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Finite-size scaling

Pocket calculators and cell phones not allowed.
This part should be written on a separate paper. The different sections are mostly independent.

La rédaction pourra se faire en français pour ceux qui le souhaitent.

A number of relevant information is reminded in the annex, at the end of this text. The general arguments
below are all illustrated on the example of Ising spin 1/2 model, on regular square or rectangle lattices in
dimension d (therefore cubic for d = 3 etc.). Couplings are restricted to nearest neighbors. The ferromagnetic
coupling constant is denoted J and T is the temperature. The “distance” to the critical temperature Tc will
be t = (T − Tc)/Tc. The number of spins in the system is N and k is for the Boltzmann constant.

A. Introduction

Figure 1 – Specific heat for
B = 0 as a function of kT/J
on various small square lattices,
of size L × L in two dimensions
(thus here, N = L2). The verti-
cal line indicates the location of
the peak for L → ∞. From Fer-
dinand and Fisher (1969).

The free energy of a finite system cannot be singular : a phase transition
can only be observed in the thermodynamic limit.

1) Why is that so (brief answer expected) ?

While this limitation is of little practical relevance for experimental sys-
tems (finite but in general large enough to exhibit the hallmarks of phase
transitions), it has important conceptual and practical consequences for
computer simulations. It is our goal to tame finite-size effects and turn
their treatment into a powerful tool for the study of phase transitions,
at a continuous but also a first order transition. These two situations,
that may have similar fingerprints in practice, can be discriminated by
finite-size analysis. We will also see that finite-size effects are not only in-
formative when coupled to numerical simulations, but also in conjunction
with transfer matrix calculations. Figure 1 illustrates finite-size effects on
the specific heat, with periodic boundary conditions.

2) What is the approximate critical temperature Tc revealed by Figure
1 ?

3) Is this critical temperature larger or smaller than its mean-field
counterpart ? Why ? Give the value of the mean-field critical tem-
perature.

4) What is the expected behavior here for the specific heat close to
the critical point (use the annex) ? In which sense is this situation
special ?

5) A classic finite-size scaling argument shows that with χ
L
(T,B) the

susceptibility of a finite system of N = Ld spins at temperature
T in an external magnetic field B, we have χ

L
(Tc, 0) ∝ Lγ/ν . How

does this generalize to χ
L
(T,B) ? Use here the reduced temperature

t = (T − Tc)/Tc.

6) What is then χ
L
(Tc, B) ? What should the quantity shown on the

x-axis of Fig. 2 be ?

7) Is it possible to have a phase transition for B 6= 0 ?

8) In the language of the renormalization group, how many relevant
scaling fields does our model exhibit ?
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Figure 2 – Scaled susceptibility χ
L
/L1.75 for d = 2 on square systems of

sizes L × L, at the critical temperature Tc, as a function of an unspecified
variable involving the external field B and L. What is this variable ? From
Binder and Landau (1984).

B. Finite-size scaling for the correlation length

It is assumed in this section that B = 0.

9) How is the spin-spin correlation length ξ traditionally defined ? What is the problem raised by this
definition in a finite system ?

There are actually several ways to circumvent this difficulty (bonus question : propose one such solution),
and we take for granted that we can define ξ here. It is a function of temperature through t and L, that we
denote ξ

L
(t).

10) Propose a scaling ansatz for ξ
L
(t) in the form ξ

L
(t) = |t|a ϕ(|t|Lb). What are the exponents a and b ?

Allowing ϕ to have also negative arguments, this can be rewritten ξ
L
(t) = |t|a ϕ(tLb). Such a form

makes sense close to Tc only, i.e. for |t| small enough.

11) Rewrite this relation in the form
ξ
L
(t) = Lφ(tLb). (1)

How are the two scaling functions ϕ and φ related ?

12) In a very large system outside the critical point, does ξ
L
depend on L ? Therefore, how do you expect

φ(x) to behave for large |x| ? Do you recover the expected behaviour for the correlation length as a
function of t ? Note that if you have not found a in previous questions, this is an occasion to fill the
gap and relate this quantity to a critical exponent.

13) How do you expect φ(x) to behave for small x ?

14) Why do we expect the function φ to have a unique maximum?

15) It turns out that the maximum of φ(x) is at x∗ 6= 0. Sketch a graph of ξ
L
/L as a function of T for

three sizes L1 > L2 > L3. In practice of course, Tc is not a priori known. Propose a simple procedure
for locating Tc by comparing the graphs of ξ

L
(T ) at different sizes.

16) We define T ∗
L as the temperature for which ξ

L
/L versus T is maximal. Explain how the measure of T ∗

L

allows to complete our previous graphical localization of the critical temperature, since it gives access
to a critical exponent.

C. Finite-size scaling and transfer matrix calculations on strips : appli-

cations to two-dimensional Ising model

We consider next the model in a rectangular domain of size M × N , where M is small, and N → ∞. We
will see that comparing the cases M = 1 to M = 2, as small as these values may seem, yields an original
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estimation of the critical temperature for the bulk d = 2 system. We enforce periodic boundary conditions
in both directions. We need here the explicit expression of the Hamiltonian :

H = −J
∑

〈i,j〉

si sj (2)

where the summation runs over pairs of nearest neighbors, and the spins take values si = ±1.

17) Do you expect that for a fixed M , a phase transition may arise. Why ?

18) We start with the case M = 1. The spins can be numbered s1, s2. . . sN . Yet, the resulting one
dimensional chain slightly differs from the traditional situation, since every spin si is not only coupled
to its neighbors si−1 and s1+1, but also to itself due to the periodicity along the short edge of the
rectangle. Write explicitly the corresponding transfer matrix.

19) What are the eigenvalues ? t1 will denote the largest, t2 the second largest.

20) It is a general result that the inverse log of the ratio of eigenvalues t1/t2 yields the correlation length.
Here, we get

ξ
M=1

=

(

− log tanh
J

kT

)−1

(3)

Is there a critical point ?

21) What is the size of the transfer matrix for M = 2 ?

22) (bonus question) Write the transfer matrix for M = 2.

23) From the transfer matrix with M = 2 and its two largest eigenvalues, we obtain the correlation length

ξ
M=2

=

[

log

(

x4 + 2 + x−4 +
√
x8 + x−8 + 14

2(x4 − 1)

)]−1

, (4)

where x = exp[J/(kT )]. We then adapt the conclusion of section B. It leads to a simple criterion for
the critical coupling constant Jc : it should be that for which

1

2
ξ
M=2

= ξ
M=1

, (5)

which gives xc ≃ 1.546 and so J ≃ 0.435 kTc. How does this compare to the exact value appearing in
Fig. 1 ?

D. On the usefulness of Binder cumulants

We present here a classical method for locating a critical point at a continuous phase transition.

24) For a Gaussian random variable X with mean 0 and standard deviation
√

〈X2〉 = σ, what is the value
of 〈X4〉/〈X2〉2 ?.

25) For a random variable X that would be sharply peaked around X∗ 6= 0 (meaning that X∗ is much
larger than the standard deviation), what is the approximate value of 〈X2〉 ? Same question for 〈X4〉
(or actually for the mean of any power of X). What is then (approximately) 〈X4〉/〈X2〉2.

We define the instantaneous magnetization in the system from the spin configuration {si}i=1...N by

s =
1

N

∑

i

si. (6)

It is reminded that every spin takes value ±1. By averaging over a number of equilibrium configurations in
a finite-size L× L system, we thereby define the moments 〈s2〉

L
, 〈s4〉

L
etc.
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Figure 3 – Binder cumulants. Plot of 3U
L
/ 2 as a function of kT/J for square lattices of growing sizes. The

right panel is a zoom into the sector where the curves cross. From A. Sandvik (2015).

26) Figure 3 displays the behaviour of the so-called Binder cumulant

U
L
= 1− 1

3

〈s4〉
L

〈s2〉2
L

. (7)

Explain the small T and the large T behaviour displayed by U
L
, for the left panel. It is possible to

answer at various levels of depth. A thorough explanation goes through estimating the fluctuations of
s, which can be done invoking the fluctuation-response connection.

27) It is observed on the right panel in Fig. 3 that the curves at different sizes do cross at a special
point. What is this point, and why is there crossing ? How can this feature be used to study the phase
transition ?

28) (bonus) It is seen in Fig. 3 that at small T , U
L
departs from a constant by a small negative value.

Compute this contribution. What thermodynamic quantity does this give access to ?

E. Finite-size scaling for the order parameter

29) Propose a concise finite-size scaling analysis of the order parameter (mean magnetization taken here
as 〈|s|〉

L
) as a function of T and L at B = 0, assuming that Tc is known.

30) How is the “rescaled magnetization” defined, as plotted in Fig. 4 ? Why are there two branches in the
figure ? What are the two slopes displayed by the straight lines (the graph is log-log) ? Note that for
T > Tc, a central-limit-theorem argument is useful to find the dependence of the order parameter on
the number of spins N = L2.

Figure 4 – Ising models on square lattices of various
sizes L× L. Plot of the rescaled order parameter as a
function of |t|L1/ν . The scales are logarithmic on both
axis. From Binder (1986).
.
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F. How to distinguish first-order from second-order phase transitions ?

Figure 5 – Variation of the mean magnetization in a finite-size Ising
cubic ferromagnet of linear size L, as a function of the magnetic field
B. As expected, the curves are odd with respect to B. Here, we have
T < Tc so that in an infinite system, the magnetization 〈s〉 would
jump from−Msp to +Msp when B goes from 0− to 0+. The smallness
of L washes out this discontinuity. The two vertical dashed lines
indicate the region where finite size effects are most pronounced, i.e.
where the finite-L and thermodynamic limit curves largely differ.
The extension of this region along the B-axis is denoted ∆B. A goal
here is to compute ∆B and to infer the resulting slope at the origin,
defined in Eq. (8). From Binder and Landau (1984).

31) It is in practice not always a simple task to discriminate a second order from a weakly first-order phase
transition. Can you guess what “weakly first-order” means ?

Figure 5 illustrates the problem with a B-field scan. When T < Tc and if the system is small enough (or left
enough time) so that thermal fluctuations ensure an ergodic behaviour, a continuous magnetization will be
measured as a function of B, while the thermodynamic limit would yield a discontinuous order parameter.
Besides, the susceptibility defined as

χ
L
=

∂〈s〉
L

∂B
, (8)

as would be measured in a computer simulation for instance, is not immediately related to the thermody-
namic susceptibility χ. The slope χ

L
near the origin in Fig. 5 becomes system-size dependent, which may

mimick a second-order phase transition, lead to χ
L
≫ χ, and mislead us. It can be kept in mind that χ∞

(defined from χ
L
for L → ∞) and χ are distinct quantities, since the first one is infinite while the second is

not. It therefore seems that finite-size effects are detrimental here. We shall see though that they offer a way
out, and bear a distinct first-order signature. The idea is to construct a phenomenological probability distri-
bution P

L
(s,B) for the magnetization defined in Eq. (6). Although s takes discrete values in a finite system,

we will treat this variable as continuous, which allows to write normalization and the various moments as
∫ 1

−1

P
L
(s,B) ds = 1 , 〈s2〉

L
=

∫ 1

−1

s2 P
L
(s,B) ds . . . (9)

It is a fair approximation here (except in very small systems) that P
L
(s,B) vs. s is double-peaked at

s = ±Msp + χB, that each peak is Gaussian with standard deviation σ (unspecified for the moment, but
rather small), and that the weights p± of each peak are B-dependent, with p+ + p− = 1.

32) To find p±, we can consider that we have a simpler two-states problem, with all Ld spins either taking
value +Msp, or −Msp. This system is in an external field B. What are then the weights p± ? When
B = 0, check that p+ = p− = 1/2.

33) Compute the corresponding mean value 〈s〉
L
. When B = 0, check that 〈s〉

L
= 0 (see Fig. 5).

34) Assuming χ to be independent from B, show then that

χ
L
= χ + M2

sp

Ld

kT

[

1− tanh2
(

LdMspB

kT

)]

. (10)

35) From expression (10), what is the width ∆B of the transition region, as defined in Fig. 5 ? What is
the resulting slope at the origin ?

36) Use relation (10) to make sense of Fig. 6 ; explain. One notices a small lack of scaling (data collapse)
in Fig. 6 in the vicinity of the origin. Why is that so ? Why is Fig. 7 more useful in this respect ? What
is the limiting value shown by the arrows in both Figs. 6 and 7 ?
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37) We compare these results to those obtained in section A. How can finite size effects discriminate
between first and second order transitions ? Hint : compare Fig. 2 and Figs. 6/7.

Figure 6 – Scaled susceptibility χ
L
/L2 for d = 2 on square lattices of

sizes L×L, at temperature kT = 2.1 J , as a function of BL2/J . From
Binder and Landau (1984).

Figure 7 – Scaled susceptibility χ
L
/L2 for d = 2 on square

lattices of sizes L × L, at temperature kT = 2.1 J and B = 0,
plotted versus 1/L2. The horizontal arrow indicates the same
limiting value as that in Fig. 6. From Binder and Landau (1984).

G. Slab geometry

38) In an infinite three-dimensional Ising ferromagnet, we consider a finite slab of size L‖ × L‖ × L⊥. We
assume that L‖ → ∞. We fix L⊥ large enough, but finite. We take for granted that this finite system
features a critical point. Sketch the expected behavior of the susceptibility per spin χ vs |t| = |T−Tc|/Tc

in a log-log graph. In which sense does this quantity exhibit a cross-over phenomenon ?

39) Same question for the two-dimensional version, in a strip L‖ × L⊥.

40) (bonus) Remembering that the spin-spin correlation function asymptotically obeys G(r) ∝ r−d+2−η

at Tc, write a scaling form for χ for the d = 2 system. Show then the scaling relation 2− η = γ/ν.

41) (harder) The situation is different in a fully finite system, meaning, not some subpart of an otherwise
infinite system. Then, at Tc and d = 2, the correlation function takes a different form : G(r) ∝
L−η
⊥ exp(−a|x|/L⊥) in the regime L⊥ ≪ x ≪ L‖, where a is some constant and x is the coordinate

along L‖. Why is this plausible ? The precise choice of boundary conditions is not essential. Show next
that the susceptibility per spin becomes independent of L‖. How does it depend on L⊥ ?

Annex. We denote critical exponents by a subscript referring to space dimension
• In two dimensions, we have ν2 = 1, β2 = 1/8 and γ2 = 7/4, δ2 = 15, associated to the correlation length,
the order parameter, the susceptibility and the equation of state respectively
• In three dimensions : ν3 ≃ 1.25.
• For d ≤ 4, we have νd = 2− α where α is the critical exponent associated to the specific heat.
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