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ABSTRACT This paper formulates a theory for chemotactic pattern formation by the bacteria Escherichia coli in the
presence of excreted attractant. In a chemotactically neutral background, through chemoattractant signaling, the bacteria
organize into swarm rings and aggregates. The analysis invokes only those physical processes that are both justifiable by
known biochemistry and necessary and sufficient for swarm ring migration and aggregate formation. Swarm rings migrate in
the absence of an external chemoattractant gradient. The ring motion is caused by the depletion of a substrate that is
necessary to produce attractant. Several scaling laws are proposed and are demonstrated to be consistent with experimental
data. Aggregate formation corresponds to finite time singularities in which the bacterial density diverges at a point.
Instabilities of swarm rings leading to aggregate formation occur via a mechanism similar to aggregate formation itself: when
the mass density of the swarm ring exceeds a threshold, the ring collapses cylindrically and then destabilizes into aggregates.
This sequence of events is demonstrated both in the theoretical model and in the experiments.

INTRODUCTION

Over the last 25 years, there has been a rapidly growing
understanding of the mechanisms through whichEsche-
richia coli moves in response to external conditions (Berg,
1988). By focusing on how a single bacterium responds to
its environment, a microscopic picture of how bacteria
process external information has emerged.

Under normal conditions, anE. coli cell consists of an
elongated body, to which several flagella are attached. Each
flagellum is propelled by a rotary motor. There are two
modes of operation of this motor, clockwise and counter-
clockwise. When the individual flagella rotate counter-
clockwise, they form a bundle, and this bundle propels the
bacterium forward (Block and Berg, 1984; Blair and Berg,
1988); when the flagellum turns clockwise, the motions of
the individual flagella are independent of each other, caus-
ing the cell to randomly change its orientation. These two
types of behavior were discovered by Berg and Brown
(1972), who dubbed the forward propulsion stage (counter-
clockwise rotation) “runs” and the erratic turning stage
(clockwise rotation) “tumbles.” The motion of the cell over
long times is determined by the distribution of runs and
tumbles. The mean of a run is on the order oft ' 1 s,
whereas the mean time for tumbles is an order of magnitude
shorter. Ifv is the propulsion speed during the run, theE.
coli cells perform a random walk with diffusion constant
D 5 v2t.

The environment must contain chemicals so that the
bacterium can live and function normally. Bacteria require
a carbon source, an energy source, and inorganic salts.

Typical assays for motility are engineered so that there are
sufficient nutrients for normal survival; if, however, these
nutrients are used up, there can be transitions in the internal
state of the bacteria, affecting their motion. For example,
when bacteria exhaust the exogenous carbon source, their
motility increases transiently (Amsler et al., 1993). On the
other hand, exhausting oxygen causes the bacteria to imme-
diately stop moving (Khan and Macnab, 1980). Another
common environmental response is chemotaxis (Pfeffer,
1884; Stock and Surette, 1996), in which cells move up an
external chemical gradient. This response has an origin
different from that of the physiological response described
above: chemotaxis does not occur to fulfill an immediate
nutritional need, nor does it necessarily reflect an attempt to
avoid starvation. Indeed, cells can undergo chemotaxis to-
ward attractants that do not serve any metabolic process
whatsoever.

For E. coli, chemotaxis occurs by constant sampling of
attractant as they move. Careful measurements demonstrate
that the bacteria compute a weighted difference between the
amount of attractant that binds to their receptors during the
previous second of motion and the amount of attractant that
has bound during the three preceding seconds (Segall et al.,
1986). The weighting function used for this computation
was directly measured in impulse response experiments on
single bacteria. When the convolution of the weighting
function with a stimulus is positive, the probability of tum-
bling decreases; this effectively increases the length of runs
in directions of increasing attractant gradient.

The combined effect of the physiological and chemotac-
tic responses of the bacteria motion results in nontrivial
collective behaviors, which have been the focus of inquiry
since Adler’s introduction of assays in whichE. coli move
in migrating “bands.” In Adler’s experiments, the bands
form when cells ofE. coli are placed in an environment
containing substances (oxygen, amino acids, etc.) that the
bacteria both consume and respond to chemotactically. The
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consumption of the substance generates an attractant gradi-
ent, which provokes chemotaxis. The net response is a
well-defined band of cells moving across a capillary tube or
a petri dish (Adler, 1966, 1969).

Recently, Budrene and Berg (1991, 1995) found condi-
tions in which more complex patterns can form in an envi-
ronment that is chemotactically inert. In contrast to Adler’s
experiments, the environmental conditions induce the bac-
teria to excrete an attractant (aspartate) toward which they
undergo chemotaxis. The excretion of attractant means that
there is effectively a long-range interaction among the bac-
teria. These conditions produce patterns that are dramati-
cally different from Adler’s initial experiments. Typical
experiments are performed on agar plates, in which the agar
concentration is low enough that the bacteria can move
freely. The type of pattern depends strongly on the amount
of a single carbon and energy source (succinate) that is
uniformly distributed in the dish. Exposure to succinate is
required for bacteria to perform intracellular reactions pro-
ducing the attractant. At low succinate concentrations, the
bacteria originate in the center of the petri dish and form a
swarm ring that propagates toward the boundary. At higher
succinate concentrations the swarm ring destabilizes and
produces a symmetrical array of dense compact structures
called aggregates.

The focus of the present paper is to present a theoretical
framework for understanding these experimental results. An
adequate theory requires understanding which aspects of the
phenomenology are chemotactic, and which aspects reflect
the changing chemical environment around theE. coli. Our
analysis will show that the movement of the swarm rings is
due to the depletion of succinate around the band of bacte-
ria: chemotaxis holds the band together, but the net motion
is not caused directly by chemotactic fluxes. In contrast,
aggregates result from a purely chemotactic response in the
system, depending only weakly on environmental condi-
tions. As long as the bacteria produce attractant, it is pos-
sible for aggregates to form.

MATHEMATICAL MODEL

There is a long history of mathematical modeling of bacte-
rial pattern formation. The basic equations for the bacterial
densityr and the attractant fieldc are

tr 5 Db¹
2r 2 ¹ z ~kr¹c! 1 ar (1)

tc 5 Dc¹
2c 1 ar. (2)

Equations of this type were first introduced (in this context)
by Keller and Segal (1970), and (with variations) have been
the subject of extensive investigations (see, e.g., Murray,
1989; Oster and Murray, 1989). HereDb is the bacterial
diffusion constant,k is the chemotactic coefficient,a is the
rate of bacteria division,a is the rate of attractant produc-
tion or consumption, andDc is the chemical diffusion con-
stant. Equation 1 includes the diffusion of bacteria, a che-

motactactic drift, and division of bacteria. Equation 2
expresses the diffusion and production of attractant.

ForE. coli, Schnitzer et al. established a direct connection
(Schnitzer et al., 1990; Schnitzer, 1993) between the param-
eters governing the dynamics of the bacterial density (Db

andk) and time-averaged properties of the impulse response
function. There is, therefore, a direct connection between
the response function of a single bacterium and the collec-
tive response of macroscopically many bacteria, providing a
rigorous justification for the equations for the densityr
andc.

However, several recent numerical studies (Bruno, 1992;
Woodward et al., 1995; Ben-Jacob et al., 1995; Tsimring et
al., 1995; Tyson, 1996; Tyson et al., unpublished manu-
script) have argued that the physical processes included in
Eqs. 1 and 2 are insufficient to explain the Budrene-Berg
experiments. In these works several qualitatively different
physical mechanisms were proposed for modeling (numer-
ically generated) patterns that roughly “look like” the ex-
periments. The invoked mechanisms ranged from simple
variations on the model such as nonlinearity in the chemo-
tactic coefficient (Woodward et al., 1995; Keller and Segel,
1970), to novel ideas such as the existence of a second
repellent field or the autocatalytic production of attractant
triggered by waste (Ben-Jacob et al., 1995; Tsimring et al.,
1995). Because all of these studies produced pictures that
look qualitatively like the experiments, it is unclear which
specific features are responsible for the pattern formation.

The goal of this paper is to formulate a minimal theory to
explain the most robust features of the existing experiments,
using known information about the physiological responses
of the individualE. coli. We seek the most simplified model
that is consistent with the known biochemistry and repro-
duces the key phenomonological aspects of the experi-
ments. It will turn out that, as anticipated by the experiments
(Budrene and Berg, 1995), all that is necessary for the
pattern formation is the bacterial density, the attractant, and
a chemical that is necessary for the production of attractant
by the bacteria. (Recent work (Tyson, 1996; Tyson et al.,
unpublished manuscript) has also simulated a model with
only these three ingredients, in an effort to reproduce the
large-scale patterns of the Budrene-Berg experiments. The
present work focuses more closely on the mechanisms for
ring propagation and aggregate formation.) The model leads
to analytic solutions corresponding to both rings and aggre-
gates. The analysis yields qualitative predictions and scaling
laws relating observable quantities. These predictions are in
good agreement with existing experiments.

Below we discuss separately the two main structures that
are observed in the Budrene-Berg experiments, rings and
aggregates. Ring motion occurs on a slow, metabolic time
scale, dictated by the details of the processes through which
the bacteria convert chemicals in their environment into
attractant. In contrast, the instability of the rings and the
formation of aggregates are largely independent of the de-
tails of the environmental conditions, and depend only on
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coarse properties, such as chemotaxis and production of
attractant by bacteria.

RING DYNAMICS

In this section we formulate a theory for the dynamics of
swarm rings. Because the motion of the rings is slow,
metabolic effects are important, and it is necessary to de-
termine which environmental conditions cause the ring to
move. It will turn out that contrary to what might be
expected from dynamical Eqs. 1 and 2, the relevant nonlin-
earities causing propagating rings is not the chemotactic
flux term, but instead involves the rate of attractant production.

It is useful to begin by listing the time scales of the
competing physical processes operating during swarm ring
migration: consider a ring with characteristic thicknessL
and traveling velocityU. The time that it takes for the ring
to move over its thickness istC 5 L/U. The time needed for
the attractant to diffuse over the ring istD 5 L2/Dc. For the
Budrene-Berg experiments,L ' 1021 cm, andU ' 1/3 3
1024 cm/s, yieldingtC 5 3 3 103/s, Dc 5 1025 cm2/s and
tD ' 103 s. The other important characteristic time scale is
that of bacterial division: the doubling time is aroundtdiv 5
104 s. These estimates give the orderingtD , tC , tdiv. The
fastest process in the vicinity of the ring is the diffusion of
attractant, and the slowest process is cell division.

This separation of time scales suggests two approxima-
tions for the local solution in the neighborhood of a ring.
First, cell division only weakly modifies the structure
around the swarm ring, and so can be neglected. (Cell
division does induce a slow time variation of the number of
bacteria in the ring. This has important consequences for the
dynamics, and will be considered in a subsequent section.)
Second, in the vicinity of the ring the attractant diffuses
much faster than the ring moves. Under these assumptions,
Eqs. 1 and 2 become

tr 5 ¹2r 2 ¹ z ~r¹c! (3)

0 5 ¹2c 1 r, (4)

where we have nondimensionalized by choosing the density
scaleDcDb/(akL2), the attractant scaleDb/k, and the char-
acteristic time scaleL2/Db.

These equations are incapable of reproducing the ring
solutions seen in the experiments. To see this, we use the
transformationv 5 ¹c and r 5 2¹ z v, yielding the
equation forv:

tv 1 ~¹ z v!v 5 ¹¹ z v (5)

In one dimension, this is the well-known Burgers equation
(Burgers, 1948). This relationship between the chemotactic
equations and Burger’s equations was noted independently
by R. E. Goldstein (private communication). A solution of
Eq. 5 for a traveling ring with mass per unit lengthM0 is
given byv 5 M0 tanh(M0(x 2 Ut)/4)/2 1 U, corresponding

to the localized density profile

r 5
M0

2

8
sech2SM0~x 2 Ut!

4 D. (6)

The localization of bacteria in the band results from a
competition between chemotactic attraction and diffusive
smearing. The velocityU corresponds to an external attract-
ant gradient across the band. However, in the experiments
no external gradient is imposed, so this solution is incon-
sistent. (We note that in Keller and Segal’s model of Adler’s
experiments (Adler, 1966), the above model also does not
lead to moving bands (in that the cell density becomes
negative!). Keller and Segal solved this dilemma by posit-
ing that the chemotactic coefficientk in Eq. 2 is a nonlinear
function of the attractant concentration.)

Coupling to succinate

How can motion occur without an externally imposed at-
tractant gradient? Note that unlike Adler’s original experi-
ments, in which bacteria create attractant gradients by con-
suming an attractant, in the present experiments the
attractant is actually produced. To understand how motion
can occur, it is necessary to consider the mode of attractant
production. The attractant (aspartate) is produced by the
enzyme aspartase from fumarate and ammonia:

Succinate3 Fumarate1 Ammonia3 Aspartate. (7)

Presumably, cells exposed to succinate convert succinate to
fumarate via the tricorboxyl acid cycle:

Succinate2 H23 Fumarate. (8)

Budrene and Berg (1995) have shown experimentally that
the rate of aspartate production is determined by the con-
centration of exogenous succinate. This succinate is being
exausted by the cells during the experiments. In the follow-
ing, we will argue that it is the depletion of the succinate
that is necessary for the attractant production that drives the
motion of the ring.

The dynamical equations coupling the bacterial density,
attractant, and succinate follow from the fact that the at-
tractant production rate is a linear function of the succinate
concentration. For local bacterial densityr, the rate of
aspartate production isãrf, depending on the product of the
bacterial density and the succinate concentration.

This modifies the attractant production (Eq. 4) and re-
quires an additional dynamical equation for the succinate
concentration. Under the assumptions outlined above about
the relative time scales of the various physical processes, the
full equations become

tr 5 ¹2r 2 ¹ z ~r¹c! (9)

0 5 ¹2c 1 fr (10)

t f 5 2gr 1 b¹2f, (11)
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where we have nondimensionalized the equations using the
same scales introduced above for the density and attractant
concentration, as well as the concentrationf` of succinate
on the plate. The dimensionless succinate consumption is

g 5
rDc

f `
2ãk

, (12)

wherer is the rate of succinate consumption andDf is the
diffusion constant for succinate. The parameterb 5 Df/Db

is a dimensionless measure of food diffusion.
The most important issue in understanding traveling

bands is to understand what is actually driving the ring
forward. There are two possibilities: 1) an imbalance of
chemotactic fluxes, or 2) succinate consumption coupled
with attractant production. We will see below that the sub-
tleties of the bacterial response when the succinate is nearly
exausted determine which of these two driving forces dom-
inates. We will present two different models of the ring
motion: the first model studies Eqs. 9–11. In a distinguished
limit, the model can be solved exactly, and it will turn out
that collective migration results from the fore-aft symmetry
breaking caused by succinate consumption. Indeed, there
are forward-moving solutions even when the bacteria in
front of the band sense a negative gradient stronger than the
positive gradient sensed by the bacteria behind the band.

The construction of a traveling band requires the match-
ing of two different regimes: on the scale of the front,
diffusion of attractant is fast (see above); far from the band
diffusion, diffusion is slower. The matching of the solution
for this model will present a paradox, that traveling solu-
tions do not exist in steady state. In an effort to resolve the
problem, we introduce a second model that takes into ac-
count the fact that when the succinate on the substrate is
exausted, bacteria begin to consume aspartate.

Structure near the band

A traveling wave ansatzr(x 2 Ut), c(x 2 Ut), andf(x 2 Ut)
in Eqs. 8–10 reduces the solution in the regime near the
front to the ordinary differential equations

2Ur 5 r9 2 rc9 (13)

0 5 c0 1 fr (14)

2Uf 9 5 2gr 1 bf 0. (15)

The imposed boundary conditions are that 1) the succinate
concentrationf 3 1 asx3 `; 2) the succinate concentra-
tion f 3 f0 as x 3 2`, where f0 is a constant to be
determined; and 3) the bacterial density approaches zero far
from the ring.

Before proceeding, let us comment on the approximation
that has been made thus far. We have neglected the time
derivative of the attractant concentration by arguing that it
diffuses much faster than the bacteria. On the other hand,

we have not dropped the time derivative in the equation for
the succinate. The reason for this is that, as we will see
below, substantial analytical progress can be made whenDf

is much smaller thanDb. In the limit where food diffusion
is small (b ,, 1), the traveling wave solutions can be solved
exactly. Although this limit does not directly apply to the
experiments, these exact solutions considerably clarify how
succinate coupling can cause ring motion. In the Appendix,
we also consider the limit whereDf ' Db, and show
numerically that the qualitative properties of the exact so-
lutions for b ,, 1 are robust; in particular, the constraints
of matching to the outer solution are identical. In a later
section we consider a modified model for ring motion in
which the correct limit is employed.

The analysis begins by definingS5 c9, so that the second
equation becomesS9 5 2fr. The equations can be solved
exactly by consideringr andSas functions off instead of a
function of x. This can be done with the transformation

d

dx
5 f 9

d

df
5

g

U
r

d

df
,

where the second equality follows from Eq. 15 (withb 5
0). Equations 13 and 14 become

rf 5
U

g
~2U 1 S! (16)

Sf 5 2
U

g
f, (17)

which can be integrated immediately to give

S5 A 2
U

2g
f 2 (18)

r 5 B 1 U/g~A 2 U!f 2
U2

6g2 f 3. (19)

Imposing the boundary conditions thatr( f 5 f0) 5
r( f 5 1) 5 0 gives

B 5 2 U2/~6g2!~ f0 1 f 0
2!

and

A 5 U 1 U/~6g!~1 1 f0 1 f 0
2! .

The velocity of the solution can be related to the mass
either by integrating Eq. 13 or just by computing

Edx r 5 Edf
r

f 9
5

U~1 2 f0!

g
5 M0,

so

U 5
gM0

1 2 f0
. (20)
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The complete profiles are

S~ f ! 5
M0

1 2 f0
FSg 1

1 1 f0 1 f 0
2

6 D 2
f 2

2G (21)

r~ f ! 5
M0

2

6~1 2 f0!
2 ~1 2 f !~ f 2 f0!~1 1 f 1 f0!. (22)

The solution has two free parameters,M0 and f0. The
former is fixed by the number of bacteria in the ring; the
latter is fixed by the condition that the attractant gradient
behind the frontS( f0) matches the attractant gradient far
behind the moving front. This matching condition fixesf0
behind the front, and thus the ring velocity.

Before considering the matching condition in more detail,
we remark on qualitative features of these solutions. An
interesting feature is that at smallg the ring moves forward,
even when the attractant gradient in front of the band has a
negative sign and is stronger than the gradient in back of the
band! Thus the motion of the ring does not result from an
imbalance in chemotactic fluxes on the two sides of the ring,
but instead is a result of the effect of the depletion of
succinate on the attractant production. As an example, when
f0 5 0 and g 5 1/12, the attractant profile is perfectly
symmetrical, and the band still moves at velocityU 5
M0/12. The role of the attractant gradient is to localize the
bacteria in the band. The density profile is asymmetrical,
however, regardless of the attractant distribution, because of
the asymmetry in the succinate.

The spatial dependence follows from integratingf 9 5
g/Ur 5 r/M0 and using Eq. 22 forr( f ). As an example, if
f0 5 0, the solution is

f 5 S expM0/6x

2 coshM0/6xD
1/2

, (23)

which implies the density profile

r 5
M0

2

6 S exp2 M0/12x

2 coshM0/6x3/2D. (24)

This profile is plotted in Fig. 1 and is valid for all nonzero
g. Note the asymmetry in the profile: the decay rate of the
cell density on the trailing edge is slower than the decay rate
on the leading edge. The attractant profile and succinate
profile are also shown in Fig. 1 in the limit of smallg.

The profile differs from that in the front (Eq. 6) found
above for the case where there is no food consumption,
which is perfectly symmetrical.

Matching to outer solution

Now we consider matching to attractant gradients far from
the front. This matching determines the value off0 and thus
the velocity of the ring. At a distanceDc/U ' 3 mm from
the front, it is not valid to assume that the attractant diffu-
sion is fast. BecauseDc/U is much larger than the charac-
teristic width of the band, in this regime the bacteria density

essentially vanishes, and the succinate concentration is cor-
respondingly constant. The equation for the concentration
of attractant is

tc 5 ¹2c 1 r~x 2 Ut!f ~x 2 Ut! (25)

whererf is the source of attractant produced by the moving
band of bacteria. On a length scale much larger than the
width of the band, the attractant source can be approximated
by r(x 2 Ut)f (x 2 Ut) 3 bd(x 2 Ut). The strength of the
delta functionb 5 *2`

` r(y)f (y)dy 5 M0(1 1 f0)/2. The
solution to Eq. 25 is

c~x, t! 5 Edx0dt0
b

Î4p~t 2 t0!
d~x0 2 Ut0!expF2~x 2 x0!

2

4~t 2 t0!
G.

(26)

As t 3 `, after the transients die out, the concentration
approaches the steady-state solution,

couter~x, t! 5
M0

2U
~1 1 f0! x , Ut (27)

5
M0

2U
~1 1 f0!e

2Ux x . Ut.

This solution must be matched to the front solution con-
structed above. The matching condition is that attractant
gradients c9outer(x)ux3Ut1

3 S(1), and c9outer(x)ux3Ut2
3

S( f0), whereS(1) andS( f0) are the far-field attractant gra-
dients from the inner solution in Eq. 21. Note that because
the jump in attractant gradient across the front is the same in
the inner and outer regions, the conditions onS(1) andS( f0)
are equivalent. This matching condition leads to the deter-
mination of f0, and thus the velocity of the front.

FIGURE 1 Traveling wave solution for the ring withf0 5 0. The
lowermost figure gives the succinate profile, the middle profile gives the
attractant concentration, and the uppermost profile gives the density pro-
file. All profiles are forM0 5 1, in the limit of smallg.
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We now proceed with the matching. Equation 27 implies
that in steady state the matching condition is thatS( f0) 5 0.
Equation 21 implies thatf0 5 1⁄4 6 =9/161 3g. Neither of
these solutions are in the physical range 0# f0 # 1. Thus
it is not possible to consistently match the two regimes!

The physical reason for this problem is that when the
attractant gradient behind the front vanishes, there is noth-
ing to keep the bacteria in back of the ring from diffusing
away from the band. This difficulty is not a result of the
approximations employed, but is an inherent problem aris-
ing from the fact that the steady-state profile of a moving
band producing a constant amount of attractant per unit time
has no attractant gradient behind the front. From formula 21
for the attractant profile in the band, the smallest attractant
gradient that holds the traveling bands together occurs when
f0 5 0, whereScrit 5 M0(g 1 1/6).

How is this problem resolved?
1. One possibility is that the traveling band seen in the

experiments is not in steady state. That is, there is insuffi-
cient time for the solution in Eq. 26 to approach steady state.
The time it takes for convergence tocouter depends on the
boundary conditions on the attractant far behind the front. In
the experiments, there must be sufficient time for the at-
tractant production to fill up the entire interior of the swarm
ring to the level dictated by the steady solution. Because the
amount of time needed for attractant to diffuse across a
typical swarm ring of radius 2 cm is on the order of 43 105

s and thus is already on the order of the total time of the
experiment, it is implausible that a steady state is reached.
Before the steady state is approached, there is a positive
attractant gradient behind the band. As long as this gradient
is larger than the critical gradientScrit, the band will move
forward. Of course, within this scenario, the ring motion is
only a transient behavior. The reason the ring does not stop
in the experiments is that a steady state is not achieved
before the bacteria reach the end of the petri dish.

2. Another possible resolution is that the experiments are
in steady state and attractant is degraded behind the front.
When the succinate concentration is low, there is a natural
mechanism for triggering aspartate consumption: namely,
succinate serves as a carbon source forE. coli metabolism.
When it is exausted, the only carbon source that is left for
metabolic function is the attractant itself. Thus it is plausible
that under conditions of low succinate, the bacteria consume
aspartate. In other experimental situations (e.g., the original
experiments of Adler, 1966), aspartate consumption is com-
mon. If such attractant consumption occurs, the rate of
consumption would cause an attractant gradient behind the
band. The strength of the gradient would be determined by
the rate of degradation of attractant.

Steady bands with aspartate consumption

This mechanism of aspartate consumption is sufficiently
plausible that we proceed to formulate a model for the
structure of the band under this assumption. There is one

additional experimental fact that is necessary: there is a time
delay tdelay ' 20 min after which a bacterium in a low
succinate environment begins consuming aspartate. The
reason for this is that aspartate consumption uses a chemical
pathway different from that of succinate consumption,
which requires a shift in the bacteria metabolism. (There is
a subtlety of aspartate consumption that we are not going to
treat here: namely, succinate serves primarily as a carbon
source forE. coli. The bacteria also need nitrogen to func-
tion normally. The primary nitrogen source is ammonia salts,
which are fixed in every experiment at the initial concentration
of 3 mM. Eventually, of course, the ammonia will be con-
sumed. It is known that under these conditions aspartate
becomes a nitrogen source (Reitzer, 1996). Hence aspartate
consumption is probably triggered in the experiments both
by the depletion of the ammonia salts, as well as the
depletion of succinate. We believe that the essential features
of the model are the same in each case; because current
experiments systematically vary succinate (and not ammo-
nia), we focus only on this case.) The consequence of this
time delay is that there is a region of size=Dbtdelay' 1 mm
behind the band, where the succinate concentration is es-
sentially constant and aspartate is not consumed. The size of
this region is larger than the width of the band, which
motivates dividing the solution into three regions: the front
of the band, where attractant diffusion dominates; the back
of the band, where attractant diffusion and consumption are
balanced; and the region of the band. For reasons that will
become clear, within this model it is possible to proceed
analytically when the food diffusion constant is large (i.e.,
Df 5 Dc, the physically appropriate limit).

The solution near the band obeys

2Ur9 5 r0 2 ~rc9!9 (28)

0 5 c0 1 fr (29)

0 5 f 0 2 g̃r, (30)

whereg̃ 5 (DbDcr)/(f `
2akDf). When the band width is much

narrower than the diffusive scale, the food equation de-
couples from the density and attractant equation. The suc-
cinate concentration is a constantf0 across the band and
increases to its initial value in front of the band. In this limit,
both r and c reduce to the Burger’s profiles constructed
above! The solutions are

rinner 5
M0

2

8
sech2SM0~x 2 Ut!

4 D; (31)

cinner 5 2
M0 f 0

2
tanh~M0~x 2 Ut!/4! 1 U (32)

f 9inner 5 A 1
g̃M0

2
tanh~M0~x 2 Ut!/4!. (33)

The free parameters in the solution are the mass per unit
length M0 of the ring, the succinate concentrationf0, the
average succinate gradientA, and the ring velocityU.
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In front of the band, the attractant (succinate) satisfies a
diffusion equation with a source (sink), as in the previous
subsection. The attractant concentrationcfront 5 Be2Ux, and
the succinate concentrationffront 5 1 2 g̃M0/Ue2Ux. In back
of the band, the succinate concentration is constant, and the
aspartate concentration is set by the balance of diffusion and
consumption: the steady-state attractant profilecback obeys
c0back5 acback, wherea is the consumption rate (depending
on both the rate of aspartate consumption and the number
of bacteria that are consuming). The solution to this is
cback 5 Be=ax.

These three regimes must be matched to each other.
Matching the attractant and succinate gradients of the back
to the inner solution yieldsA 5 g̃M0/2 andM0 f0/2 1 U 5
B=a. Continuity of the succinate concentration across the
front implies that

U 5 g̃
M0

1 2 f0
. (34)

Matching the solution in front of the band to the inner
solution yields2BU 5 2M0 f0/2 1 U. These equations
can be solved simultaneously forB, U, and f0. In the
limit of slow food consumptiong̃ ,, 1, the solution is
B 5 M0 f0/=a, U 5 g̃M0/(1 2 2g̃), andf0 5 2g̃.

Comparison to experiments

To summarize, we have constructed two different models
for traveling bands. The first solution uses succinate con-
sumption to power the ring. Because of the fact that a band
that produces a constant amount of attractant per unit time
has no attractant gradient behind it in steady state, this
solution is necessarily transient. The second solution gets
around this difficulty by using the biochemical fact that at
low succinate concentration, the bacteria consume aspartate
to power a steady motion. For the reasons discussed above,
on the basis of the present experiments, it is not possible to
distinguish between these two models. Indeed, both solu-
tions provide a biologically consistent mechanism for ring
migration in the absence of an externally imposed gradient.
Moreover, the qualitative properties of the both solutions
match well with experiments. For example,

• The velocity of the swarm ring (formulae 20 and 34)
decreases with increasing succinate concentration. This
inverse relation between velocity and succinate concen-
tration is also demonstrated by the experiments (Budrene
and Berg, 1995). In the Fischer’s equation model for ring
motion, the ring velocity is independent of the substrate
concentration (Murray, 1989; Tsimring et al., 1995).

• The velocity of the swarm ring increases linearly with the
number density of bacteria in the ring. Thus the ring
accelerates as it moves across the plate. Experiments
verify this tendency (Budrene and Berg, 1995). (Another
possible source for the acceleration of the band as it
moves across the plate is effects of the curvature of the
ring. If , is the thickness of the band, andR is the radius

of the swarm ring, we expect these to contribute a cor-
rection of orderD/(Ur) ' 0.01 to the velocity. This is too
small to explain the observed acceleration in the exper-
iments (Budrene and Berg, 1995).)

• The characteristic thickness of the ring scales inversely
with the cell density per unit lengthM0 of the ring. As the
ring moves across the dish, it will therefore sharpen; we
have observed this qualitatively in the experiments, al-
though quantitive measures have not yet been carried out.

Relation to Keller-Segal bands

It is interesting to contrast the swarm ring solutions pre-
sented here with those constructed by Keller and Segal
(1970) to describe the original bands of Adler (1966). The
crucial difference between the Adler bands and those in the
present experiments is that in Adler’s experiments the bac-
teria consumed attractant, whereas in the present experi-
ments the bacteria consume a reactant for the production of
attractant. In constructing a traveling solution for a bacterial
band driven by attractant consumption, Keller and Segal
also arrived at the dilemma discussed above (Keller and
Segel, 1970; Keller and Odell, 1975) that there are no
traveling solutions to Eqs. 1 and 2 (with positive bacterial
density) without an external attractant gradient. Their ap-
proach to resolving the dilemma differs from that presented
here: they introduced a nonlinearity in the chemotactic
response coefficientk in Eq. 1. They found that for traveling
solutions to the basic chemotactic Eqs. 1 and 2 to exist, it
was necessary that the chemotactic response coefficientk
diverge with vanishing attractant concentration. Physically,
steady ring motion requires that the bacteria in regions with
very small attractant respond quickly. Otherwise, if this
assumption is not fulfilled, a nonsteady “diffusive” tail of
bacteria is left behind the front.

Experiments on the chemotactic response ofE. coli have
subsequently demonstrated that this assumption about the
chemotactic response is invalid. Impulse response experi-
ments by Berg and collaborators (Segall et al., 1986; Berg,
1988) measure the chemotactic constant directly, and find
no dramatic increase in chemotaxis as the attractant con-
centration vanishes.

The present study gives another mechanism that may
cause the ring to move. In the context of the Budrene-Berg
experiments, the mechanism requires 1) the existence of
another external field that the bacteria consume and 2) that
the rate of attractant production depend on the concentration
of the additional field. This mechanism can also be gener-
alized to encompass Adler’s experiments, in which the
bacteria consume the attractant instead of producing it. In
this case we again require the presence of an additional
field, and that the rate of attractant consumption decreases
with increasing concentration of the additional field. As a
simple model for how this might work, we leth denote the
concentration of an additional (nonchemotactic) field. The
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equations for a traveling band are then

2Ur 5 r9 2 c9r (35)

0 5 c0 2 F@h#r (36)

2Uh9 5 2gr 1 bh0, (37)

whereF[h] reflects how the consumption of the attractantc
depends on the presence of the fieldh. An approximate form
for F[h] might beF[h] 5 1 2 ah. In the b 5 0 limit, the
equations can again be solved exactly. The solutions dem-
onstrate that localized traveling rings exist whenever the
nonlinearity couplingh to the attractant depletion is strong
enough:a . 3g.

There is some evidence for this type of mechanism in the
Adler experiments. Adler (1966) studies migrating bands
both in capillary tubes and in agar plates. In all experiments
cited, bands only form when there are two or more consum-
able chemicals that are interacting, which is consistent with
the above mechanism. The only experiment Adler mentions
that has only one active chemical (galactose) shows no
rings. (Adler also does experiments with only oxygen,
which show the formation of rings. However, he states that
these rings “oxidize an endogenous energy source known to
be present.” Thus there is another active chemical for the
oxygen rings.) The complication in interpreting Adler’s
experiments is that generally the bacteria are chemotactic
toward more than one of the chemicals that are being
consumed. Thus the analog of the attractant fieldc in the
above equations would be a linear combination of the con-
centrations of the various chemicals toward which the bac-
teria are chemotactic. More work along these lines is
necessary.

AGGREGATE FORMATION

The other major structure appearing in the experiments are
aggregates. The fundamental feature of aggregate formation
is that they form on a much faster time scale than the motion
of the ring. Whereas the swarm ring moves across the petri
dish in about a day, aggregate formation occurs in several
minutes. The theory of aggregate formation is based on the
fact that the chemotactic Eqs. 3 and 4 have solutions that
form finite time singularities, with the bacterial density
diverging. These solutions exist in both two and three di-
mensions. Two-dimensional collapse corresponds to a cy-
lindrical mass of bacteria contracting to a line; three-dimen-
sional collapse corresponds to a spherical mass of bacteria
contracting to a point. Note that one-dimensional collapse,
in which a mass of bacteria collapses to a two-dimensional
plane in finite time, cannot happen; this is because the
one-dimensional chemotactic equations are equivalent to
Burger’s equation, for which singular solutions do not exist.
The physical mechanism for the singularities is that the
accumulation of bacteria increases the attractant production,
which further increases the bacterial density. The fact that
chemotactic equations can admit singular solutions was

argued long ago by Nanjudiah (1973), and elaborated in the
definitive paper of Childress and Percus (Childress and
Percus, 1981; Childress, 1984), who dubbed this phenom-
enon “chemotactic collapse.” Recent studies have examined
chemotaxis collapse in generalized mathematical models
(Raschle and Ziti, 1995).

We now discuss the structure of the collapsing solution.
During the initial stages of aggregation, the depletion of
succinate is unimportant. Succinate consumption occurs on
a time scaleg21, whereas aggregate formation is singular
and thus happens faster. Close enough to the collapse point,
the high bacterial densities will cause the depletion of all of
the oxygen near the aggregate, which will stop bacterial
motion and chemotactic aggregation (Anderson and von
Meyenburg, 1980; Adler and Templeton, 1967). This effect
is considered in detail below.

To start, we consider the coupled Eqs. 3 and 4. To study
the time dynamics of the singular solutions, we take the
three-parameter family of initial conditions,

r~r, t 5 0! 5
2~p 2 1!Nap21

~a 1 r2!p , (38)

and numerically solve the “radially symmetrical” versions
of Eqs. 3 and 4 by using a standard implicit finite-difference
scheme with adaptive mesh refinement. In two dimensions,
the parameterN is the total number of bacteria. Figure 2
shows the bacterial density for a case where a singularity
occurs (N 5 50, p 5 4, a 5 1). The initial profile quickly
develops a singularity at the origin. The inset shows the
dependence of the maximum bacterial density as a function
of the characteristic widthL of the collapsing region, which
obeys the scaling lawr(0) ' L22.

FIGURE 2 Numerical simulations of the finite time singularity in the
bacteria density. The solid, dotted, dashed, and dot-dashed lines correspond
to t 5 0, t 5 7.69 3 1024, t 5 7.89 3 1024, and t 5 7.90 3 1024,
respectively. The inset shows the maximum density versus characteristic
width of the singularity (solid line), as well as the scaling lawr(0) ' L22

(dotted line).
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The entire singularity is described by a similar solution of
Eqs. 3 and 4, of the form

r~r, t! 5 L22R~rL21! (39)

c~r, t! 5 S~rL21!. (40)

The characteristic scaleL has the time dependenceL '
(t* 2 t)1/2, up to logarithmic corrections. The logarithmic
corrections are an interesting mathematical property of the
solutions (Herrero and Velazquez, 1996; S. C. Venkatara-
mani et al., unpublished manuscript) and will be discussed
in a subsequent publication. We remark that (modulo the
logarithms) the same scaling laws are observed in our
simulations for both two-dimensional collapse and three-
dimensional collapse.

Extensive numerical simulations show that the occur-
rence of collapse into dense aggregates depends strongly on
the number of bacteria in the initial cluster, but only weakly
on the parametersa andp in the initial conditions above. For
N below the “Chandrasekhar limit”N*, the bacteria decay to
a uniform state. AboveN* singularities always form. In two
dimensions,N* 5 4 in dimensionless units; in three dimen-
sions the critical mass depends on the system size (S. C.
Venkataramani et al., unpublished manuscript). The exis-
tence of a criticalN in two dimensions was originally noted
by Childress and Percus (1981) and Childress (1984).

For the present experiments, the critical number in two
dimensions is

N* ~2D! 5
4DbDc

ka
, (41)

where the parameters are defined in Eq. 1. Measurements of
Db and k have been made by Berg and Turner (1990) for
swimming in a liquid medium. Their experiment consists of
two closed cells joined by a 0.05-cm permeable plate. By
controlling the relative attractant concentrations in the two
cells, and counting the number of bacteria migrating from
one cell to the other, it is possible to extract bothDb andk.
Berg and Turner report thatDb 5 6.6 3 1026 cm2/s. From
Figure 4 of their paper, we have extracted the chemotactic
coefficient k 5 10214 cm5/s. Both of these numbers are
consistent with expectations: the diffusion constantDb 5
,v, where, (' 30 m) is the typical run length andv (' 30
mm/s) is the swimming velocity (Berg, 1988). The chemo-
tactic coefficient can be similarly expressed ask 5 c,4v,
where the constantc represents the strength of the chemo-
tactic response. The attractant production ratea ' 103

molecules/s/bacteria (Budrene and Berg, 1995). Putting
these numbers together implies that in a liquid medium,
N*(2D;liquid) ' 103/cm. Most of the experiments dis-
cussed in this paper take place in agar. Here it is known
(Wolfe and Berg, 1989) that obstructions in the agar shorten
the characteristic run length,, leading to a dramatic de-
crease in bothk andDb. The critical number in agar is

N* ~2D;agar! < 103/cm
1

,agar
3 ,

where,agar is the run length in agar. A 10-fold decrease in
the run length leads to a 1000-fold increase inN*.

There are several strong experimental indications that the
aggregates in the Budrene-Berg experiments indeed repre-
sent chemotactic collapse:

• First, the time scale for aggregate formation is much
faster than any other experimental time scale, a hallmark
of singularities.

• A second experimental indication that chemotactic col-
lapse is occurring comes from experiments in which the
bacteria are homogeneously distributed in a liquid me-
dium (see Budrene and Berg, 1991). In this case, the
bacteria are much more mobile, and in a short time (3–5
min) the medium is filled with three-dimensional aggre-
gates. Experiments demonstrate that the number of ag-
gregates scales linearly with the initial number of bacte-
ria over a wide range of cell densities. For the initial
bacterial densities 107, 106, and 23 105 cells/ml, the
number of final aggregates was counted to be 287, 33,
and 6, respectively; as predicted, a 10-fold (fivefold)
decrease in the bacteria density leads to a 10-fold (five-
fold) decrease in the number of aggregates. At much
higher bacterial concentrations than 107 cells/ml, the
process of secondary merges of initial aggregates occurs
too rapidly to accurately count the number of aggregates.
These experiments were performed with a thin layer of
liquid covering a petri dish. More quantitative interpre-
tations of these experiments are discussed in Appendix 3.

• Another (visual) indication of singular collapse is shown
in Fig. 3. The aggregation produces very densely packed
structures, with a density so high in the center of the
aggregate that light cannot penetrate through the layer.

Of course, in the actual experiments the aggregation singu-
larity does not proceed until the bacterial density is infinite.
What stops the singularity? We first note that because the
attractant concentrationc does not diverge at the collapse
point, the saturation of the chemotactic response at high
attractant concentration (Dahlquist et al., 1972) cannot stop
the collapse. Correspondingly, we also note that bacterial
division does not modify the collapse because the rate of
division ar ' a(t* 2 t)21 is asymptotically smaller than
tr ' (t* 2 t)22 when t 3 t*.

There are essentially three possibilities for stopping the
collapse:

1. Nonlinearities in the cell division rate can stop the col-
lapse as long as they are strong enough. For a cell
division ratear(a 2 br), the nonlinearity' r2 ' t r
whenr ' (t* 2 t)21. Thus ifb is high enough, we expect
this to arrest the collapse. This effect is apparently ob-
served in the simulations of Tyson et al. (1997).

2. Another possibility is depletion of succinate, which
would halt (and indeed eventually reverse) attractant
production. Becauset f ' 2r ' (t* 2 t)21, the succi-
nate will vanish after a finite time. When this occurs, the
bacteria will continue to migrate up the attractant gradi-
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ent already produced, although the gradient will not
steepen further.

3. The effect that we believe is most relevant for stopping
collapse is oxygen depletion. It has been shown (Khan
and Macnab, 1980; Anderson and von Meyenburg,
1980) that exausting oxygen causes the bacteria to be-
come immobile immediately. The fact that present ex-
periments (Budrene and Berg, 1995) find that the col-
lapse leaves a residue of immobile bacteria gives strong
support to this mechanism.

At what bacteria density is oxygen depleted?
The dynamics of oxygenX is described with a diffusion

equation with depletion caused by bacterial density:

tX 5 Doxygen¹
2X 2 br.

Using the similarity solution for the collapsing aggregate
gives

tX < 2b
1

L2 FSr

LD,
or X ' X` 1 b log(t* 2 t), where X` is the oxygen
concentration away from an aggregate. This implies that the
oxygen is depleted a timet* 2 t ' exp(2 X`/b) before the
collapse singularity. The fact that the maximum density of
the collapsing solution scales like (t* 2 t)21 implies that the
maximum bacterial density in the aggregatesrmax is on the

order of

rmax , expSX`

b D. (42)

As X` increases, the maximum density increases exponen-
tially within the aggregates, so that a twofold increase in
oxygen density leads to ane2 increase in the maximum
bacterial density. This relationship has not yet been tested in
experiments. Because the oxygen concentration in the petri
dish is set by the atmospheric pressure, we hope to test it in
the future by studying the aggregate densities as a function
of the overhead oxygen pressure in a closed vessel. Presum-
ably, if the oxygen concentration is high enough,rmax will
approach the “hard packing” limit of the bacteria.

COLLAPSING INSTABILITY OF A SWARM RING

To complete our picture of the experiments, it is necessary
to understand how the swarm ring destabilizes into aggre-
gates. A natural possibility for how this might happen is via
a linear instability of the ring, namely, modulating the
bacterial density along the ring causes more attractant to be
produced where the bacterial density is highest. The en-
hanced attractant concentration will cause bacteria to flow
toward this region, enhancing the concentration even fur-
ther. This instability mechanism is well known to operate in
other situations. For example, during the streaming insta-
bility of D. discoideum, fluctuations in the local cell density
produce fluctuations in the cAMP production, with chemo-

FIGURE 3 (A) Bacterial distribution far from an aggregate in a growing colony, obtained by phase-contrast light microscopy. White dots represent the
bacteria. (B) Densely packed bacteria in an aggregate. The central dark spot represents such extreme local cell density that light does not penetrate the layer.
The bright halo around the central spot corresponds to intermediate densities. Colonies were grown as in Budrene and Berg (1991).
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taxis toward regions of higher concentrations (Bonner,
1967; Lee et al., 1996; Hofer and Maini, 1997; Kessler and
Levine, 1993; B. N. Vasiev et al., 1994; Hofer et al., 1995).

For the present experiments, this instability argument is
both conceptually appealing and straightforward to demon-
strate mathematically. Appendix 2 analyzes the stability of
the inner region of the traveling bands constructed above
and demonstrates the existence of a linear instability. This
corroborates the results of all computer simulations to date
of the Budrene-Berg experiments (Bruno, 1992; Woodward
et al., 1995; Ben-Jacob et al., 1995; Tsimring et al., 1995;
Tyson, 1996; Tyson et al., unpublished manuscript), which
exhibit (one-dimensional) traveling rings destabilizing via
transverse instability into spots of bacteria. The fact that
these different computer simulations assume different dy-
namics (agreeing to varying degrees with that proposed
here) implies that this instability mechanism is robust.

However, as is emphasized in both the preceding section
and in Appendix 3, there is more to aggregate formation
than just a linear instability. In fact, Appendix 3 demon-
strates that there are both qualitative and quantitative dis-
crepancies between what is expected from strongly nonlin-
ear events (and what is actually observed in experiments)
and what would be expected from a purely linear instability.

To illustrate this point, consider the destabilization of the
swarm rings in a hypothetical two-dimensional experiment:
the linear instability of Appendix 2 predicts a most unstable
wavelengthc/M0, whereM0 is the number of bacteria per
unit length of the ring. Hence linear theory predicts that will
be on the order ofc bacteria per aggregate. The nonlinear
threshold for aggregate formation is logically independent
of this number. For this model, the number of bacterial
aggregates formed from the linear instability exceeds the
nonlinear threshold.

In the experiments, despite the appearance of a two-
dimensional plate, the aggregates are actually three-dimen-
sional objects. The plate thickness is small (' 0.5 mm) but
finite. (In D. dictosteliumexperiments, the cells are a mono-
layer on the agar surface, in contrast to the situation here,
where the bacteria uniformly fill the agar plate (before the
instabilities).) Before aggregates form, the bacterial density
is uniform across the plate thickness. As in the two-dimen-
sional example discussed above, there is a critical threshold
for aggregate formation in three dimensions; that in 3D
depends on the size of the box in which the aggregate is
confined (Brenner et al., 1997). Hence we expect an inter-
play between linear and nonlinear instabilities.

The sequence of events that actually occur in the exper-
iments presumably depends on an interplay between the
initial number of bacteria placed on the petri dish (and
hence the number density in the swarm ring) and the values
of the parameters (Db, k, Dc, a) and biochemical effects
(above). At present, all we can do is admit that there are a
number of theoretical possibilities, and then give evidence
for possible causes of what seems to occur in the experi-
ments. The possible causes are:

1. The ring is linearly unstable (as computed in Appendix
2) and breaks directly into aggregates. This scenario is the
one that is demonstrated by all computer simulations carried
out to date. However, as implied above, there is serious
reason to question those results, on the basis of the validity
of the assumed biochemical effects, and even on the basis of
the two-dimensionality of the simulations. Experiments are
three-dimensional, and there are solid theoretical reasons to
believe the difference between two and three dimensions is
crucial.

2. Despite our calculation, the ring is linearly stable. This
could happen if we neglected important biochemical effects
in our model of the swarm ring, or if the interplay between
the outer and inner solutions neglected in our stability
analysis played an important role. In this scenario, the
instability of the swarm ring is a nonlinear effect. That is, as
the ring expands the number of bacteria multiply. Because
if M is the mass per unit length of the ring, then

Ṁ 5 aM 2
U

r
M, (43)

wherea is the reproduction rate,r is the radius of the ring,
andU is the velocity. The mass of the band as a function of
the distance from the center of the dish follows from ap-
proximatingṀ ' UrM and usingU 5 gM/(1 2 f0). This
gives the solution to Eq. 43 as

M~r! 5
~1 2 f0!a

2g
r 1 Cr21, (44)

WhenM(r) exceeds the critical limit for collapse, the ring
will collapse into a cylinder (which will subsequently de-
stabilize into aggregates). A sketch of this possibility is
shown in Fig. 4. From the top view, the ring is one-
dimensional, but because of the finite thickness of the petri
dish, a side view shows there is a three-dimensional struc-
ture. Note that becauseM(r) is only a linear function ofr,

FIGURE 4 Sketch of instability of the swarm ring in a petri dish. The
figure on the right shows a top view of the dish, with the circle depicting
the swarm ring. The figures on the right denote a side view (including the
finite thickness of the dish). The upper figure depicts the swarm ring before
the instability, and the lower figure depicts the collapse of the ring into a
cylinder.
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the number of bacteria in the ring increases only by a factor
of 10 in the course of the experiments, so this scenario
requires that the number of bacteria in the initial swarm ring
is close to the critical number.

3. Another possibility is that the ring is stable, and the
formation of aggregates proceeds when the system directly
crosses the nonlinear threshold for 3D aggregate formation
(avoiding the cylinder stage entirely).

4. Finally, the ring could be linear unstable (as calculated
in Appendix 2), but aggregate formation still could not
happen until a nonlinear threshold is crossed. Within this
scenario, aggregate formation could happen via either route
2 or route 3. The result of the linear instability would be that
the density in the ring is time dependent, with modulations
in the density in the direction transverse to the ring, even
during the (seemingly) steady forward propagation stage.

On the basis of theory alone, it is not currently possible to
distinguish these scenarios. It is even possible that the
scenario that occurs depends on details of experiments that
have not been systematically controlled. What do the ex-
periments say? Figure 5 shows a photograph of a swarm

ring both immediately before and immediately after it starts
to become unstable. It is seen that the ring is initially rather
diffuse, and then undergoes a transition to a cylindrical
shape, as described in Fig. 4.

The collapsing cylinder undergoes secondary instabilities
to the formation of aggregates. The mechanism for the
secondary instability is that density inhomogeneities in the
collapsing cylinder cause an increase in the attractant con-
centration where the density is highest. This results in
attractant gradients along the axis of the cylinder, which
cause transverse flows of bacteria. The transverse flows
cause the cylinder to break into three-dimensional aggre-
gates.

How far does the swarm ring have to travel from the
center of the dish before it destabilizes? Using formula 44
for the mass of the band as a function of the distance from
the center of the dish givesM(r) ' ar/g at large radii. The
instability occurs when the mass per unit length exceeds the
critical massN* for collapse, which happens at a radial
distancer* from the origin, where

r* < N*g <
1

f `
2 . (45)

At low enough succinate concentrations, the critical radius
is larger than the size of the petri dish, so that the instability
does not occur. At high concentrations of succinate, the ring
moves more slowly, but the doubling time of bacteria re-
mains constant. Thus enough mass for collapse accumulates
at a smaller radius.

This dependence ofr* on food concentration (Fig. 6)
agrees with experiments; as an illustration we show the
critical radiusr* plotted against the thicknessh of the agar
layer for a fixed amount of food in the dish. The three-
dimensional food concentrationf `

3D is held fixed in the
experiments. The two-dimensional food concentrationf` is
related to the three-dimensional one byf` 5 hf `

3D, so that
increasingh at fixed f `

3D is equivalent to increasingf`. As
predicted, the swarm ring radius decreases with increasingf`.

The number of bacteria per unit length of the ring when
the instability occurs is predicted to be that given in Eq. 41.
As stated above, the exact number depends on knowing the
diffusion and chemotactic constants for migration in agar,

FIGURE 5 Structure of the swarm ring (magnified view) immediately
before and after collapse visualized by scattered light. From top to bottom:
Before collapse a traveling swarm ring looks like a dense band of cells,
which transforms into a cylindrical structure that further collapses into
aggregates. The time intervals between the first and the second pairs of
pictures were 6 min and 3 min, respectively. A colony ofE. coli HCB 317
was grown on 2 mM succinate (see Budrene and Berg, 1991). The frames
are from a time-lapse recording made with a Hamamatsu model XC-77
CCD camera on a JVC model BR-9000U cassette recorder and were
printed with a Sony model UP-870MD video printer. The recording was
made against a flat-black background with illumination slantwise from
below (see Budrene and Berg, 1991).

FIGURE 6 Measurements of the critical radiusr* as a function of the
thickness of the agar layer, for fixed food concentration.
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which are not known exactly. However, assuming that the
run length decreases by a factor of 5 (a conservative esti-
mate based on Figure 2 of Wolfe and Berg, 1989) gives
N* ' 105 cm21. This estimate is quite reasonable in view of
the experiments.

Finally, we remark that these experiments demonstrate
that the instability is either via scenario (2) or (4) outlined
above. In particular, we cannot rule out or rule in (from
either experiments or theory) the presence of time-depen-
dent structures in the band before the collapse. This topic is
left to a future investigation.

CONCLUSIONS

This paper represents the first attempt to define a model of
the Budrene-Berg bacteria experiments by combining che-
motaxis with known biochemical processes operating be-
tween the cells and their environment. We have presented a
theory of the basic structures observed in bacterial pattern
formation, swarm ring migration, and aggregate formation.
Our description is based on two simple ideas. 1) Swarm ring
migration is caused by the depletion of a chemical used in
the process of attractant production. A steady swarm ring
requires attractant depletion far behind the front. In general,
solutions for swarm rings can exist whenever the rate of
production (or depletion) of a chemotactic chemical de-
pends on the concentration of another external field. 2)
Aggregate formation, as well as the instability of the swarm
ring, results from the singular collapse of a cloud of bacteria
into more compact structures of lower dimensionality. Col-
lapse into a spatial point is the basic mechanism for aggre-
gate formation; cylindrical collapse into a line is the mech-
anism for swarm ring instability.

The mechanism for swarm ring migration by coupling to
two external fields (one of which is chemotactic) allows the
bacteria to migrate in the absence of externally imposed
gradients. A single motile bacterium without chemotaxis
due to the absence of external gradients of attractant would
reach the edge of the agar plate in 100 days. The present
mechanism explains the observed migration in;40 h. Our
mechanism differs from previous models of ring motion.
Essentially two other mechanisms have been proposed: 1)
The study of Keller and Segal (1970) ascribes ring motion
to a nonlinear chemotactic coefficient that diverges with
vanishing attractant concentration. 2) The other popular
mechanism used in previous studies of the Budrene-Berg
experiments (Tsimring et al., 1995) attributes the collective
motion to a “Fischer’s equation”-like mechanism, in which
the motion is triggered by a competition between cell divi-
sion and the competition of individual bacteria for food. The
present theory ascribes motion to the consumption of suc-
cinate, the concentration of which limits the rate of attract-
ant production. We believe that the experimental data pro-
vide strong support for our mechanism: impulse-response
experiments on single bacteria (Segall et al., 1986; Berg,
1988) have demonstrated that the divergence of the chemo-

tactic coefficient with vanishing attractant concentration
does not occur, which rules out the first mechanism for
migration. The Fischer’s equation mechanism implies that
the front velocity is independent of the substrate concentra-
tion and of the total number of bacteria in the ring; the
mechanism presented here predicts both a decrease in the
front velocity with increasing substrate concentration and an
increase in the front velocity with increasing numbers of
bacteria. Both of these features are observed in experiments.

The mechanism for instability and breakdown into aggre-
gates also differs from previous studies. All previous work
(Bruno, 1992; Woodward et al., 1995; Tsimring et al., 1995;
Ben-Jacob et al., 1995) has modeled the Budrene-Berg
experiments with dynamical equations in two spatial dimen-
sions, neglecting the finite thickness of the petri dish. In
these models, the breakdown of the swarm rings arises
because of “Turing-like” linear instabilities (Turing, 1952;
Murray, 1989). In contrast, the present work shows that the
instabilities of the swarm ring are inherently three-dimen-
sional. The initial instability involves a transition in which
the bacterial density becomes nonuniform in the direction
perpendicular to the agar plate. A secondary instability
causes the breakdown into aggregates. Although there are
still serious issues remaining in understanding the instability
mechanism, it seems clear that the most important physical
mechanism is chemotactic collapse (Nanjudiah, 1973; Chil-
dress and Percus, 1981), which provides a unifying element
among the various physical processes (aggregate formation
and the instability of the swarm ring).

Turing’s mechanism has been applied to many instances
of biological pattern formation and remains the only theo-
retical model for understanding patterns in biological sys-
tems. There is an important conceptual and practical differ-
ence between Turing’s instability mechanism and an
instability mechanism mediated by chemotactic collapse.
Turing mechanisms are based on linear instabilities, which
are inherently not robust. Changes in the relative diffusion
constants or consumption rates of the various species can
both alter the instability threshold and change the charac-
teristics of the final pattern. The addition of different reac-
tive chemicals or other physical processes that happen on
the time scale of the instability can have substantial effects
on the final outcome. In contrast, the instability and break-
down into aggregates occurs because of highly nonlinear
singularities in the chemotactic equations, in which bacte-
rial densities and chemotactic fluxes diverge. The diver-
gence of the chemotactic fluxes means that this dynamical
event is robust. Changes in the chemical diffusion constants
and consumption rates will not change the structure of the
collapsing solution. Collapse will exist as long as the bac-
teria produce attractant. It is quite possible that in other
instances of biological pattern formation, singular events
play a key role.

An important consequence of the inherent robustness of
the singularities in the present study is that we expect the
features of the pattern formation involving chemotactic
collapse to also apply to other species of bacteria that
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produce attractant. For example,Salmonella(Woodward et
al., 1995) excreting attractant also exhibit bands and aggre-
gate formation. Although the properties of the bands are
different in theSalmonellafrom those in theE. coli exper-
iments discussed here (e.g., in contrast to the situation here,
bands inSalmonellado not move), we expect the breakup of
the bands to be via the same singular mechanism as forE. coli.

Finally, our analysis predicts a number of scaling laws,
many of which were shown to be consistent with experi-
ments. Several predictions remain to be tested. Probably the
most interesting are the time dependences of the collapse
singularity. During a collapse, the bacterial densities change
by several orders of magnitude, which should be more than
sufficient to verify the temporal scaling laws for the col-
lapse singularity. For the swarm ring, it would be interesting
to measure the profiles of the attractant and succinate con-
centrations around the swarm ring and test whether they
agree with the present predictions.

APPENDIX A: TRAVELING BANDS AND
FOOD DIFFUSION

This appendix discusses solutions to the traveling wave equations

2Ur 5 r9 2 rc9 (A1)

0 5 c0 1 fr (A2)

2Uf9 5 2gr 1 bf 0 (A3)

with nonzerob. As in the construction of traveling solutions above, we
require the boundary conditions thatr 3 0, f 3 1 asx3 `, andf 3 f0
asx32`. First we note that integrating Eq. A3 over the entire profile and
applying the boundary conditions implies the relationU 5 gM/(1 2 f0)
between the front velocityU and the mass per unit lengthM of the ring.
This relationship holds regardless of the value ofb. To find the spatial
profiles, the equations must be integrated numerically. The presence of
nonzerob means that the food Eq. A3 has an exponentially growing mode
f ' e2Ux as x 3 2`, which corresponds to an additional boundary
condition on the solutions. However, the solutions also have an additional
degree of freedom in satisfying this boundary condition, because nonzero
b increases the order of the ODEs.

How many free parameters are there in satisfying these boundary
conditions? We takex 5 0, wherer9(0) 5 0 implies c9(0) 5 U. The
constantsr(0), f (0), andf 9(0), as well as the velocityU are free parameters.
For eachr(0), f (0), f 9(0), the velocityU must be chosen so that the food
concentrationf does not grow at2` (zeroing the exponentially growing
mode mentioned above). This leaves three parameters, which can be tuned
to adjustf`, f2`, and the total number of bacteriaM0 as desired. In this
respect, the solutions with food diffusion are qualitatively similar to the
solutions without food diffusion. Figure 7 shows the solution withb 5 1,
M0 5 4.15,g 5 1.

APPENDIX B: STABILITY OF TRAVELING BAND

This appendix considers the stability of a propagating band to sinusoidal
modulations. We consider the second model of the swarm ring (as formu-
lated in the text) and examine the response of the band to perturbations in
the neighborhood of the band. In this calculation, we do not consider the
response of the perturbations on the solution far from the band (where
attractant diffusion or succinate consumption might dominate), but instead
simply examine the stability of the “Burger’s inner region.”

It was remarked in the text that the separation of scales between the
thickness of the band and the diffusive scale decouples the succinate
dynamics from the band dynamics. In this limit, the dynamics is governed
by the equations

tr 5 ¹2r 2 ¹ z ~r¹c! (B1)

0 5 ¹2c 1 r. (B2)

These equations are equivalent to Burger’s equation in one dimension
under the transformationv 5 ¹c. This equivalence implies that the equa-
tions have an important symmetry. Given a solutionr0(x, y), c0(x, y), r 5
r0(x 2 Ut, y), c 5 c0(x 2 Ut, y) 2 Ux is also a solution. This symmetry
corresponds to Galilean invariance in the Burger equation.

The importance of this symmetry is that it implies that the stability of
a traveling wave solution (within this approximation) is independent of the
ring velocity. Thus we can consider the stability of a stationary solutionr0,
c0. The stability analysis begins by writing

r 5 r0 1 Fevtcos~qy! (B3)

c 5 c0 1 Gevtcos~qy!. (B4)

Linearizing Eqs. B1 and B2 gives the two ordinary differential equations

vF 5 F0 2 q2F 2 r90G9 1 2Fr0 2 c90F9 (B5)

G0 2 q2G 5 2F. (B6)

This is an eigenvalue problem forv. We are interested in the stability for
perturbations with wavelengths much larger than the thickness of the band.
In this limit, it is legitimate to approximate the functional forms ofr0 and

FIGURE 7 Traveling wave solution for the ring, withb 5 1. The
uppermost figure gives the density profile, the middle profile gives the
attractant concentration, and the lowermost profile gives the succinate
profile. All profiles are forM0 5 4.15 andg 5 1. The dotted curve in the
uppermost figure is the density profile forb 5 0 with the same values of
M0 and g. Although quantitative features differ, qualitative features are
robust.
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c0 as

r0 5 M0d~x! (B7)

c90 5 2M0u~x! 1
M0

2
(B8)

whereM0 is the mass per unit length of the band,d is a Dirac function, and
u is a Heaviside step function.

The analysis continues by matching solutions to the right and to the left
of the d function, and then piecing them together: Forx , 0, Eq. B5 is

vF 5 F0 2 q2F 2
M0

2
F9.

The solution that decays at2` is

F, 5 ceax,

where

a 5
M0/2 1 ÎM0

2/4 1 4~v 1 q2!

2
.

By symmetry, the solution at1` is

F. 5 ce2ax.

The eigenvalue condition follows from integrating Eq. B5 across the
delta function, yielding the jump condition

F9. 2 F9, 5 E r9G9 2 2E Fr0 2 E c00F

5 ~2F~0! 2 q2G~0!!M0. (B9)

The jump condition B9 requires knowingG(0). This is obtained by
solving Eq. B6. Forx , 0,

G, 5 2
ceax

a2 2 q2 1 Beqx.

For x . 0,

G, 5 2
ce2ax

a2 2 q2 1 De2qx.

Continuity of G implies thatB 5 D. Continuity ofG9 implies that

2ca

a2 2 q2 1 qB5
ca

a2 2 q2 2 Bq.

or

B 5
ca

q

1

a2 2 q2,

so that

G~0! 5 2
c

a2 2 q2 1
ca

q

1

a2 2 q2 5
c

q

1

a 1 q

The jump condition B9 then gives

22a 5 2M0 2 q2G~0!/F~0! 5 2M0 2
M0q

a 1 q
(B10)

Equation B11 determinesv(q). Figure 8 plots the growth rate as a
function of q (both of which are rescaled in units ofM0).

APPENDIX C: CLUMPING IN LIQUID MEDIUM

A conceptually simpler version of the experiments is to start with an
initially uniform distribution of bacteria of densityr0 dispersed in a liquid
medium, with sufficient succinate that depletion is not an issue. This
appendix provides estimates for the number of bacteria per aggregate, and
the number of aggregates formed in this situation.

First we proceed with linear analysis. Linearizing the Keller-Segal Eqs.
1 and 2 about the constant state by writingr 5 r0 1 eevt1iqx and c 5
devt1iqx implies the equations

ev 5 2Dbq
2e 1 kr0q

2d (C1)

dv 5 2Dcq
2d 1 ae. (C2)

In the limit of fast diffusion, the growth rate is

v 5
r0ka

Dc
2 Dbq

2.

All modes with wavenumber smaller than the critical wavenumber

q* 5 Îr0ka

DcDc

will grow. The fastest growing mode occurs withq 5 0 (i.e., has a
wavelength on the order of the box size).

Without taking the limit of fast diffusion, the growth rate (expanded at
small q) is

v 5 Îakr0q 2
Dc 1 Db

2
q2.

The fastest growing mode in this limit has wavelengthl*:

l* 5
2p~Dc 1 Db!

Îakr0

.

FIGURE 8 Growth rate as a function ofq, as determined by Eq. B10.
The most unstable mode occurs atq 5 0.15.
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From linear analysis alone, we would expect the bacteria to clump into
sections of dimensionl*, so that the mass of the individual clumps is on
the order ofr0(l*)3.

Moreover, if the size of the box containing the bacteria isL, the number
of such clumps is

Nclumps5 S L

l*D
3

5
L3

8p3

~akr0!
3/2

~Dc 1 Db!
3. (C3)

The most important feature of this result is that linear analysis predicts that
the number of clumps scales liker0

3/2, so that a 100-fold increase in the
initial density implies a 1000-fold increase in the number of clumps. This
result seemingly contradicts the experimental data reported in the text,
which indicate that the number of clumpsNclumps ' r0.

The experiments reported in the text occurred in a quasi-two-dimen-
sional geometry, in which a petri dish with a diameter of a few centimeters
was filled with ;5 mm of liquid. The final aggregates had a size on the
order of 1 mm, only a few times smaller than the thickness of the layer.
Using the numbers forDb, Dc, k, and a discussed in the text for liquid
medium, the critical wavelengthl* ' 1021 1 1022 cm, depending on the
density. There seems to be a discrepancy between this prediction and the
numbers measured in the experiments.

A possible reason for this discrepancy is a subtlety in the nonlinear
collapse mechanism. To illustrate this, consider the number of clusters
created from a hypothetical two-dimensional collapse. According to linear
analysis, the number of clumps is

N clumps
linear,2D5 S L

l*D
2

5
L2

4p2

akr0

~Dc 1 Db!
2.

On the other hand, as discussed in the text, aggregate formation in two
dimensions requires a critical numberDbDc/(ka) of bacteria. This nonlinear
result would predict that the number of clumps

Nclumps
nonlinear,2D5

r0L
2ka

DbDc
.

In two dimensions, both the linear and the nonlinear estimates for the
number of clumps have the same scaling with the densityr0; the only
difference is in the scaling withDb andDc. This difference arises from the
fact that the finite range of attractant diffusion affects the linear instability,
but not the nonlinear threshold for collapse.

In three dimensions, even the scaling ofNclump with r0 is affected. The
fact that experiments demonstrateNclumps' r0 indicates that two-dimen-
sional structures must be determining the number of aggregates in the
three-dimensional experiments.

Indeed, experiments in liquid medium indicate that two-dimensional
structures (cylinders) always form first, and then destabilize into spherical
aggregates. Such dynamics suggest that the number of clumps should be

Nclumps
nonlinear,3D5 Nclumps

nonlinear,2Dl,

wherel is the instability wavelength of the cylinder. The calculation of the
instability wavelength is beyond the scope of this paper (and will be
presented elsewhere). However, note that the nonlinear mechanism implies
that the number of bacteria per unit length in each cylinder isDcDb/(ka),
which is independent ofr0! Hence l will be independent ofr0 and
Nclumps

3D ' r0.
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