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Abstract. A simplified version of the model by Elser and Joseph for the process of growth of an entropically stabilized,
two-dimensional quasicrystal with no dynamics in the bulk, is proposed. The phason fluctuations are modeled by a
scalar field on a periodic lattice. The choice of the master equation for the growth is restricted by the requirement that
its detailed balance solution describes the equilibrium fluctuations of the field with a quadratic Hamiltonian. The model
is parametrized by the chemical potential bias δµ and the microscopic surface tension coefficient σ. The phase diagram
of the system on the plane (σ, δµ) shows several distinct regimes of growth, separated by relatively narrow transition
zones. Within the regions corresponding to these regimes, the phason fluctuations do not depend on δµ and σ. Analytic
expressions for the spectra of phason fluctuations are obtained and confirmed by numerical simulation.

PACS. 61.44.Br Quasicrystals – 81.10.Aj Theory and models of crystal growth

1 Introduction

Although the term “entropy stabilized quasicrystal” is deeply
embedded in the literature [1–3], the word “stabilized” is used
here somewhat loosely. Indeed, it is usually taken to mean that
the entropy prevents quasicrystals from transforming into other
phases, just as it prevents a liquid from crystallizing. This par-
allel fails to account for the fact, that the excess of entropy
in the models of “entropy stabilized” (or random) quasicrys-
tals is attributed to the frozen degrees of freedom, the so-called
phasons. These degrees of freedom involve complex rearrange-
ments of many atoms, and their presence in dynamics would
have consequences, which have never been observed (e.g. un-
usually high diffusion rate [4]). Thus, the entropy related with
them does not affect the stability of quasicrystals at any reason-
able time scale. This brings up the question: to which extent are
the results obtained under the assumption of equilibrium pha-
son fluctuations applicable to the real quasicrystals?

The structure of quasicrystals is formed at a thin interface
between liquid and solid phases. In the case of no phason dy-
namics, the random phason fluctuations occurring at the growth
front stay frozen in the bulk. As a result, as well as for the
case of equilibrium phason fluctuations, a given quasicrystal
should be considered as a representative of an ensemble. There
is, however, an essential difference between these ensembles.
In the case of equilibrium phason fluctuations, the weights of
the individual configurations are given by the Boltzmann for-
mula, while in the case of frozen phasons the weights depend
on the details of the kinetics of growth and there is no univer-
sal formula for them. Thus the choice of the model of growth
plays an important role in the consideration of the frozen pha-
son fluctuations.

The problem of growth of random quasicrystals was orig-
inally considered by Sekimoto [5,6]. The phason fluctuations

in the solid phase of the model [5] are frozen everywhere ex-
cept a surface layer of finite thickness. The propagation of the
growth front is driven by a controlled temperature profile and is
completely deterministic. One of the flaws of this model is that
the deterministic propagation of the growth front does not re-
spect the detailed balance principle. As a result, the equilibrium
in the solid phase is not established even in the limit of zero
growth rate. In principle, one could approach the equilibrium
by increasing the thickness of the intermediate layer, where the
phason degrees of freedom already exist but are still unfrozen.
However, this contradicts the common belief that the thickness
of the interface between the solid and the liquid phases does
not exceed a few interatomic distances.

An alternative model of quasicrystal growth was proposed
by Elser and Joseph [7,8]. Contrary to the model by Sekimoto,
the model [7] is founded on the respect of the principle of
detailed balance. This principle guarantees establishing of the
thermodynamic equilibrium in the limit of zero growth rate.
Thus, there is no need to introduce an intermediate “unfrozen”
layer – one can assume that the phason coordinate is frozen ev-
erywhere in the solid phase, and that in the liquid phase there is
no order at all. These features make the model aesthetically at-
tractive. In this article, we consider a simplified version of this
model, with the particular emphasis on the non-equilibrium be-
havior in the case of finite growth rate.

The growth of random quasicrystals is related to a much
wider class of problems dealing with the growth of solid phases
with frozen internal degrees of freedom. One could mention
here the chemical ordering in metallic alloys or the lattice de-
fects in the phases obtained by electrodeposition. Bearing this
in mind, we have tried to keep the reasoning as non-specific to
quasicrystals as possible.
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Fig. 1. Allowed and forbidden moves for the lattice growth model.
One can remove the hexagon a, but not the hexagons b and c. One can
attach the hexagon e, but not d.

2 Lattice model

Before proceeding further, we will discuss the reasons for the
choice of the model for the simulation. First of all, this model
at equilibrium should reproduce the behavior of the entropy
density as a function of the macroscopic phason gradient [9,
10]:

S = Kαβij∂iφα∂jφβ , (1)

where φα are the components of the phason coordinate and
Kαβij are the so-called coefficients of phason elasticity. On
the other hand, the underlying statistical model should be as
trivial as possible, in order not to introduce any unwanted fea-
tures. From this point of view, “realistic” models such as ran-
dom tilings are too complex. Instead, we make no assumption
about the atomic structure of the quasicrystal and consider the
phason coordinate as a continuous field, which contributes to
the free energy through the term (1). We restrict our considera-
tion to the case of two spatial dimensions, and also replace the
multi-component field φα by a scalar. Finally, adding the neces-
sary discretization we obtain an unconstrained gaussian model
on a two-dimensional lattice. We also impose the requirement,
that the growth interface should retain its connectedness during
the simulation. This condition is most easily formulated on the
hexagonal lattice, where the continuity of the growth interface
can be preserved by a simple local algorithm. The algorithm is
based on the requirement, that those and only those hexagons,
for which the number of adjacent phase boundaries equals two,
are allowed to pass from one phase into another (see Fig. 1). It
is easy to verify, that any of these moves preserves the number
of connected components of the phase boundary.

The elementary states of the model are characterized by
defining the values φi on a subset of the facets of the hexago-
nal lattice. This subset represents a solid quasicrystalline phase,

and the values φi may be thought of as the local phason coordi-
nates. The elementary moves, taking the system from one state
to another consist in attaching a hexagon to this subset or re-
moving it, in such a way that the connectedness of the growth
boundary is preserved. Note, that once a hexagon is attached,
the corresponding value φi rests unchanged until the hexagon
is eventually removed. The probability of attaching a hexagon
with φ < φi < φ + dφ in a unit time is given by the formula:

P+ = dφ · exp



−
∑

j

(φ − φj)
2

2
−

σ

2
· δL



 . (2)

Here the sum is taken over the neighboring hexagons, and δL
stands for the change of length of the phase boundary (δL may
take values -4, -2, 0, 2 and 4). The probability of removing a
hexagon in a unit time does not depend on the value of φi:

P− = c exp
(

−
σ

2
· δL

)

. (3)

The master equation with the probabilities (2) and (3) admits
of a solution satisfying detailed balance. It is easy to verify,
that this solution is a Gibbs ensemble for a system with the
Hamiltonian

H =
∑

(i,j)

(φi − φj)
2

2
+ σL + Nµ (4)

at temperature T = 1. The sum in (4) is taken over the neigh-
boring hexagons, L stands for the length of the boundary be-
tween phases, N is the number of hexagons in the “solid” phase
and µ is the chemical potential of a hexagon. Assuming uni-
form discretization of the values of φ with the step δφ � 1, the
chemical potential is given by

µ = log(c/δφ) (5)

The growth process is thus controlled by the parameters c and
σ of (2). The coefficient c determines which process (growth or
melting) prevails, while σ may be thought of as a surface ten-
sion coefficient. The growth rate decreases with increasing c up
to the reversion point c0 = 1.1177..., at which an equilibrium
between two phases is established (see Appendix A).

3 Phase diagram

In this section we consider the behavior of the system described
above at different values of the microscopic surface tension σ
and the chemical potential bias δµ = log(c0/c). First, we ex-
amine the boundary at the plane (σ, δµ), which separates the
growth and no growth conditions. Then we discuss the forma-
tion of tears, and the role of the surface tension σ. Finally, we
consider three distinct regimes of growth at high values of σ,
which allow for analytic expressions for the correlation func-
tions of φ.

As long as one can neglect the contribution of the surface
in the bulk free energy, growth is impossible if δµ < 0. How-
ever, if σ drops below a certain limit (which corresponds to
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Fig. 2. Regimes of growth of the gaussian model on the hexagonal lattice. In the region (a) a local thermodynamic equilibrium is established.
The regions (b) and (c) both correspond to the layer-by-layer growth. In the case (b) each new layer is brought to equilibrium with the underlying
phase, while in the case (c) it is frozen in its initial configuration. The regime (d) is characterized by massive formation of tears giving rise to a
dendritic growth pattern, and the region (e) corresponds to no growth. The probability of formation of a tear is represented by isolines (dashed
lines). Shaded area correspond to transition regions.

zero macroscopic surface tension), the phase boundary fluctu-
ations diverge. The length of the boundary becomes propor-
tional to the volume of the system, which gives rise to a fi-
nite contribution of the surface to the bulk free energy. This
contribution can compensate for the negative chemical poten-
tial bias and gives rise to dendritic growth even in the case
δµ < 0. Numerical simulation shows that this becomes possi-
ble for σ < 0.77±0.01, which corresponds to the point on Fig.
2 where the growth boundary bends downwards. The typical
fluctuations of the phase boundary near this critical point are
shown on Fig. 3. In the limit of small σ, the surface-to-volume
ratio of dendrites tends to 4, which determines the asymptotic
slope of the growth boundary:

δµ ∼ 4σ + const.

It should be remembered, however, that this formula makes
sense only for positive σ, because the topological constraint on
the connectedness of the phase boundary becomes unphysical
if σ < 0.

Comparison of the statistics of the fluctuations of φ in the
non-equilibrium phase obtained by growth with equilibrium
fluctuations makes sense only if the growth results in forma-
tion of a bulk solid phase. This is obviously not the case for
the regime of dendritic growth described above. It should be
emphasized however, that for the considered model the bulk
growth in the strict sense, is impossible for any values of σ and
δµ. Indeed, as has been remarked in [7], the presence of the
internal degrees of freedom makes the process of the formation
of tears auto-catalytic. At any finite growth rate there is a finite
probability that a local trough on the growth front will initi-
ate a new tear. Numerical simulations give an estimate of the
probability of formation of a tear per attached hexagon; the re-
sults are displayed in Fig. 2 by dashed lines. Clearly, increasing
the surface tension reduces the probability of the formation of
tears. Thus, it makes sense to consider the asymptotic regimes
of bulk growth in the limit σ → ∞. As we shall see, there exist
three distinct regimes of growth, corresponding to the regions
(a), (b) and (c) on Fig. 2.
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Fig. 3. Equilibrium at low surface tension (µ = µ0, σ = 0.8). The
values of φ are represented by the levels of gray.
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Fig. 4. 〈|φn(k)|2〉 versus k for fast growth. Results of the simulation
at δµ = 15.0, σ = 20.0 on the 64 × 65536 field are shown by (�).
The solid line represents the theoretical value (21).

At a high value of the surface tension σ, the phase boundary
remains as flat as possible most of the time and the growth
occurs through the propagation of kinks. The simplest case to
start with corresponds to the limit of fast growth (δµ → ∞),
when the kinks propagate with no retreat. It can be shown (see
Appendix C), that the fluctuations of φ in this case are gaussian.
The spectrum of fluctuations is given by the formula (21) and
agrees well with the results of numerical simulations (see Fig.
4). This regime corresponds to the region (c) on Fig. 2.

If one takes into account the processes of the removal of
hexagons, the ultimate value of φ on a hexagon in the solid
phase may be different from the value at the moment when
this hexagon is first attached. For smaller values of δµ, as the
growth slows down, a newly formed layer of hexagons may be
reconstructed many times before being buried under a new one.
These reconstructions clearly modify the statistics of φ, bring-
ing in the limit of slow growth, the surface layer to thermody-
namic equilibrium with the underlying frozen phase. In other
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Fig. 5. 〈|φn(k)|2〉 versus k for growth with layer-by-layer annealing.
Results of the simulation at δµ = 1.5, σ = 10.0 on the 64 × 8192
field are shown by (�). The solid line corresponds to the theoretical
value (15).

words, unlike the case of fast growth, this regime is character-
ized by an “annealing” of each new layer. Hence, the surface
layer plays a role similar to that of the unfrozen region in the
model by Sekimoto [5]. The statistics of φ in this regime are
gaussian and do not depend on the growth rate as long as the an-
nealing of each layer is complete (see Appendix B). The spec-
trum of the fluctuations of φ is given by the formula (16) which
agrees well with the results of numerical simulations (Fig. 5).

It is notable that both the regime of fast growth and the
growth with layer-by-layer annealing correspond to wide ran-
ges of values of σ and δµ (areas a and b on Fig. 2), with a
relatively narrow transition region. To understand this fact, let
us consider in detail the transition between the two regimes.
The annealing of the surface layer in the case of interest occurs
mostly through the mechanism of removing of single hexagons
from the surface and filling the resulting “advacancies”. De-
note by x the average number of times a given hexagon on the
surface layer is removed and attached before the layer is cov-
ered by a new one. The annealing is efficient if x � 1, while
the case of x � 1 corresponds to the regime of fast growth.
The value of x may be obtained from the master equation on
the propagation of the kink. Let nm stand for the probability
that the snapshot of the growth front has a kink and an anti-
kink separated by m > 0 hexagons. We extend this notation by
including the probability n0 to find a flat surface and the prob-
ability n−1 for the configuration with one advacancy. In the
case under consideration, when σ � 1 and δµ � 1, one could
neglect the terms with φi in the equation (2) and consider the
growth as if there were no internal degrees of freedom related
with the field φ. The master equation for the probabilities ni in
this case looks like

ṅi = ni−1Pi−1→i + ni+1Pi+1→i − ni(Pi→i−1 + Pi→i+1)
(6)

where the transition rates for i > 0 are given by

Pi→i+1 = c1

Pi+1→i = c2e
−δµ,
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and for i = 0 and −1 by
P0→1 = c1e

−σ

P1→0 = c2e
σ−δµ

P0→−1 = c2e
−σ−δµ

P−1→0 = c1e
σ.

Here c1 and c2 are constants of the order of unity. All stationary
solutions of the equation (6) may be obtained as linear combi-
nations of two independent ones. One is the solution of detailed
balance, when ni+1Pi+1→i = niPi→i+1. The other solution,
which is the one we are looking for, corresponds to stationary
growth. In this case ni = n = const for all i > 0, giving the
net flux

Φ = niPi→i+1 − ni+1Pi+1→i = n(c1 − c2e
−δµ).

The parameter x is then given by the ratio of the rate of creation
of advacancies n0P0→−1 and the net flux Φ. Getting the value
of n0 from the condition of stationarity, obtain:

x =
eσ + ξ − 1

ξ2 − ξ
,

where ξ = (c1/c2)e
δµ. Taking into account that δµ � 1 and

σ � 1, the above can be rewritten as
log x ≈ σ − 2δµ + const.

This formula describes the transition between the regime of fast
growth (x � 1) and the growth with layer-by-layer annealing
(x � 1). On the plane (σ, δµ) the transition region is a band
of width of the order of unity having the slope δµ ∼ σ/2 (see
Fig. 2).

The growth in the region (b) on Fig. 2 is characterized by
the alternation of two steps: fast propagation of a kink and rel-
atively slow annealing of the new surface layer by advacancies.
As the chemical potential bias δµ decreases, the propagation of
the kink becomes slower and may even be reverted. As a re-
sult, the annealing zone spans more than just one layer, which
changes the statistics of the field φ in the solid phase. In the
limit δµ = 0 the fluctuations of φ obey Boltzmann’s law, giv-
ing rise to the power spectrum (10).

Small, but non-zero values of δµ correspond to the transi-
tion between regime (b) of Fig. 2 and thermodynamic equilib-
rium at δµ = 0. The deviation from equilibrium in this case
becomes important on the large scale, as can be seen from Fig.
6. The width of the transition region can be estimated using the
arguments by Elser and Joseph. According to these arguments,
a non-equilibrium phase can be created by a growth process
only if the chemical potential bias between the “liquid” and
“solid” phases is bigger than the excess of the free energy den-
sity in the non-equilibrium phase. This excess for the phase (b)
of Fig. 2 can be calculated (see Appendix B) and is equal to
about δµb = 0.0744... per hexagon. This value gives the esti-
mate of the width of the transition region (a) on Fig. 2.

4 Discussion
The distinctive property of the considered growth model is the
negligible mobility of structure in the bulk. By itself, this fea-
ture is common for the growth of solids from a liquid or gase-
ous phase. The peculiarity of quasicrystals lies in the presence
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Fig. 6. 〈|φn(k)|2〉 versus k for the regime of slow growth. Results of
the simulation at δµ = 0.01, σ = 1.0 on the 64×2048 field are shown
by (�). The solid line represents the the spectrum at equilibrium (12).

of a non-trivial frozen order parameter (the phason coordinate).
Fluctuations of this parameter interfere with the growth pro-
cess on all scales. Thermodynamic equilibrium of the degree
of freedom related with the order parameter can be established
only through the retreats of the growth front. Furthermore, this
equilibrium is established only locally, in the regions of the size
of the typical depth of the retreat of the growth front. It is in-
structive to compare this situation with the growth of simple
crystals, where there is no such parameter. In this case, the lo-
cal thermodynamic equilibrium established on the scale of few
lattice periods entails the equilibrium on all scales (with the
exception of defects like dislocations and grain boundaries).
This explains why even at a high growth rate crystals can be
obtained in state close to equilibrium.

Besides quasicrystals, there exist other solid phases with
non-trivial frozen order. Consider, for example, ordered binary
alloys in the case when the chemical order persists up to the
melting temperature. The defects of the ordering (the anti-phase
domain boundaries) are topologically stable, and can be re-
moved only through a slow diffusion process [11]. One would
expect that retreats of the growth front would constitute a more
efficient annealing mechanism than the diffusion in the bulk
solid phase. This would manifest itself in unusually large an-
tiphase domains obtained for very slow growth rates, in com-
parison to what might be expected taking into account only
bulk annealing at the melting temperature.

Another example of non-trivial frozen order is growth with
phase separation. In this case, however, the ordering process is
limited by the diffusion of corresponding atomic species in the
fluid phase. This limitation is important for eutectic crystalliza-
tion, but it is unlikely to play any role for the vapor deposition.
The latter problem has recently attracted considerable interest
[12–16]. Also, one may mention simultaneous electrodeposi-
tion of several different atomic species [17].

The mechanism of annealing by fluctuations of the growth
front may play an important role even in the growth of simple
crystals. Indeed, it is common knowledge that lattice defects
like dislocations should not exist in thermodynamic equilib-
rium. Hence, by virtue of the arguments by Elser and Joseph,
the formation of dislocations should be suppressed at very slow
growth rate, even when their low mobility rules out the normal
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annealing mechanism. It is worth noting here, that a similar
effect might be obtained by applying artificial oscillation to
the chemical potential bias δµ. This is a common practice in
electrochemistry, where an alternating voltage bias is applied
to improve the quality of the deposited material [18].

5 Summary
In this paper we have considered the regimes of growth of ran-
dom quasicrystals using the simplified lattice model. In the
limit of high surface tension, there exist three distinct regimes –
fast growth, growth with layer-by-layer annealing and a regime
whereby the local thermodynamic equilibrium is established.
In all three regimes the statistics of the phason fluctuations in
the solid phase is calculated. The growth regimes are universal
and can be found in other systems with frozen order (or disor-
der).

The author is grateful to E. Tatarinova for fruiteful discussions.

6 Appendix A
The partition sum for N hexagons in the “solid” phase at a unit
temperature is equal to

Z = (δφ)−N

∫

e−H[φ]
N
∏

i=1

dφi,

where H [φ] is given by (4). At the thermodynamic equilibrium,
the bulk free energy of the “solid” phase must be equal to zero,
which gives

− log(δφ) + lim
N→∞

1

N
log

(

∫

e−U [φ]
N
∏

i=1

dφi

)

− µ = 0,

where
U [φ] =

∑

<i,j>

(φi − φj)
2/2

The sum here is taken over the pairs of neighboring sites <
i, j >. Taking into account the equation (5), the growth reversal
point c0 is given by

log c0 = lim
N→∞

1

N
log

(

∫

e−U [φ]
N
∏

i=1

dφi

)

(7)

This integral can be conveniently expressed in Fourier repre-
sentation. To introduce this representation we map the hexa-
gons on the nodes of the square lattice. The neighbors of the
node (n1, n2) are the nodes (n1−1, n2), (n1+1, n2), (n1, n2−
1), (n1, n2+1), (n1−1, n2−1) and (n1+1, n2+1). Let φn1,n2

denote the value of the field φ on the hexagon corresponding to
the node (n1, n2). Consider the basis of Fourier coefficients of
φ:

φ(k1, k2) =
∑

n1,n2

φn1,n2
exp (−i(k1n1 + k2n2)) (8)

The value of U [φ] is given by the following integral over the
Brillouin zone:

U [φ] =

2π
∫

0

2π
∫

0

|φ(k1, k2)|
2

× (3 − cos(k1) − cos(k2) − cos(k1 − k2))dk1dk2. (9)

Hence, the integral in (7) is given by

log c0 =
1

8π2

2π
∫

0

2π
∫

0

dk1dk2

× log

(

π

3 − cos(k1) − cos(k2) − cos(k1 − k2)

)

,

which gives
c0 = 1.11770...

The spectrum of fluctuations of φ stems from the formula (9):
〈

|φk1,k2
|2
〉

=
1

2 (3 − cos(k1) − cos(k2) − cos(k1 − k2))
. (10)

It is also convenient to introduce the partial Fourier transform:

φn2
(k1) =

∑

n1

φn1,n2
exp (−i(k1n1)) . (11)

The spectrum of fluctuations of φn2
(k1) resulting from (10):

〈

|φn2
(k1)|

2
〉

=
1

2
√

(cos(k1) − 1)(cos(k1) − 7)
. (12)

7 Appendix B
In this section we consider the statistical properties of the phase
corresponding to the region (b) on Fig 2. During the growth of
this phase, each layer remains on the surface for enough time
to be annealed by the mechanism of advacancies. Suppose, that
for the mapping introduced in Appendix A, the hexagon corre-
sponding to the node (n, m) lies in the m-th layer. The distri-
bution of the values φn,m+1 is determined by the values φn,m

on the underlying layer. In the same time, both distributions
should be identical in the limit of stationary growth. As we
shall see, these conditions define completely the statistics of
the fluctuations of φ.

The evolution of the distribution function of φn,m in a layer
is conveniently described in terms of the partial Fourier basis
(11) Assuming the expression (4) for the Hamiltonian, the har-
monics φm(k) with different k are not correlated. For a given
value of φm(k), the distribution function of φm+1(k) is a gaus-
sian bell. It may be written in the following generic form:

P (φm+1(k))

=

√

µk

π
exp

(

−µk(φm+1(k) − λkφm(k))2
)

. (13)
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The value of λkis determined by minimizing of the potential
energy of the new layer:

λk =
1 + eik

2(2 − cos(k))
, (14)

and the value of µk could be obtained through consideration of
the case when φm(k) = 0 for all k:

µk = 1 − cos(k)/2

Equation (13) governs the evolution of the distribution func-
tion P (φm(k)) when passing from one layer to another. The
stationary point of this evolution is a gaussian distribution with
the variance

〈

|φm(k)|2
〉

=
2 − cos(k)

2 cos2(k) − 9 cos(k) + 7
. (15)

The correlation function 〈φm(k)φm+l(k)〉 is determined by the
equation (13):

〈φm(k)φm+l(k)〉 = conste−|lλk|

This expression, together with formula (15), gives the spectrum
of fluctuations of φ:
〈

|φ(k1, k2)|
2
〉

= (2 − cos(k1))
(

2 cos2(k1) − 7 cos(k1)

+9 − 4(cos(k1/2))(2− cos(k1))(cos(k2 − k1/2)))−1 .
(16)

The fluctuations of φ in the phase (b) on Fig. 2 are gaussian
and translationally invariant. Hence, formula (16) describes com-
pletely the statistics of the field φ in this phase. This enables
one to compute the non-equilibrium free energy density

f = lim
N→∞

U − TS

N
.

Here the internal energy U is given by (9), the temperature T
is equal to 1, N is the number of hexagons in the “solid” phase
and the entropy S is defined as

S = −
∑

{φ}

P ({φ}) log P ({φ}),

where P ({φ}) is the probability of a given configuration of
the field φ. Straightforward calculations lead to the following
expression for the excess of the free energy density with respect
to its value in the equilibrium phase f0:

f − f0 =
1

8π2

×

2π
∫

0

2π
∫

0

(r(k1, k2) − log (r(k1, k2)) − 1) dk1dk2, (17)

where r(k1, k2) is the ratio of the average intensities of the
corresponding Fourier coefficients of φ in both phases:

r(k1, k2) =

〈

|φ(k1, k2)|
2
〉

b

〈|φ(k1, k2)|2〉a

(here
〈

|φ(k1, k2)|
2
〉

b
is given by (16) and

〈

|φ(k1, k2)|
2
〉

a
– by

(10)). Numerical integration gives
f − f0 = 0.0744...

8 Appendix C
The mechanism of growth, corresponding to the region (c) on
Fig. 2 is based on the propagation of kinks. The probability
of retreat of a kink is negligible, and the newly formed layer
is immediately covered by a new one. Hence, in most cases
an attached hexagon has three neighbors. The distribution of
the values of φ on the newly attached hexagon is completely
determined by the average value of φ on its neighbors φ0:

P (φn1,n2
) =

√

3

2π
exp

(

−
3

2
(φn1,n2

− φ0)
2

)

, (18)

where φ0 for the kinks propagating from left to right is given
by

φ0 =
φn1−1,n2

+ φn1−1,n2−1 + φn1,n2−1

3
(19)

and for the kinks propagating from right to left by

φ0 =
φn1−1,n2−1 + φn1,n2−1 + φn1+1,n2

3
. (20)

Due to the translational invariance, the evolution of the coef-
ficients of the partial Fourier transform (11) in both cases is
given by the formula (13). Minimizing of the energy of the
newly attached hexagon gives rise to the following equation
on the parameter λk in (13):

λk =
1 + e−ik + λke±ik

3
,

where the sign depend on the direction of motion of the kink.
The value of the parameter µk in (13) could be obtained through
the consideration of the case when the values of φ on the pre-
vious layer are all equal to zero. Assuming zero values for
φn1−1,n2−1 and φn1,n2−1 in (20) and (19), obtain

µk =
3 − 2 cos(k)

10/3− 2 cos(k)
.

The power spectrum of the fluctuation of φ in each layer is
given by the stationary solution of the equation (13) with the
above values of λk and µk:

〈

|φn(k)|2
〉

=
3

8(1− cos(k))
. (21)
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