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Abstract
Phase-field models are very attractive in view of their numerical simplicity.
With only a few lines of code, one can model complex physical situations such
as dendritic growth. From this point of view, they constitute very interesting
tools for teaching purposes at graduate level. The main difficulty with these
models is in their formulation, which incorporates the physical ingredients in
a subtle way. We discuss these approaches on the basis of two examples:
dendritic growth and multiphase flows.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phase-field (PF) models were proposed 20 years ago to tackle the difficult problem of crystal
growth. From the original work by Collins and Levine [1] for the simulation of diffusion-
limited crystal growth, the PF approach has been extended to dendritic growth by Kobayashi
[2], and later by Karma and Rappel [3], and to stress-induced instabilities in solids by Kassner
and Misbah [4]. The main idea behind PF models is to replace the singular macroscopic
treatment of an interface (a discontinuity surface) by a regularized description. To this end, an
auxiliary field varying smoothly across the interface is introduced: the PF. The original sharp
interface formulation is thus rewritten to account for a smooth interface, and a supplementary
evolution equation for the PF is added. The complexity induced by the singularities in the
sharp interface description simply disappears in the PF formulation since there is, strictly
speaking, no more interface. However, the PF equation contains its own physical ingredients
that can serve or plague the model.

Although originally restricted to the domain of solid-state physics, these models have
recently been adapted by several groups to address a large variety of domains. In fluid
mechanics, Hele–Shaw instabilities [5], Marangoni convection [6], droplet and vesicle
dynamics [7–10] and polymer blends [11] are examples of applications of these models.
PF models are at the moment a very active research field since they only require a moderate
computational effort. In view of their conceptual and computational simplicity, they constitute
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a very attractive tool for teaching purposes and allow a student not familiar with complex
domain decomposition methods to write a simple code able to reproduce phenomena as
complex as dendritic growth or viscous fingering. Moreover, since most PF models are based
on the same Landau–Ginzburg description of binary interfaces, only slight modifications are
necessary to convert a crystal growth program into a model for Hele–Shaw flows, for example.
These two properties, flexibility and simplicity, are at the origin of the growing popularity of
these models.

We may, however, wonder why after 20 years these models are still research tools.
The point is that PF models are ‘models’; they do not yet constitute a ‘method’. The main
difficulty with these models is indeed in their formulation, not in the numerical implementation.
Although these models share the same Landau–Ginzburg approach, the differences between
them are often hidden in subtle coupling or counter-terms. There is thus no unified framework
at the moment allowing us to define a PF method. In contrast, PF models need to be
manipulated with a lot of caution, but from this point of view they constitute a subtle and
fascinating toolbox for manipulating physics without much computational effort, and should
thus become widely used for teaching purposes in the future.

We shall not make an exhaustive review of all the models suggested in the literature; we
refer the readers to the references already mentioned for various examples. We discuss in
the next few sections two elementary examples: Kobayashi’s model for dendritic growth as
an example of an ‘active PF model’, and an attempt suggested recently in fluid mechanics to
formulate a generic ‘passive PF model’ (or advected field model), a potential first step towards
a PF method.

But before considering these two examples, let us first discuss briefly the Landau–
Ginzburg theory of binary interfaces.

2. The Landau–Ginzburg model

We shall discuss in this part the basic properties of the Landau–Ginzburg description of binary
systems. This formulation is indeed the cornerstone of PF models, but contains physical
ingredients that might or might not be desirable for the system under investigation, such as
surface tension. We refer the reader to [12] for a more complete discussion.

The basic role of the PF ‘θ ’ is to identify the coexisting phases. Since we consider
here homogeneous and isotropic bulk phases, θ is simply a scalar field. More complex
prescriptions can account for anisotropic phases if necessary, as in liquid crystals or magnetic
systems for which orientational ordering is crucial. We can arbitrarily choose θ = ±1 for the
coexisting bulk phases. Any intermediate value shall indicate the proximity of an interface in
the following. Such a phase coexistence is easily obtained by minimization of the bulk free
energy

W(θ) = (1 − θ2)2/4. (1)

This function has indeed two minima corresponding to W = 0 in θ = ±1 (see figure 1). If
we consider now a spatially inhomogeneous situation and simply replace θ by θ(r), where
r indicates the position, integration of (1) over the whole space leads to the so-called local
density approximation (LDA). This approximation is unfortunately too simplistic to describe
an interface with a finite width since any spatial configuration with θ(r) = ±1 is a minimum.
There is no energy cost for a spatial variation of θ(r) (and thus no surface tension). This
problem can be solved by adding a gradient contribution

F[θ ] =
∫

dr

{
W(θ(r)) + ε2 [∇θ(r)]2

2

}
. (2)
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Figure 1. Schematic view of the Landau–Ginzburg free-energy functions. The top graph represents
the function used for multiphase flows while the bottom graphs correspond to Kobayashi’s
prescription for dendritic growth.

The gradient appears in this expression through its modulus since the precise orientation of
the interface is not important. We shall refer to this formulation as the ‘square-gradient’
model. From a dimensional analysis, ε is a length scale. This parameter is, in fact, up to
a multiplicative constant, the interfacial width. To quantify this more precisely, (2) can be
minimized explicitly in a planar geometry (translational invariance in the x, y directions) with
the boundary conditions θ(z = −∞) = −1 and θ(z = +∞) = +1. After some algebra, one
finds

θ(z) = tanh(z/(ε
√

2)). (3)

The interfacial width is thus identified as ε
√

2. Since the square-gradient model penalizes
the variations of the PF, the presence of an interface results in an excess of energy (surface
tension σ). σ can be calculated for a planar interface by inserting the tanh profile (3) in (2)
(more details will be found in [12]):

σ = ε

∫ +1

−1

√
2W(θ) dθ. (4)

This formulation has the advantage of emphasizing the proportionality of σ with respect to ε.
We immediately see that in the ‘sharp interface limit’ (ε → 0), θ(z) goes to a step profile and
σ vanishes, as expected, since we recover the LDA model.

We shall now come back to our original goal: to use a smooth interface description to
solve a sharp interface problem. It is tempting to use the PF surface tension σ to account for
surface energy effects in the sharp interface problem (active PF). From the previous analysis,
such a formulation requires a careful analysis of the sharp interface limit to prevent these
effects to vanish. In contrast, ‘passive PF’ formulations do not make use of σ . Surface energy
effects are accounted for in a separate way. σ thus appears in these passive approaches as a
side effect to compensate, if possible. We shall emphasize this point in the next few sections.

3. Dendritic growth: active phase field

We shall present here the model used by Kobayashi [2] to describe dendritic growth. These
structures can appear when a fluid is under-cooled below its solidification point. Solidification
can start at some point in the system (usually induced by the presence of impurities) resulting
in the propagation of a solidification front. The propagation velocity depends essentially on
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limiting phenomena such as thermal diffusion. Indeed, the growth of an ordered phase in a
disordered phase relaxes heat and thus locally heats up the system. If heat is not evacuated
from the interfacial region (the propagating front), the growth should stop simply because the
local temperature goes above the solidification point. Kobayashi’s model thus accounts both
for thermal diffusion through a local temperature field T (r, t) and for the growth of the solid
phase through the PF θ(r, t). The basic equations to solve are

τ
∂θ

∂t
= −δF [θ ]

δθ
,

∂T

∂t
= �T + K

∂θ

∂t
, (5)

where τ is the typical relaxation time of the PF, F [θ ] is essentially the square-gradient free-
energy functional presented above with a slightly different prescription for W(θ) (see figure 1)
and also for ε as we shall discuss in the following. The second equation is simply the thermal
diffusion in the system, with a source term accounting for heat relaxation at the interface
(θ varies only in the interfacial region so that ∂θ/∂t is non-zero only there). These equations
are in dimensionless units so that the diffusion constant is unity and K is a dimensionless latent
heat. The prescription chosen for W(θ) has to ensure the growth of the solid phase thus it is
not possible to consider the simple prescription (1) since it corresponds to a phase equilibrium
(the two minima are at the same level). Growth of one phase with respect to the other occurs
when its free energy is lower thus it is necessary to introduce an asymmetry in the free-energy
functional. Kobayashi considered a double-well free-energy functional with the two minima
in θ = 0 and θ = 1 (and not θ = ±1) of the form

W(θ) = θ4

4
−

(
1

2
− m

3

)
θ3 +

(
1

4
− m

2

)
θ2, (6)

where m is a constant fixing the distance to equilibrium. m > 0 favours phase θ = 1
whereas m < 0 favours θ = 0 (figure 1). m = 0 is the phase equilibrium. The complicated
coefficients in (6) are simply chosen to force the minima to be in θ = 0 or 1, whatever
the value of m. Since growth is driven by the difference between the actual temperature
T and the solidification temperature Te, one can adopt several prescriptions. We shall
consider Kobayashi’s prescription m = α

π
tan−1(γ (Te − T )) in the following (α and γ are

phenomenological parameters). It can seem surprising to use a scalar order parameter to
describe a crystalline phase, where both positional and orientational ordering exist. θ can, in
fact, be viewed as a macroscopic order parameter field (i.e. a coarse-grained description of the
solid phase like, for example, the averaged density field). Such a description does not account
for the anisotropic growth observed in nature (for example, in snow flakes). To introduce
anisotropy, Kobayashi assumed an angular dependence of the interfacial width ε = ε(φ),
where φ indicates the orientation of the interface with respect to an arbitrary direction. φ

can be defined as the angle between ∇θ and the ‘x’ axis in 2D, since this vector is normal
to the interface. A modulation of the interfacial width is directly related to a modulation
of the surface tension (4) and thus of the growth velocity. Following Kobayashi, we set
ε(φ) = ε(1 + δ sin(a(φ − φ0)), where ε is the average interfacial width, δ is the modulation
amplitude, a is the mode number of anisotropy (the hexagonal symmetry corresponds to a = 6)
and φ0 allows us to vary the axis directions. The final PF equations are in 2D:

τ
∂θ

∂t
= − ∂

∂x

(
εε′ ∂θ

∂y

)
+

∂

∂y

(
εε′ ∂θ

∂x

)
+ ε2�θ + ∇(ε2) · ∇θ + θ(1 − θ)(θ − 1/2 + m(T )),

∂T

∂t
= �T + K

∂θ

∂t
. (7)

Here, ε ≡ ε(φ) and ε′ ≡ dε(φ)/dφ. Although these equations in their final form look
complicated, they can be very simply solved numerically with a few instructions, as can be
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Figure 2. Different growth regimes as obtained from Kobayashi’s model. The four images
correspond to a dimensionless latent heat K = 0.8, 1.0, 1.2 and 1.8 from left to right and top to
bottom; the dimensionless relaxation time is τ = 3 × 10−4. The values of the more technical
parameters are specified at the beginning of the ‘C’ program listed in the appendix.

seen in the ‘C’ program listed in the appendix. This simple code can be improved using more
precise integration and derivation schemes, but this very basic implementation is indeed able
to provide the data presented in figure 2. Although the main physical control parameter is
the latent heat K, many auxiliary phenomenological parameters enter into play. An important
effort has thus been devoted to the connexion between these parameters and physical quantities
in later PF formulations.

4. Application to multiphase flows: passive phase field

This part illustrates how the Landau–Ginzburg approach can be used to derive a relatively
generic PF formulation for free-boundary problems. Let us, for example, consider a multiphase
flow where all the phases are simple Newtonian fluids. The dynamics of this system is given
by the Navier–Stokes equation, in the presence of interfaces:

ρ

(
∂v
∂t

+ v · ∇v
)

= ∇ · (2ηD) − ∇P + Fint. (8)

Here, ρ is the local mass density of the fluid, v is the velocity field, η is the local viscosity,
D is the symmetric part of the velocity gradient tensor D = (∇v + (∇v)t )/2, P is the local
pressure field and Fint is the local force field applied by the interfaces to the flow. We assume
the local incompressibility condition ∇ · v = 0. The main difficulty in solving numerically
equation (8) is the singular nature of Fint. This force field is indeed located at the interfaces
and induces some discontinuities in the velocity gradient tensor. To solve this problem, one
can solve the hydrodynamic equation in each phase separately, rejecting the force field Fint
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Figure 3. Break-up of a drop in a shear flow for a viscosity ratio ηdrop/ηsolvent = 0.01.

in the boundary conditions. The problem is two-fold: first, it is necessary to reconnect the
resolution domains in a self-consistent way, and next, the boundaries are not fixed since
they are transported by the flow. A mesh initially well adapted to a given configuration of
the interfaces is likely to become very problematic after a few steps only, even worse is the
coalescence of two domains (two drops, for example) where a complete re-meshing is usually
necessary. The PF model solves these two problems by simply removing the singularities.
At the microscopic level, an interface is not sharp and there are correlation lengths in a fluid
below which a local (macroscopic) description is no longer valid. We can thus expect a model
with smooth interfaces to describe in a better way the microscopic nature of the interfaces.
The square-gradient model presented above is indeed able to account for topology changes in
a continuous way: two drops are able to fuse or a drop can be broken without discontinuity
since the PF can continuously go from −1 to +1 (see figure 3). In fact, the notion of domain
topology itself has no real meaning without an additional prescription (for example, θ = 0 is
the locus of the interface separating the domains). This is the power of PF models. The main
disadvantage is of course that the interfacial width is in reality very small (a few nanometres),
leading to a value of ε � 10−5, which is out of reach in practice. As a consequence, the PF
methods are all plagued by an overestimated smoothness of the interfaces. This overestimation
can have very strong consequences going from quantitative discrepancies to a wrong physics.
On the other hand, the tremendous simplification obtained with these models compared to
the original sharp interface formulation tends to generalize their usage. It is thus important
to control the influence of ε on the results and to build models with fast convergence when
ε → 0.

In the basic case of binary flows, a natural PF formulation could be written as

ρ(θ)

(
∂v
∂t

+ v · ∇v
)

= ∇ · (2η(θ)D) − ∇P + Fint(θ), (9)

∂θ

∂t
+ v · ∇θ = −�

δF

δθ
. (10)

This formulation is unfortunately not satisfactory at non-vanishingly small values of ε

(it overestimates diffusive transport, as discussed below), but a very simple modification
suggested in [5] is sufficient to improve it in a substantial way. The Navier–Stokes equation
as written in (9) only differs from (8) by the θ dependence of the physical parameters
characterizing the bulk phases (η and ρ). For a binary system with two phases of viscosities η1
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and η2, one can simply prescribe η(θ) = η1
(

1+θ
2

)
+ η2

(
1−θ

2

)
(idem for ρ). θ = 1 corresponds

to phase 1 and θ = −1 to phase 2. The force field Fint(θ) is now a regular field centred on
the interface but varying smoothly between 0 inside each phase to its interfacial value. The
gradient of the PF as an indicator of the interface can be used:

Fint(θ) ≡ fint(θ)
|∇θ |

2
. (11)

The prefactor 1/2 ensures the normalization of |∇θ | /2 across the interface (thanks to the
variation of θ between −1 and +1). As an illustration, the force field corresponding to
capillary forces can be written as

Fint = c(θ)

2
�∇θ,

where c(θ) is the local curvature field and � is the surface tension (not to be confused with
σ introduced previously). c is related to θ through the normal unit vector field n̂ = ∇θ/ |∇θ |
by c(θ) = −∇ · n̂ (with this convention c is negative for a sphere). Since all the quantities
entering in the Navier–Stokes equation (9) are smooth functions, this equation can be solved
numerically on the whole simulation domain with the standard techniques. Both the interfaces
and the boundary conditions associated with them are automatically accounted for by Fint(θ).

The second equation (10) describes the dynamics of the PF and thus the dynamics of the
interfaces. For the binary system we consider here, interfaces are simply transported by the
flow. A transport equation for the PF of the type ∂θ/∂t + v · ∇θ = 0 (advection equation)
does, however, not preserve the tanh profile across the interface, and does not ensure the phase
equilibrium at rest. A restoring term is thus necessary as written in (10). Several prescriptions
are possible: � is a simple constant fixing the relaxation time to the tanh profile, in which case
we have an Allen–Cahn dynamics, or � = −�′�, where � is a Laplacian operator acting on
δF[θ ]/δθ(r) and �′ is a constant (Cahn–Hilliard dynamics). The second prescription ensures
a conservation of the PF

∫
θ(r) dr = cste and is thus preferable here since we consider

non-miscible fluids.
We now need to discuss the physics contained in this equation. Whereas the left-hand

side of the PF equation (10) expresses the transport associated with the macroscopic velocity
field, the right-hand side accounts for the relaxation of the interface in a diffusive way. This
second effect has the consequence that even in the absence of macroscopic flow, a drop of
arbitrary initial shape will relax to its stable spherical shape if the dynamics is conserved
(Cahn–Hilliard) or even disappear if not. The relaxation time depends on the value of ε:
in the sharp interface limit, the macroscopic situation, this time is infinite and the shape
evolution of the interface is entirely driven by the macroscopic flow as expected. For a finite,
numerically tractable, value of ε (i.e. ε � 4 × 10−2, instead of ε � 10−5), this relaxation time
is strongly overestimated and interferes with the advective dynamics. A solution is to cancel
the first-order terms in ε appearing in the sharp interface limit of (10). This solution simply
consists of adding the counter-term �ε2c |∇θ | in (10) [5]. Using the explicit expression for
the free-energy functional (2), the new equation is

∂θ

∂t
+ v · ∇θ = −�

{
dW(θ)

dθ
− ε2(�θ + c |∇θ |)

}
. (12)

The counter-term has the basic effect of compensating the surface tension σ of the square-
gradient model at first order in ε. Mathematically, the counter-term reduces the Laplacian
operator to �θ +c |∇θ | � ∂2θ/∂r2 +O(ε2) in the vicinity of the interface, r is the coordinate in
the normal direction. We are thus no longer sensitive to the variations in the parallel direction.
The PF profile remains θ(r) = tanh(r/(ε

√
2)) across the interface whatever its local curvature,

up to second order in ε. This new equation corresponds to a passive transport of the interface
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// Phase-Field program, Dendritic growth using the model suggested by Kobayashi

#include <stdio.h>
#include <string.h>
#include <math.h>

#define K 1.8 // Latent heat
#define TAU 0.0003 // PF relaxation time

#define EPS 0.01 // interfacial width
#define DELTA 0.02 // modulation of the interfacial width
#define ANGLE0 1.57 // orientation of the anisotropy axis
#define ANISO 6.0 // anisotropy 2*PI/ANISO

#define ALPHA 0.9 // m(T) = ALPHA/PI * atan(GAMMA*(TEQ-T))
#define GAMMA 10.0
#define TEQ 1.0 // melting temperature

#define NX 300 // size of the mesh NX*NY
#define NY 300
#define H 0.03 // spatial resolution
#define DT 2.e-4 // temporal resolution
#define NTIME 2000 // number of time steps
#define PI 3.14159265358

struct vec2D { double x, y;};

double get_angle( double x, double y )
{ double angle;

if (x==0.0) angle = (y>0.0 ? 0.5*PI : -0.5*PI);
else if (x>0.0) angle = (y>0.0 ? atan(y/x) : 2.0*PI + atan(y/x));
else angle = PI + atan(y/x);
return angle; };

main(int argc, char *argv[])
{ int i, j, t, ip, im, jp, jm;

double theta[NX][NY], T[NX][NY], eps2[NX][NY], lap_T[NX][NY], lap_theta[NX][NY], m,
ax[NX][NY], ay[NX][NY], epsilon, epsilon_prime, angle, tet, dydx, dxdy, scal;

struct vec2D grad_theta[NX][NY], grad_eps2;
FILE *fp;
char file[100];

//  initial configuration: T=0 and theta=1 in a cercle of radius 3H (0 elsewhere).
for(i=0;i<NX;i++) for(j=0;j<NY;j++) {T[i][j] = 0.0;

theta[i][j] = ((i-NX/2)*(i-NX/2)+(j-NY/2)*(j-NY/2)<10)?1.0:0.0;}

//  temporal evolution
for (t=0;t<NTIME;t++) {

// computation of various auxiliary quantities
for (i=0;i<NX;i++){ for (j=0;j<NY;j++){

ip = (i+1)%NX; // i+1 with Periodic Boundaries
im = (NX+i-1)%NX; // i-1 with Periodic Boundaries
jp = (j+1)%NY; // j+1 with Periodic Boundaries
jm = (NY+j-1)%NY; // j-1 with Periodic Boundaries

// gradient and laplacians (order H^2, 9 points isotropic version for laplacians)
grad_theta[i][j].x = (theta[ip][j] - theta[im][j])/H;
grad_theta[i][j].y = (theta[i][jp] - theta[i][jm])/H;

lap_theta[i][j] = (2.0*(theta[ip][j]+theta[im][j]+theta[i][jp]+theta[i][jm])
+theta[ip][jp]+theta[im][jm]+theta[im][jp]+theta[ip][jm] - 12.0*theta[i][j])/(3.0*H*H);

lap_T[i][j] = (2.0*(T[ip][j]+T[im][j]+T[i][jp]+T[i][jm])
+T[ip][jp]+T[im][jm]+T[im][jp]+T[ip][jm] - 12.0*T[i][j])/(3.0*H*H);

// angular dependence of the interfacial width "espilon"
angle = get_angle(grad_theta[i][j].x,grad_theta[i][j].y);
epsilon = EPS*(1.0 + DELTA*cos(ANISO*(angle-ANGLE0)));
epsilon_prime = -EPS*ANISO*DELTA*sin(ANISO*(angle-ANGLE0));

// auxiliary quantities appearing in the phase field equation
ay[i][j] = - epsilon*epsilon_prime * grad_theta[i][j].y;
ax[i][j] = epsilon*epsilon_prime * grad_theta[i][j].x;
eps2[i][j] = epsilon*epsilon;

}}

// simple Euler step
for (i=0;i<NX;i++){ for (j=0;j<NY;j++){

// first, some few spatial derivatives
ip = (i+1)%NX;
im = (NX+i-1)%NX;
jp = (j+1)%NY;
jm = (NY+j-1)%NY;

dxdy = (ay[ip][j] - ay[im][j])/H;
dydx = (ax[i][jp] - ax[i][jm])/H;
grad_eps2.x = (eps2[ip][j] - eps2[im][j])/H;
grad_eps2.y = (eps2[i][jp] - eps2[i][jm])/H;

tet = theta[i][j];
m = ALPHA/PI * atan(GAMMA*(TEQ-T[i][j]));
scal= grad_eps2.x*grad_theta[i][j].x+ grad_eps2.y*grad_theta[i][j].y;

// Euler step
theta[i][j] += (dxdy+dydx + eps2[i][j]*lap_theta[i][j] + scal + tet*(1.0-tet)*(tet-0.5+m))*DT/TAU;
T[i][j] += lap_T[i][j]*DT + K*(theta[i][j] - tet);

}}
}

// saving results
sprintf(file,"theta.dat"); fp = fopen(file,"w");
for (i=0;i<NX;i++) for (j=0;j<NY;j++) fprintf(fp," %d %d %e\n",i,j,theta[i][j]);
fclose(fp);
sprintf(file,"T.dat"); fp = fopen(file,"w");
for (i=0;i<NX;i++) for (j=0;j<NY;j++) fprintf(fp," %d %d %e\n",i,j,T[i][j]);
fclose(fp);

}

Figure A.1. Phase-Field program: dendritic growth using the model suggested by Kobayashi.
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by the flow (‘passive’ PF). Equations (9) and (12) are the appropriate formulation for the
description of binary fluids.

5. Conclusion

PF models provide a very flexible tool to solve in a simple numerical way complex free-
boundary problems. The two examples chosen to illustrate this point show that complexity is
still present, but now appears in the formulation of the model itself. It is thus interesting for
teaching purposes to build the models starting from the simplest prescription for the PF equation
(a simple relaxation equation, without any counter-term) and to add extra contributions very
progressively, testing at each step the physical properties of each term.

Appendix

A.1. Numerical implementation of Kobayashi’s model

From an initial solid nucleus located at the centre of the square resolution mesh of size Nx×Ny

and lattice spacing h, equations (7) can be solved iteratively. Gradients are estimated using
the simplest finite-difference formulation, while Laplacians require a nine-point isotropic
finite-difference scheme to have reasonable accuracy. The boundary conditions at the edges
of the mesh are chosen as periodic to limit finite-size effects both for the PF θ and the
temperature field. The notation used in the code has been chosen to phonetically correspond
to the quantities present in (7). A basic iteration step consists in estimating the various spatial
derivatives involved in (7) from the knowledge of T (r) and θ(r) at a given time t (the first
loop on indices i and j—x and y coordinates—allows us to compute ∇θ,�θ,�T and the
auxiliary quantities ε2(φ), εε′ ∂θ

∂y
and εε′ ∂θ

∂x
while ∇ε2, ∂

∂x

(
εε′ ∂θ

∂y

)
and ∂

∂y

(
εε′ ∂θ

∂x

)
are estimated

at the beginning of the second loop). From these values, the new temperature and phase field
can be estimated at time t + dt using an Euler step: θ(r, t + dt) � θ(r, t) + dt (∂θ/∂t).

A.2. Phase-Field program: dendritic growth using the model suggested by Kobayashi

See figure A1.
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