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Abstract When exposed to certain chemoattractants,
bacteria like Escherichia coli move up the concentration
gradient V¢ with a velocity kVe. Microscopically, E. coli
moves at constant speed when it’s flagellum is rotating
counter-clockwise (ccw) and tumbles when the rotation
is clockwise (cw). The lifetime of a ccw interval, 7., is a
function of the concentration ¢(¢’) experienced at earlier
times. The corresponding response function was mea-
sured long ago by Berg and co-workers. We present here
a detailed description of the motion taking place during
one ccw interval. This gives an explicit formula relating
the chemotactic coefficient x to the response function;
the formula has some surprising features.
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Introduction

When Escherichia coli is exposed to a weak gradient in
an aspartate concentration, ¢, it moves up against the
gradient with an average velocity:

V =«Ve (1)

The basic biochemical processes involved are rela-
tively well understood. Aspartate binds to a Tar recep-
tor, and this starts a chain of coupled protein
phosphorylations (see, for instance, Bray 2001; Webre
et al. 2003). The final result is a change in the activity of
the flagellar motors. When the motors rotate counter-
clockwise (ccw), the bacterium advances in a straight
line, with a velocity of order 20 um/s. When some mo-
tors rotate clockwise (cw), the bacterium tumbles ran-
domly, and does not move.
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There are two lifetimes: one (7 ) for the ccw intervals
(also called “the runs”), and one (7_) for the cw inter-
vals. Both lifetimes depend on the asparte concentration
¢ at earlier times. This has been studied in detail by
Segall et al. (1986). We shall be mostly concerned by the
lifetime 7, (we assume that in the cw phase the motions
are negligible). The rate %(t) has a certain average v ',

plus a chemotactic term. We assume for the moment
that this term is linear in ¢ for small ¢:

f+1(t) _ % [1 _ / 4R, (1 t/)c(t/)}

One may also define a response function R_ for the
lifetime 7_ of the tumbling intervals:

T_L(t) _ Ti_ [1 _ /tdt’R(t - t’)C(f/)]

The time fraction ¢ of the ccw operation is the central
object of Segal et al. (1986); it is given by:

)
(1) =

(2)

(3)

to first order in c.
We shall see that R, alone controls chemotaxis. We
start the discussion by a special case:

R, (t) = ad(t — 0) (5)

with a unique delay time 0, because the presentation is
more simple. The extension to a distribution R (7) is
performed later.

One run in a concentration gradient

Let us assume that the bacterium started its ccw oper-
ation at a certain time ¢. During the following interval, it
has a constant velocity V; along the x axis. After a time
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A, the motor stops. The probability of not stopping
before ¢+ A is:

t+A |
p(A) =exp { tf d? u(f/)}
t+A (6)
=exp— [% -2 [ et - 0)d6)}

~ {exp (— %)] 1 +%7Ac(t’ — 0)do (7)

The probability of stopping during the interval (A,
A+dA) is —g—g, and the average length traveled during
the run is:

o]

= </dA<—§’A’>m>— <V;/p(A)dA> (8)
0 0

where the symbol < > denotes an average over the or-
ientations of V;. We may write Egs. (7) and (8) in the
form:

+A

xi = %/ dAexp (— %)<Vi/ c(f — 0)dr > 9)
0

t

The concentrations ¢, and the bacterium positions x,
are related through the imposed gradient V¢:

c(f —0) = (Ve)x(f' — 0) + const (10)

If the time —0 occurred before our active interval (¢,
t+A), the corresponding position x(f—0) is not corre-
lated to V; (we assume that each active interval corre-
sponds to a value of V; which was uncorrelated with the
previous ones). Then there is no contribution to
Eq. (10). Thus we may substitute:

x({ —0) = Vi({ —t—0)
x(—=0)—0

! >t+0

f<t+0 (11)

Then the average displacement during one ccw interval
is:

o
x,»:%Vc<V[2>/dA§exp< (12)
0

=aVe<V? > tlexp < 0)
T

a-or

Tt
(13)

The average velocity over many successive intervals
is:

V=119 (14)
where:

— o ‘L'+

¢ = Ty (15)

is the global time fraction in the active state.

We can now superpose Egs. (13) and (14), and also
sum up other all possible delays 60, using a general re-
sponse function R(6). The result is:

K= D/ R(0)exp( — g)d() (16)
0

where D is the diffusion coefficient in zero gradient:

D=¢<V?>1 (17)
Discussion
The conclusions of this note are in complete

disagreement with the theoretical paper by Schnitzer
et al. (1990). Their conclusion was that k=0 for fast
responses R(0)=4(0). The discussion in Schnitzer et al.
(1990) is based on a macroscopic approach, with time
and space intervals much longer than what happens
during one run; it ignores crucial features during each
run.

On the experimental side, as mentioned in the
Introduction, what has been measured mainly is:

R(t) = [R(t) = R-(1)](1 - ¢)

However, looking at some numerical data of Segall et al
(1986), it may be that there is no major difference be-
tween R, (¢) and R(?):

(18)

1. Certain mutants of E. coli (cheR, cheB) have been
studied by Segall et al. (1986) and by Berg and Turner
(1986). They show a “‘single lobe’” of constant sign for
R(0). Also, they do not seem to swim up a concen-
tration gradient: k=0! This speaks in favor of the
Purcell conclusion (Schnitzer et al. 1990). However, it
must be realized that all chemotactic effects are re-
duced by a factor ~1072 in these mutants.

2. If we return to the wild-type behavior of E. coli, we
find that R(0) has a positive peak (over ~1 s) followed
by a negative peak (over ~3 s). Also, the overall area
JR(0)d0 vanishes. Berg pointed out that the latter
property is of some particular interest. It means that
if E. coli is submitted to a change of concentration ¢
(without any spatial gradients), it will adapt and
show the same behavior (the same rates %) at long
times after the ¢ jump.

The effect on x of this two-lobe structure is presented
as follows in Segall et al. (1986): “a wild-type cell com-
pares the stimulus experienced during the past second
with the stimulus experienced during the previous 3 s,
and responds to the difference”; see also Berg and
Turner (1986).

However, if our calculation holds, the difference
procedure does not seem to increase x. Consider, for
instance, a response R(f)) which is the difference of two
equal peaks:



R(0) = a[5(0) — 5(0—0)] (19)
where 0 is a fixed delay time (~3 s). The resulting che-

motactic coefficient is:

Kk =oD[l —exp(—0/7)] (20)

and it shows no enhancement. Because of the averaging
over random walks, the difference procedure is not
beneficial for k (although it is beneficial for adaptation).
Simulations have been performed on this problem (Berg
1988; Mittal et al. 2003), but we have not found one
simulation which would correspond to short delays and
give k=0 as predicted by Purcell and co-workers
(Schnitzer et al. 1990).

In real life, one complication is present and was not
taken into account in our presentation. From experi-
ments by Berg and Brown (1974), it appears that 1/t
changes linearly when the aspartate concentration ¢ in-
creases, but that it stays constant when ¢ decreases! This
is challenging from a biochemical point of view. It is not
easy to set up a kinetic model for the phosphorylate
cascades which could produce such an abrupt nonlin-
earity. We suspect that the Berg—Brown effect is due to
hysteresis in a strongly cooperative (allosteric) response.
However, this would require a separate study.

From the point of view of the present calculation, the
effect of this anomalous response is simple: only one half
of the directions of the movement contribute (those
where V; is pointing towards V). Thus the net result is
simply to add a factor 1/2 in Eq. (16).
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Appendix: the Langevin bacterium

Equation (16) may be derived by a slightly different way,
which is less transparent but more direct. The starting
point is an equation of motion for the velocity V,
somewhat similar to that which Langevin used for
Brownian motion (Langevin 1908):

693

dV vV
dt T4

= /() (A1)
where f(¢) is a random ““force” (actually a random signal
describing the switching between ccw and cw rotation).
We assume that f{(7) is a “white noise”, and is indepen-
dent of the chemoattractant concentration:

<f(t)f () >=Kd(t1 — 1)

We then separate 1 into an average 1 plus a pertur-
bation (Eq. 2), and Write V= Vot Vi, “where Vyis a
linear functional of ¢. V, has the classical correlation
form:

<V (0)%(1) > = Kexp(—t/1)

(A2)

(A3)

Solving for V; and taking averages, we return to
Eq. (16).

Equation (A1) leads to a concise derivation, but it
suffers from the unclear origin of the noise f{¢): this is
why we used the more precise discussion of time inter-

vals in the main text.
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