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The Potts model - correction

A. Warming up

1) When T is large, all q states are equally populated.

2) When all fields hµ = 0 (µ = 1, . . . q), all spins align to the same value ; the ground state is q-fold
degenerate.

3) If all fields hµ 6= 0, we have to find the largest, that will “pin” the system, and lead to a unique ground
state.

4) Here h1 > 0 while all other fields vanish. When h1 → 0, we have 〈x〉 → 1/q, while when h1 becomes
large, we will get 〈x〉 → 1. We therefore propose the order parameter

m =
q〈x〉 − 1

q − 1
. (1)

5) When q = 2, one can associate states σ(I) = +1 to σ = 1 and σ(I) = −1 to σ = 2. Making use of the
identities
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By identification :
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(5)

The square bracket in (4) is an immaterial constant.

6) For q = 2 we thus expect a second order phase transition.

B. The Curie-Weis approach, with a hint of Landau

7) With a d-dimensional hyper-cubic lattice, we have 2d neighbors for each spin (discarding possible edge
effects, that we can get rid of invoking periodic boundaries).

8) With J = 0, h2 = h3 = . . . = hq and h1 that may differ from the other fields, the mean fraction of
spins in state 1 reads

〈x〉 =
eβh1

eβh1 + (q − 1)eβh2
. (6)
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Figure 1 – The function m → ϕ(m) defined in (9). Here q = 3, with either K = 2 (“large” T , blue curve)
or K = 4 (“small” T , yellow curve). The first bissectrix is also shown (green line).

9) The molecular field felt by any tagged spin does not stem from an external field h1, h2 . . . but from
the presence of neighbors interacting with the tagged spin.

10) A spin of type 1 interacts only with like spins. There is a fraction x of such spins, so that the molecular
field is hm1 = 2dJx. The fraction of spins of type different from one is (1− x)/(q − 1). The molecular
field on say spins of type µ 6= 1 is thus hmµ = 2dJ(1− x)/(q − 1).

11) We now make use of relation (6) replacing h1 and h2 by the mean molecular fields :

〈x〉 =
exp[2dK〈x〉]

exp[2dK〈x〉] + (q − 1) exp [2dK(1− 〈x〉)/(q − 1)]
(7)

where K = βJ .

12) From 〈x〉, we compute

m =
q〈x〉 − 1

q − 1
(8)

which gives

m = ϕ(m) =
e2dKm − 1

e2dKm + q − 1
. (9)

Note that this also means

〈x〉 =
e2dKm

e2dKm + q − 1
. (10)

13) The function above is sketched in Fig. 1. The self-consistent order parameter is found by looking for
the intersection with the first bissectrix. We see that the system can either exhibit a spontaneous
magnetization (curve with K = 4), or none (curve with K = 2). Not surprisingly, order can be
sustained at small temperature, but not at large T .

14) We have

m =
T ∗

T
m + C2 (q − 2)m2 + C3m3 + O(m4), (11)

where kBT
∗ = 2dJ/q .

15) We start from
∂R(m)

∂m
= a2m + a3m

2 + a4m
3 + . . . (12)

which has to vanish at equilibrium in abscence of an external field. Thus, either m = 0, or

ã2 (T − T ∗) + a3m + a4m
2 = 0 (13)
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Back to Eq. (11), we linearize the term in T ∗/T close to T ∗ :

0 =
T − T ∗

T ∗
m − C2 (q − 2)m2 − C3m3 + O(m4). (14)

Comparing to Eq. (13), we get, up to a positive constant in all cases (since ã2 > 0

a3 = −C2(q − 2) and a4 = −C3. (15)

Hence, a3 is of the sign of 2− q.

16) Since the admissible values of m can only be positive,

the phase transition is second order for a3 > 0, i.e. q < 2 ; it is first order for q > 2 . (16)

17) The Ising model corresponds to q = 2 with a second order transition. This does not contradict our
analysis. It is even compatible : for q = 4, we have a standard m2/m4 Landau theory, of second order
type.

18) The Potts model with q → 1 is expected to exhibit a second order transition.

C. The one-dimensional setting : transfer matrix and renormalization

19) With

H(σ1, . . . , σN ) = −J
N∑

i=1

δσi,σi+1 (17)

the partition function is

Z =
∑

σ1,σ2,...σN

N∏

i=1

exp
(
βJδσi,σi+1

)
(18)

20) Introducing the q × q transfer matrix T such that

T(σi, σj) = exp
(
βJδσi,σj

)
(19)

we can write
Z = Tr(TN ) (20)

For the case q = 3, this gives :

T =




eβJ 1 1
1 eβJ 1
1 1 eβJ


 (21)

For q > 3, the structure is the same, with exponential terms on the diagonal, and 1 on every non-
diagonal entry.

21) T is a circulant matrix, and therefore simple to diagonalize. We follow a more direct route than the
Fourier transform method. It is seen that T admits the eigenvector |+〉 = t(1, 1, 1), with eigenvalue
t+ = eβJ + 2. The other eigenvalue is two-fold degenerate. Since we know the trace, we readily find
that its value is t− = eβJ − 1. The two associated eigenvectors, which have to be perpendicular to
|+〉 are t(1,−1/2,−1/2) and t(−1/2, 1,−1/2). Note that t− < t+. Another possibly more convenient
choice is to take these eigenvectors as t(0, 1,−1)/sqrt2 and t(0,−1, 1)/

√
2.

In the general case,

t+ = eβJ + q − 1 , t− = eβJ − 1 . (22)

22) The eigenvalues being know, the trace of TN follows :

Z = tN+ + 2 tN− =
(
eβJ + 2

)N
+ 2

(
eβJ − 1

)N
(23)
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23) In the thermodynamic limit, the free energy per spin is

βf = − log
(
eβJ + 2.

)
(24)

This expression is analytic in T ; there is no phase transition, which is expected (one dimensional
model with short range interactions).

24) The results generalize to arbitrary q :

t+ = eβJ + q − 1 , t− = eβJ − 1 , Z =
(
eβJ + q − 1

)N
+ (q − 1)

(
eβJ − 1

)N
. (25)

25) We integrate over every second spin, to get

Z(K,N, a) = AN ′

Z(K ′, N ′, b) with N ′ = N/2 and b = 2a. (26)

26) We start from ∑

σ′=1,...q

exp
(
Kδσ,σ′ +Kδσ′,σ′′

)
= A exp

(
K ′δσ,σ′′

)
(27)

and we distinguish the cases σ = σ′′ from σ 6= σ′′. They respectively lead to

e2K + q − 1 = AeK
′

; 2 eK + q − 2 = A, (28)

from which we get

eK
′

=
e2K + q − 1

2 eK + q − 2
. (29)

The only two fixed points are the trivial small temperature (“K = ∞”) and high temperature (K = 0)
fixed points. For K → ∞, we have eK

′ ∼ eK/2, and the corresponding fixed point is unstable. For
K → 0, we have K ′ ∼ K2/q and the corresponding fixed point is stable.

Note that resorting to the transfer matrix yields interesting information. The relation

∑

σ′=1,..., q

exp
(
Kδσ,σ′ +Kδσ′,σ′′

)
= A exp

(
K ′δσ,σ′′

)
(30)

can be viewed as a matrix equality :
(TK)2 = ATK′ , (31)

which translates into the following identity for eigenvalues

(
eK + q − 1

)2
= A

(
eK

′

+ q − 1
)

,
(
eK − 1

)2
= A

(
eK

′ − 1
)
. (32)

These relations directly inmply Eq. (35) below.

27) The “renormalization flow” diagram goes as follows :

K

0 ∞

To show that the two fixed points are trivial, we can prove that K ′ < K. Indeed

eK
′

< eK ⇐⇒ e2K + (q − 2)eK + 1− q > 0. (33)

The roots of X2 + (q− 2)X + 1− q are 1 and 1− q < 1. Thus, (33) means that eK > 1, which is true.
consequently, K ′ < K and there is no non-trivial fixed point.

28) There is no non-trivial fixed point ; no phase transition ; no surprise (see above).
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29) Since ξ(K) = ξ′(K ′), we have

ξ̃(K ′) =
1

2
ξ̃(K) (34)

30) We obtain

eK
′

+ q − 1

eK′ − 1
=

(
eK + q − 1

eK − 1

)2

. (35)

Therefore, log
[
(eK + q − 1)/(eK − 1)

]
transforms as 1/ξ, so that the only admissible connection bet-

ween both is

ξ̃ ∝ 1

log [1 + q/(eK − 1)]
. (36)

Interestingly, this can be rewritten in terms of the eigenvalues of the transfer matrix as ξ̃ ∝ 1/ log(t+/t−),
This is the very same structure as for Ising model.

D. Mean-field analysis - take 2

31) Due to the coupling with all neighbors, every spin is subject to the same (mean) field. The notion of
distance between spins becomes immaterial ; the nature and dimension of the underlying lattice are
irrelevant.

For a given configuration C = (σ1, . . . , σN ), we define xσ(C) = (
∑N

i=1 δσi,σ)/N as the fraction of
spins in state σ. By definition,

∑
σ xσ = 1. The energy of a configuration can be written as H(C) =

Ne(x1(C), . . . , xq(C)), with the function e(x1, . . . , xq) defined in the main text. Besides, the number of
configurations for which N1 = Nx1 spins are in state 1, N2 = Nx2 in state 2,..., Nq = Nxq in state q
is the multinomial factor

NN
x1,...,xq

=

(
N

N1, N2, . . . , Nq

)
=

N !

N1!N2! . . . Nq!
=

N !

(Nx1)!(Nx2)! . . . (Nxq)!
. (37)

Thus, the xσ are of the formNσ/N withNσ an integer ∈ [0, N ], and obey the constraint x1+· · ·+xq = 1.

32) From Stirling formula, we have

lim
N→∞

1

N
lnNN

x1,...,xq
= −

q∑

σ=1

xσ lnxσ . (38)

This is the expression of Shannon entropy for a random variable having q possible values, with proba-
bilities x1, . . . , xq. To leading exponential order, we can write

Z ∼
∑

x1,...,xq

exp
[
−Nβf̂(x1, . . . , xq, T )

]
, (39)

and evaluate this sum by Laplace method when N → ∞. In the minimization, the variables xσ are
real numbers between 0 and 1, with the constraint x1 + · · ·+ xq = 1.

33) We could have written directly the expression of the free energy following the Bragg-Williams route.

34) At high T , the free energy is entropy dominated, and its minimum is reached at the symmetric point
(x∗1, . . . , x

∗
q) = (1/q, . . . , 1/q). This is the paramagnetic phase.

35) When T = 0, minimizing the free energy amounts to minimizing the energy. For a vanishing field,
we thus have to maximize x21 + · · · + x2q under the constraint that x1 + · · · + xq = 1. There are q
equivalent solutions (x∗1, . . . , x

∗
q) = (1, 0, . . . , 0) or (0, 1, . . . , 0),..., or (0, . . . , 0, 1), which correspond to

ferromagnetic phases. This can be seen from the identity

1 =

(
q∑

σ=1

xσ

)2

=

q∑

σ=1

x2σ +
∑

σ 6=σ′

xσx
′
σ. (40)
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The ground state is q-fold degenerate ; these states correspond to microscopic configurations with
σ1 = σ2 = · · · = σN .

36) We have x2 = · · · = xq =
1− x

q − 1
. We thus find

e(x) = −J
q

q − 1

(
x− 1

q

)2

− J

q
,

s(x)

kB
= −x ln(x)− (1− x) ln(1− x) + (1− x) ln(q − 1) . (41)

37) The function e(x) has a maximum at x = 1/q, and finite slopes (derivatives) at 0 and 1 ; the function
s(x) has a maximum for x = 1/q, and vertical tangents in 0 and 1 :

0

e(x)
1/q 1 x

s(x)

0
1 x1/q

38) The entropy s(x) reaches its maximum for x0 = 1/q . This point also is an extremum of e(x), so that
f̂ ′(x0) = 0 for all temperature. To determine the nature of this point, we compute the second derivative

f̂ ′′(x) = −2J
q

q − 1
+ kBT

1

x(1− x)
, and f̂ ′′(x0) =

q

q − 1
(−2J + kBTq) . (42)

Thuq x0 is a local minimum (resp. maximum) of f̂ for T > T
(2)
c (resp. T < T

(2)
c ), with kBT

(2)
c =

2J

q
.

39) For T = T
(2)
c , we have f̂ ′′′(x0) = −2J

(
q

q−1

)2
(q − 2) < 0 since q > 2. Hence f̂ goes below its value at

x0 for x > x0. Since f̂ features a slope +∞ for x = 1, there is necessarily a local miimum for a value

x∗ > x0, with f̂(x∗) < f̂(x0). Because f̂(x, T ) is monotonous in T , there is a temperature T
(1)
c > T

(2)
c

below which x0 is no longer the global minumum.

40) For q > 2, the profile of f̂(x, T ) for different temperatures is sketched in Fig. 2.

41) The conditions determining T
(1)
c et x(1) are





f̂(x(1), T
(1)
c ) = f̂(x0, T

(1)
c )

∂f̂

∂x

∣∣∣∣∣
(x(1),T

(1)
c )

= 0
, as can be seen in the

figure below at Td. By inserting the proposed forms, we find α = 1.

42) For q = 2 (resp. q > 2) the function x∗(T ) is continuous (resp. discontinuous) :

x∗(T )

1

T
T

(1)
c

1/q

q = 2 q > 2

x∗(T )

1/2

1

T
T

(2)
c

0 0

One can define x∗(T ) − 1/q as an order parameter (see above), since this quantity vanished in the
paramagnetic phase at high temperature. For q = 2, the transition is second order, β = 1/2 since
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Figure 2 – Sequence of profiles f̂(x, T ) as functions of x, for Ta > Tb > · · · > Tg, and Td = T
(1)
c , Tf = T

(2)
c .

The dashed horizontal line corresponds to the value of f̂(x0, T ). We have here q = 3, i.e. x0 = 1/3.

x∗(T = T
(2)
c − ε) − (1/2) ∼ ε1/2. For q > 2 the transition is first order, the order parameter is

discontinuous at the transition point, and one therefore cannot define critical exponents.

43) A phase separation would ensue, with domains where one of the q spin values is predominant, separeted
by domain walls, with a given surface tension (cost for creating an interface).

E. Exact results (miscellanea)

44) From

Z(K) = Z(K̃)

(
(eK − 1)2

q

)N

and (eK̃ − 1)(eK − 1) = q. (43)

we know that if there would be a critical point Kc, then K̃c would also be critical. If the (non-trivial)
critical point is unique, it thus obeys

(eK − 1)2 = q. (44)

As a consequence,

kBTc =
J

log(1 +
√
q)

. (45)

45) We discuss here the two dimensional case. The renormalization flow tells us that

for q < 4, the transition is second order while for q > 4, it is first order . (46)
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In this respect the critical number of “colors” (spin values) is qc = 4. Mean-field predicts a similar
scenario, although is fails in getting the correct qc, which we found to be 2 at mean-field level.

46) Those results are compatible with the figure. Indeed, for q ≤ 4, we observe the same pattern at
criticality, with domains of the q states that would presumably not allow to find order nor disorder upon
coarse-graining. For q > 4, the pattern changes, and one state (the blue color), is largely predominant.
It is then not necessary to coarse-grain to obtain strongly ordered states.

47) The comparison requires a bit of care, since mean-field does not predict the correct value of qc. We
have to consider q values for which the transition is second order, and that mean-field considers to
be second order. This restricts the analysis to q ≤ 2. Then, we expect mean-field to overestimate the
correct critical temperature, due to discarded fluctuations. The mean-field prediction is (here d = 2)

Tmf
c =

4J

kBq
and indeed

4J

q
>

J

log(1 +
√
q)
. (47)

Note that in the Ising case, for q = 2, remembering the connection (5) between Potts and Ising spins
(the factor 2), we recover Onsager’s exact result for the critical temperature :

kBTc =
J

log(1 +
√
2)
. (48)

F. Open question

48) We first take for granted that ν = 1/2, for it simplifies the analysis. It is rather straightforward to
realize that our cubic Landau expansion yields a mean-field prediction β = 1. We can find look for
the spatial dimension where the mean-field free energy per spin fmf is dominated, close to Tc, by the
typical free energy of a fluctuation, given by kT/ξd, where ξ is the correlation length. From the Landau
expansion, we see that

fmf ∝ |t|m2 ∝ |t|3, (49)

where t = (T −Tc)/Tc, and here, T ∗ = Tc. The regime d < du, where du is the upper critical dimension,
corresponds, scaling-wise, to

fmf ≪ ξ−d meaning that |t|3 ≪ |t|νd = |t|d/2. (50)

The corresponding d-range is d ≤ 6, from which we conclude that du = 6 .

What remains is to show ν = 1/2, as for the Ising model. To this end, we may construct a Ginzburg-
Landau free energy functional from the (by definition mean-field) Landau expression, adding a square
gradient term and suitably coarse-graining our order parameter m = [qx− (1, 1 . . . 1)]/(q− 1) so that
it depends on position r. Note that the composition vector x = (x1, x2 . . . , xq) obeys the constraint∑q

σ=1 xσ = 1. We get

R{m} =

∫
dr

{
a2
2
m

2 +
a3
3
m

3 +
a4
4
m

4 +
b

2

q∑

σ=1

(∇mσ)
2

}
. (51)

This functional was met in class. It leads to a correlation functions of the form
∫
dqeiq·r/(q2 + ξ−2)

with ξ−2 ∝ |a2| ∝ |t|, hence ν = 1/2 (and η = 0).

G. Application

49) We have here q = 3, and the spin value encodes the atom’s position adsorbed at one of the 3 possible
sites. For the configuration proposed, the domains are represented below. The energetical cost is
arguably most important for the junctions AB, AC et CB in the right half of the figure below, as well
as at the corners where domains of the 3 types meet.
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