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Circling again with Lee and Yang - short correction

1) There are 8 microscopic states, with energies —3J — 3B (all spins aligned with B), J — B (1 spin
anti-aligned with B, 3-fold degenerate), J + B (also 3-fold), and 3J + 3B.

? Z3(T,B) = 3K+3BB | 3 ,—K+BB | 3 ,~K-fB | 3K-38B
b)
exp(—38B) Z3(T, B) = K + 3¢ K-28B 4 5, ~K-46B | 3K-64B
— [exp(=368B) Z5(T, B) = & + 3¢ 2 4 307K 22 4 ML 1)
c) There is one obvious root, z; = —1. The polynomial has real coefficients, and the two other roots,

zo and z3 have to be complex conjugate. The product of the three roots is —1, so that 2923 = 1.
Hence |21]? = |22/ = |23]? = 1 and the three roots are on the unit circle.

2) Since , the smallest power corresponds to all spins aligned with B, with a contribu-
tion in exp(NBB) = 2~ N/2. Likewise, the largest power is exp(—NSBB) = zV/2. Hence Py(z) =
Zy exp(=NpBB) = 2N/?Zy is a polynomial of degree N in z.

3) Up to an unknown function of u(T"), Py reads

N
Hz—z] = u(T H 72161) (2)
7j=1 7j=1
4) We have
N .
Zy = NPT T] (e — 20 3)
j=1
from which the magnetization follows as
1 dlog Z —2¢ 288 22 & 1
m(T.B) = N 08B * NZ1 e=26B _ ¢=2ifb; L= N « 2 — e~ 2ib;
Jj= Jj=
B 1 K ¢ 26B 4 —2iBb; ! N o—BB+ib; 4 BB—ifb; A
- N ]Z:; e—28B _ ¢—2ifb; — N ; —e—BB+iBb; | BB—ifb; (4)
5) Taking the large N limit, we get
T.8) = [ o0) oz @ o)
m =
’ PO anh[B(B — ib)]

6) The fluctuation-response connection states that x kT = 3, T'(ry —1r;) = N [I'(r)dr in a homo-

geneous system. The compressibility behaves like §BY/9' =1 where B = B — i bmin, and we have to
pay more attention for the scaling of [ I'. While it is wrong to write that the asymptotic behaviour
of ' is given by exp(—r/€)/r? 2t we can nevertheless state that

I(r) ~ §d—12+n' F <g> for r — oo (6)
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where F' is some scaling function, decaying exponentially fast to zero at infinity. Hence,

[rerie= [ s r (5) G ox €7 x B g =] ()

7) We are interested in the magnetization M inside a coherence volume C, say a ball of radius £. For
the sake of counting the corresponding number of spins, we introduce the lattice spacing a, and
write

d
M= okeeSh %d 3 St (8)

- spins in C
# p keC

The statement is that scaling-wise, (M?) — (M)? x (6m)? o« (6B)¥? and we are left with finding
the behaviour of the left hand side. This is possible with the help of I'. We start from

T = (SkS1) — (Sk) (S1) = (SkSi) — (S)? (9)
) a2d q2d
and (M —(M))*) = 2 > Sk (NS —(9)) ) = e > T (10)
klec klec
which yields, remembering the analysis of the previous question for the last relation :
d
(M= (M))?) Z—d /F(T) dr oc £4e2 . (11)
C
Finally
1 v

Unlike the previous scaling relation, this one only holds below the upper critical dimension. When
mean-field exponents become exact, the fluctuations are dominated :

(M) — (M)? < (6m)>. (13)

8) From

~ . B 1 - 1
(T i) = m(T: ibmin) = / o(0) {tanh[/a(z%—z'b)] tanh (B (ibmin —ib)]} b, (14)

we perform the suggested expansion :

~ 1 1 bunin — b
m(T,1b) —m(T, ibmin) ~ kT/ b { = — - - } db ~ —ikT/ b) — db
( ) ( ) /0( ) ib —ib 1bmin — b P( ) (b — b)(bmin — b)

We anticipate that édm > byin —E, i.e. 0 < 1, and we are interesteg in the singular behaviour, ruled
by the vicinity of byin. With = (b — byin)/0b where db = byyin — b > 0, and p(b) (b — byin)?, the

integral ! becomes

m(T,ib) — m(T, ibpin) ~ —ikT x6b)° —

(T, ) = m(T, thmin) o O ST 1) (aob)

1. the integral is convergent for o > 0. Yet, in d = 1 and d = 2, o takes values -1/2 and -1/6 respectively. We would

have to work a bit more to take due account of these cases. Note that the integral with the tanh, defining m(7, ibmin) also
diverges for o < 0.

5bdr o (5b)° = 5’:%. (15)
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Gathering results :

, 2

1 d—2+17
= V=——|
d+2 -7

g = —= —_— and

= 1
o’ d+2—1n (16)

This is indeed compatible with the Figure. For instance, we read for d = 1 that ' ~ —1, §' ~ —2,

which fulfil the scaling relation above. Same remark for d = 6 (the upper critical dimension), where
/ !

n ~0, 0 ~2.

The standard mean-field argument seen in class applies :

im = tanh[8 (B +cJm)]| and  [kT. = cJ], (17)

Differentiating Eq. (17) with respect to B :

1 —m?
dm = (1 —tanh?) [3 (dB d kT = : 1
At the edge, the susceptibility diverges, so that
2 . 2 T
BJc(l—m*)=1 = 1—m(T,ibpin)° = T | (19)

Let t = (T — T.)/T. > 0. We have m(T, ibmin)? = —t, i.e. m(T,ibmin) = iv/—t. We then use (17),

assuming by, small,

3
1
m ~ B (ibpin + cJm) — % (ibmin + cJm)? ~ B (ibmin + cJm) — g(ﬁch)?’ (20)
, 1(T.\* . T.\ 1 2
= [Bibmin ~ m(1 — fcJ) + 3 <T> m° ~m (1 - T) - gmt ~ gmt (21)

Hence, | bmin 32| for small ¢ > 0.

To obtain ¢, computing first order variations like in Eq. (18) is not sufficient (since the susceptibility
diverges at B = iby;y). This divergence of y is indicative of the fact the variations of m and B no
longer are of the same order, but such that § B becomes infinitesimally smaller than §m. This hint
will be useful below. We thus Taylor expand the equation of state (17) one order higher, to get

om = (1 —tanh?)§ (8B + BeJm) + %(—2)(tanh)(1 — tanh?) [0 (BB + ﬁch)]2 (22)

Keeping (19) in mind, B < dm, and simplifying by 1 — tanh? = 1 — m?, we arrive at

B6B ~ m[5 (BeIm)? =  [§=2] (23)

It is noteworthy that this is indeed what the graph provided in the text is telling us, for d > 6 (6
being the upper critical dimension).

The approach makes sense for T" > T,.
We would need to account for a space-dependent magnetic field B; and start from

my = tanh |SBy + JZ Cly My
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16)
17)

18)
19)

20)
21)

22)

where cjy is the adjacency matrix, such that ¢, = 1 if sites j and £ are nearest neighbors. Its Fourier
transform

i) = D ejeetctir (25)
¢

is independent from j due to translational invariance, and defined for the discrete k-vectors com-

patible with the periodicity of the lattice. The correlation function follows from
O*F _ Omy,

0B, 0B, 0B’

a facet of the fluctuation-response connection. For technical reasons, it is more convenient to com-

pute %’ which yields the inverse matrix element I‘,:ZI. From (24) :

e < — (26)

0By, _ 1
where after having taken the derivative, we have restricted to a homogeneous system with order

parameter m. Hence, in Fourier-space :
1 1
= = — BJ ek). 28
= T (k) (28)

To get the large distance behaviour of I', we expand ¢(k) = ¢(1 — k?a?) + O(k*), where a is some

microscopic length, and we finally arrive at
1 kT
x m —Jc x

T'(k —T
(k) 1—m?2 1—m?2 ©

with €2

(29)

a quantity that vanishes when m = m(T, by, ). The exponent v/ is defined as £ o< (6B)™ " and we
thus use m? — m?(7T, ibyin) o 0m o (6B)'/2 to conclude that €2 o (6B)'/2. Hence, [v/ = 1/4)|.

The transfer matrix technique does the job, see the course.

The formula tells us that ’sin(ﬁbmin) = exp(—2K) ‘ bmin cannot vanish (unless K — oo < T — 0),
and we recover that there is no phase transition in one dimension, with short range interactions.

In the vicinity of the edge : p(b) o 1/4/b — byin, meaning that .

We have by definition one zero in each interval of length Ab : | p(b) o< 1/Ab|.
The slope in the graph is 2/4 = 1/2. Thus, Ab o (b — byin)'/? and we recover o = —1/2.

One should approach the limit either from above, or from below :

Bli—>rf)1+ m(T,B) = ms(T) = _Bh_%l, m(T, B) (30)
From
/2 1 1
m(T, B) = /0 P(b) {tanh[ﬁ(B—ib)] + tanh[,B(B—i—ib)]} b, (31)

we see that for B — 0, tanh being an odd function, the integral is dominated by the vicinity of b = 0.
It is then legitimate to Taylor expand the two tanh to leading order in their (small) arguments :

7T/2 1 1 71'/2 1
m(T, B) N/o o(b) {5(3-%) + ﬂ(BH_b)} db ~ kTZB/O o) gy . (32)

At this point, we recover that the sign of B is essential. Indeed, we take z =b/B :

~/(2B)
m(T, B) ~ 2kT/ ffx;
0 X

m/(2B)  q
dx ~ 2kT p(0) / ﬁdx ~ kT p(0)sign(B)mr  (33)
0 t+z

so that

(ms(T) = 7kT p(0) | (34)




