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Circling again with Lee and Yang - short correction

1) There are 8 microscopic states, with energies −3J − 3B (all spins aligned with B), J − B (1 spin
anti-aligned with B, 3-fold degenerate), J +B (also 3-fold), and 3J + 3B.

a)
Z3(T,B) = e3K+3βB + 3 e−K+βB + 3 e−K−βB + e3K−3βB

b)

exp(−3βB)Z3(T,B) = e3K + 3 e−K−2βB + 3 e−K−4βB + e3K−6βB

=⇒ exp(−3βB)Z3(T,B) = e3K + 3 e−K z + 3 e−K z2 + e3Kz3 (1)

c) There is one obvious root, z1 = −1. The polynomial has real coefficients, and the two other roots,
z2 and z3 have to be complex conjugate. The product of the three roots is −1, so that z2z3 = 1.
Hence |z1|2 = |z2|2 = |z3|2 = 1 and the three roots are on the unit circle.

2) Since z = e−2βB , the smallest power corresponds to all spins aligned with B, with a contribu-
tion in exp(NβB) = z−N/2. Likewise, the largest power is exp(−NβB) = zN/2. Hence PN (z) =
ZN exp(−NβB) = zN/2ZN is a polynomial of degree N in z.

3) Up to an unknown function of u(T ), PN reads

PN (z) = u(T )

N∏

j=1

(z − zj) = u(T )

N∏

j=1

(z − e−2iβbj ) . (2)

4) We have

ZN = eNβB u(T )

N∏

j=1

(e−2βB − e−2iβbj ) (3)

from which the magnetization follows as

m(T,B) =
1

N

∂ logZ

∂βB
= 1 +

1

N

N∑

j=1

−2 e−2βB

e−2βB − e−2iβbj
= 1− 2 z

N

N∑

j=1

1

z − e−2iβbj

= − 1

N

N∑

j=1

e−2βB + e−2iβbj

e−2βB − e−2iβbj
=

1

N

N∑

j=1

e−βB+iβbj + eβB−iβbj

−e−βB+iβbj + eβB−iβbj
(4)

5) Taking the large N limit, we get

m(T,B) =

∫
ρ(b)

1

tanh[β(B − ib)]
db (5)

6) The fluctuation-response connection states that χkT =
∑

k,l Γ(rk − rl) = N
∫
Γ(r) dr in a homo-

geneous system. The compressibility behaves like δB1/δ′−1 where δB = B − i bmin, and we have to
pay more attention for the scaling of

∫
Γ. While it is wrong to write that the asymptotic behaviour

of Γ is given by exp(−r/ξ)/rd−2+η′ , we can nevertheless state that

Γ(r) ∼ 1

ξd−2+η′
F

(
r

ξ

)
for r → ∞ (6)
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where F is some scaling function, decaying exponentially fast to zero at infinity. Hence,

∫
Γ(r) dr =

∫
1

ξη′−2
F

(
r

ξ

)
dr

ξd
∝ ξ2−η′ ∝ δB−ν′(2−η′) =⇒ 1− 1

δ′
= ν ′(2− η′) (7)

7) We are interested in the magnetization M inside a coherence volume C, say a ball of radius ξ. For
the sake of counting the corresponding number of spins, we introduce the lattice spacing a, and
write

M =

∑
k∈C Sk

# spins in C =
ad

ξd

∑

k∈C

Sk. (8)

The statement is that scaling-wise,
〈
M2

〉
−〈M〉2 ∝ (δm)2 ∝ (δB)2/δ

′

and we are left with finding
the behaviour of the left hand side. This is possible with the help of Γ. We start from

Γkl ≡ 〈SkSl〉 − 〈Sk〉 〈Sl〉 = 〈SkSl〉 − 〈S〉2 (9)

and
〈
(M− 〈M〉)2

〉
=

a2d

ξ2d

〈
∑

k,l∈C

(Sk − 〈S〉)(Sl − 〈S〉)
〉

=
a2d

ξ2d

∑

k,l∈C

Γkl (10)

which yields, remembering the analysis of the previous question for the last relation :

〈
(M− 〈M〉)2

〉
∝ ad

ξd

∫

C

Γ(r) dr ∝ ξ−d ξ2−η′ . (11)

Finally

1

δ′
=

ν ′

2

(
d− 2 + η′

)
. (12)

Unlike the previous scaling relation, this one only holds below the upper critical dimension. When
mean-field exponents become exact, the fluctuations are dominated :

〈
M2

〉
− 〈M〉2 ≪ (δm)2. (13)

8) From

m(T, ĩb)−m(T, ibmin) =

∫
ρ(b)

{
1

tanh[β(ĩb− ib)]
− 1

tanh[β(ibmin − ib)]

}
db, (14)

we perform the suggested expansion :

m(T, ĩb)−m(T, ibmin) ∼ kT

∫
ρ(b)

{
1

ĩb− ib
− 1

ibmin − ib

}
db ∼ −ikT

∫
ρ(b)

bmin − b̃

(̃b− b)(bmin − b)
db

We anticipate that δm ≫ bmin− b̃, i.e. σ < 1, and we are interested in the singular behaviour, ruled
by the vicinity of bmin. With x = (b− bmin)/δb where δb = bmin − b̃ > 0, and ρ(b) ∝ (b− bmin)

σ, the
integral 1 becomes

m(T, ĩb)−m(T, ibmin) ∼ −ikT

∫ ...

0
(x δb)σ

δb

δb(x+ 1)(xδb)
δb dx ∝ (δb)σ ⇒ δ′ =

1

σ
. (15)

1. the integral is convergent for σ > 0. Yet, in d = 1 and d = 2, σ takes values -1/2 and -1/6 respectively. We would
have to work a bit more to take due account of these cases. Note that the integral with the tanh, defining m(T, ibmin) also
diverges for σ < 0.
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9) Gathering results :

σ =
1

δ′
=

d− 2 + η′

d+ 2− η′
and ν ′ =

2

d+ 2− η′
. (16)

This is indeed compatible with the Figure. For instance, we read for d = 1 that η′ ≃ −1, δ′ ≃ −2,
which fulfil the scaling relation above. Same remark for d = 6 (the upper critical dimension), where
η′ ≃ 0, δ′ ≃ 2.

10) The standard mean-field argument seen in class applies :

m = tanh [β (B + cJm)] and kTc = cJ . (17)

11) Differentiating Eq. (17) with respect to B :

dm = (1− tanh2) [β (dB + cJdm)] =⇒ χkT =
1−m2

1− βJ c (1−m2)
. (18)

12) At the edge, the susceptibility diverges, so that

βJ c (1−m2) = 1 =⇒ 1−m(T, ibmin)
2 =

T

Tc
. (19)

Let t = (T − Tc)/Tc > 0. We have m(T, ibmin)
2 = −t, i.e. m(T, ibmin) = i

√
−t. We then use (17),

assuming bmin small,

m ∼ β (ibmin + cJm)− β3

3
(ibmin + cJm)3 ∼ β (ibmin + cJm)− 1

3
(βcJm)3 (20)

=⇒ βibmin ∼ m(1− βcJ) +
1

3

(
Tc

T

)3

m3 ∼ m

(
1− Tc

T

)
− 1

3
mt ∼ 2

3
mt (21)

Hence, bmin ∝ t3/2 for small t > 0.

13) To obtain δ′, computing first order variations like in Eq. (18) is not sufficient (since the susceptibility
diverges at B = ibmin). This divergence of χ is indicative of the fact the variations of m and B no
longer are of the same order, but such that δB becomes infinitesimally smaller than δm. This hint
will be useful below. We thus Taylor expand the equation of state (17) one order higher, to get

δm = (1− tanh2) δ (βB + βcJm) +
1

2
(−2)(tanh)(1− tanh2) [δ (βB + βcJm)]2 (22)

Keeping (19) in mind, δB ≪ δm, and simplifying by 1− tanh2 = 1−m2, we arrive at

βδB ∼ m [δ (βcJm)]2 =⇒ δ′ = 2 . (23)

It is noteworthy that this is indeed what the graph provided in the text is telling us, for d > 6 (6
being the upper critical dimension).

14) The approach makes sense for T > Tc.

15) We would need to account for a space-dependent magnetic field Bj and start from

mk = tanh

[
βBk + J

∑

ℓ

ckℓmℓ

]
(24)
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where cjℓ is the adjacency matrix, such that cjℓ = 1 if sites j and ℓ are nearest neighbors. Its Fourier
transform

ĉ(k) =
∑

ℓ

cjℓ e
ik·(rj−rℓ) (25)

is independent from j due to translational invariance, and defined for the discrete k-vectors com-
patible with the periodicity of the lattice. The correlation function follows from

Γkℓ ∝ − ∂2F

∂Bk ∂Bℓ
=

∂mk

∂Bℓ
, (26)

a facet of the fluctuation-response connection. For technical reasons, it is more convenient to com-
pute ∂Bk

∂mℓ
, which yields the inverse matrix element Γ−1

kℓ . From (24) :

δkj = (1−m2
k)

[
β
∂Bk

∂mj
+ βJckj

]
⇒ Γ−1

kj ∝ 1

1−m2
δkj − βJckj , (27)

where after having taken the derivative, we have restricted to a homogeneous system with order
parameter m. Hence, in Fourier-space :

1

Γ̂(k)
=

1

1−m2
− βJ ĉ(k). (28)

To get the large distance behaviour of Γ, we expand ĉ(k) = c(1 − k2a2) +O(k4), where a is some
microscopic length, and we finally arrive at

Γ̂(k) ∝ 1

ξ−2 + k2
with ξ−2 ∝ kT

1−m2
− Jc ∝ T

1−m2
− Tc, (29)

a quantity that vanishes when m = m(T, ibmin). The exponent ν ′ is defined as ξ ∝ (δB)−ν′ and we

thus use m2 −m2(T, ibmin) ∝ δm ∝ (δB)1/2 to conclude that ξ−2 ∝ (δB)1/2. Hence, ν ′ = 1/4 .

16) The transfer matrix technique does the job, see the course.

17) The formula tells us that sin(βbmin) = exp(−2K) . bmin cannot vanish (unless K → ∞ ⇔ T → 0),

and we recover that there is no phase transition in one dimension, with short range interactions.

18) In the vicinity of the edge : ρ(b) ∝ 1/
√
b− bmin, meaning that σ = −1/2 .

19) We have by definition one zero in each interval of length ∆b : ρ(b) ∝ 1/∆b .

20) The slope in the graph is 2/4 = 1/2. Thus, ∆b ∝ (b− bmin)
1/2 and we recover σ = −1/2.

21) One should approach the limit either from above, or from below :

lim
B→0+

m(T,B) = ms(T ) = − lim
B→0−

m(T,B) (30)

22) From

m(T,B) =

∫ π/2

0
ρ(b)

{
1

tanh[β(B − ib)]
+

1

tanh[β(B + ib)]

}
db, (31)

we see that for B → 0, tanh being an odd function, the integral is dominated by the vicinity of b = 0.
It is then legitimate to Taylor expand the two tanh to leading order in their (small) arguments :

m(T,B) ∼
∫ π/2

0
ρ(b)

{
1

β(B − ib)
+

1

β(B + ib)

}
db ∼ kT 2B

∫ π/2

0
ρ(b)

1

B2 + b2
db. (32)

At this point, we recover that the sign of B is essential. Indeed, we take x = b/B :

m(T,B) ∼ 2kT

∫ π/(2B)

0

ρ(Bx)

1 + x2
dx ∼ 2kT ρ(0)

∫ π/(2B)

0

1

1 + x2
dx ∼ kT ρ(0) sign(B)π (33)

so that
ms(T ) = π kT ρ(0) . (34)
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