to get the (mean-field) correlation function Γ (including its short scale
features, which precludes a Landau-like approach) ? Which value of ν ′ would ensue ? No calculation
asked.

The one dimensional case
For a one-dimensional regular lattice, standard techniques allow for the full solution of the problem.

16) Briefly sketch the ideas behind one such technique.

17) Having computed exactly the zeros of ZN , one can establish that their density reads

ρ(b) =
1

π kT

| sin(βb)|√
sin2(βb)− e−4K

. (13)

What is then the expression for bmin ? Can it vanish ? Why ?

18) From Eq. (13), what is the value of σ ?

19) We define ∆b as the spacing between consecutive zeros ; this quantity is b-dependent, and computed
at finite but large N . How does ρ(b) relate to ∆b ? A scaling argument only is required here.

20) How can one recover the value of σ from Fig. 3 ?
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Figure 3 – Spacing between consecutive zeros (N = 2000, K = 0.6, d = 1). The line is a guide to the eye.

Back to reality
For T < Tc, the density of complex zeros, ρ(b), encodes an interesting information for real magnetic fields
B : the spontaneous magnetization ms(T ), chosen to be positive.

21) Why should one pay attention when taking the limit B → 0, to obtain ms(T ) ?

22) Show that for T < Tc,
ms(T ) = π kT ρ(0). (14)

To this end, invoking the parity of ρ(b), we write Eq. (2) as

m(T,B) =

∫ π/2

0

ρ(b)

{
1

tanh[β(B − ib)]
+

1

tanh[β(B + ib)]

}
db. (15)

For B → 0 (and real), explain first why the integral is dominated by small b contributions, and
compute ms(T ). It is useful here to use that

∫ ∞

0

1

1 + x2
dx =

π

2
. (16)
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