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Abstract
Some examples are given on how methods of computational statistical physics
are applied outside physics.

1. Introduction

Statistical physics in this author’s style is well known to be the pinnacle of human achievement,
and computer simulation its proper tool. The foundations were laid in the 1950s with the Monte
Carlo methods of Metropolis et al, and the molecular dynamics of Alder and Wainwright.
Later, such methods were applied to fields outside of physics such as economy [1], biology
[2] or sociology [3, 4]. One should be cautious suggesting such subjects for a thesis in
physics, but some former physics students have made it this way into faculty positions outside
physics. In Monte Carlo simulations, physicists let �1013 particles [5] change their status
with a probability proportional to exp(−�E/kBT ) where T is the absolute temperature, kB

is the Boltzmann constant and �E is the energy change. For molecular dynamics we solve
Newton’s law of motion, force = mass times acceleration, using � 1010 atoms [6]. This
microscopic emphasis on single particles, as opposed to macroscopic differential equations
averaging over many particles, is often called ‘independent agents’ when applied outside
physics. ‘Emergence’ in these fields is what physicists call self-organization which means
systems of many simple particles showing complex behaviour (like freezing or evaporating)
which is not evident from the single-particle properties.

An important difference between physics and applications outside physics is the
thermodynamic limit. A glass of red wine has about 1025 water molecules, which is close
enough to infinity for physicists. Economists, on the other hand, are less interested in stock
markets with 1025 traders. Thus finite-size effects, which often are a nuisance in statistical
physics simulations, may be just what we need outside of physics.

I have been teaching computational physics for two decades, but interdisciplinary
applications separately only since 2001. Some students prefer the former and others the
latter, thus separation may be better than a combined course. In this course and in the present
paper, I select problems I am acquainted with since the whole field has grown too large for
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one semester or five pages. And these problems are those closest to statistical physics. An
earlier and now outdated review of mine was published in [7].

2. Biological ageing

Darwinian evolution is similar to thermal physics in that two effects compete: Mother Nature
wants to select the fittest and to minimize energy; but more or less random accidents (mutations
in biology, thermal noise or entropy in statistical physics) lead to deviations from ideality, such
as biological ageing or minimization of the free energy.

The probability to die within the coming year is very small below the age of 30 years
but quite appreciable beyond 100 years. In between this, mortality approximately increases
exponentially with age. There are many theories for this effect of ageing, and no consensus.
Penna, then aged below 30, published the most widely simulated model [8]. The genome was
represented there by a string of bits, using single-bit treatments known for decades as Ising
spins. Now we present a newer model with worse results but conceptually simpler. Also, it is
only a minor modification of the 120 year old Weismann theory that we die to make place for
our children [9].

We are born, grow up, have children, become old and die. Let us assume that each baby
has in its genes a minimum reproduction age R and a genetic death age D. This genetic death
kills us if we are not killed before by hunger, infections or editors. Each adult aged beyond R
gives birth at each iteration to one child, with probability p; this child inherits the parental R
and D apart from random mutations by ±1. Lack of food and space is modelled by a Verhulst
death probability N(t)/K where K determines the maximum population size. (We require
R > 0 for the mutations.)

(Before Verhulst, Malthus predicted an exponential increase of human population N(t)

from dN/dt = bN where b is the difference between birth and death rates. In 1844
Verhulst replaced this by the logistic equation dN/dt = bN(1 − N/K) leading to a plateau in
population. This additional death probability for each individual, equal to N/K , is not only
realistic but also useful computationally to avoid memory overflow.)

In this version, the genetic death age D drifts to infinity since long-lived families produce
more children and thus dominate in the population. To avoid this unrealistic longevity, the
birth rate p is assumed to vary inversely proportional to D −R, which means D and R can vary
under the constraint that the average number of children, (D − R) ∗ p is constant (typically
chosen near 1.1 in this asexual model). Now D approaches a finite limit, and R remains very
small. The mortality is roughly a linear function of age, instead of the desired exponential. The
linear mortality function may be appropriate for mayflies (ephemerals), while the exponential
increase with human age requires modifications [10]. A one-page computer program is listed
in the appendix.

The most important practical application of this research was the explanation of the
menopause (or its analogues) through the dependence of babies on their mother and the
increased mortality when giving birth at an advanced age [11]; there was no need for a
grandmother effect [12] or other human traits.

3. Sociology

3.1. Language evolution

The evolution of human languages has for a long time been compared to biological evolution
[13]. Thus an algorithm similar to the Penna ageing program was used to simulate the evolution
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of languages (including sign languages, bird songs and alphabets) [14]. Each language
consisted of eight bits; also 16 to 64 bits were simulated. Initially only one individual and one
language exist. Then at each iteration each individual gets one child, which with probability
p mutates the parental language by switching one randomly selected bit. A Verhulst death
probability as in the above ageing model prevents the population increasing exponentially
towards infinity. Speakers of small languages select with a high probability the language of a
randomly chosen other person.

As a result, for low p one language dominates, together with a few variants differing by
one bit only, like an alphabet today. For high p, many languages of roughly equal sizes remain,
with their size distribution roughly log-normal but with a surplus of very small languages, as
observed in reality [15]. One may also study the influence of one dominating language, or
whether different languages merge into one by adopting bits of the other languages.

3.2. Ghetto formation

Schelling in the first issue of Journal of Mathematical Sociology re-invented an Ising-like
model (with dilution and Kawasaki dynamics) to describe the formation of black ghettos
in predominantly white USA [3]: Afro-Americans like to stay with other Afro-Americans,
and analogous behaviour is assumed for people of European origin. As any Ising model
simulator knows, at temperatures below the critical temperature, large domains of up-spins
coexist between large-domains of down-spins, if no magnetic field is applied. This coexistence
remains infinitely long for Kawasaki dynamics (conserved magnetization) and quite long for
Glauber dynamics (fluctuating magnetization). Thus one can identify one spin orientation
with white and the other with black, to study ghetto formation = phase separation. Actually,
this identification of particles with humans is quite old: Jürgen Mimkes told me that more
than two millennia ago Empedokles compared some groups of people with wine and water
(they mix easily) and others with oil and water (they do not like to mix).

More recently, simulations were made to avoid ghetto formation, with two [16] or several
[17] groups of people. For this purpose, the temperature, which measures the degree to which
humans tolerate other ethnic groups as neighbours, was increased with time. If the increase
was made fast enough, then the domains = ghettos could not become large.

4. Market fluctuations

In economical research, the idea of fully informed and completely rational traders is going
out of fashion. Random decisions and herding instincts are now incorporated to simulate
day-to-day fluctuations and also longer-lasting bubbles leading to market crashes such as the
1929 crash on Wall Street. And this is what statistical physics did since Boltzmann. Self-
organization appears in fluids as well as in the ‘invisible hand’ of the market theory of Adam
Smith, 230 years ago; conspiracy theories are out of fashion in statistical physics and perhaps
soon in economics.

Not only the economy has its ups and downs, but also the opinions of business managers
about the near future of the economy. We may take again an Ising model and identify an
optimist with spin up, and a pessimist with spin down. Real opinion polls look like Ising
magnetizations slightly below the critical temperature: the magnetization stays for a long time
on one side, then tunnels through to the other side where again it stays for quite a long time
[18]. To make the simulations more realistic with also a neutral opinion, one may use a spin-1
model with the states 1, 0 and −1, and a term favouring or disfavouring neutrality. This is
the Blume–Capel model and was applied [19] to the swings in the business expectations of
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Germany. Here and elsewhere in econophysics, the temperature measures the willingness to
disagree with trends, or takes into account the impact of external information not explicitly
included in the model.

And just as in physics, it is easier to explain events afterwards than to predict them
reliably.

5. Discussion

The above examples were selected not according to their importance in the field but according
to their similarity to traditional statistical physics, such as Ising models. In addition, I usually
teach other things. If you want to know who will pay for your retirement, you combine bio,
socio and econo aspects [20]. A monograph combining these aspects is [21] of which we plan
to write a new version.

The Ising model serves here more as a nice example of how to do simulations of
independent agents or to explain the emergence of order and broken symmetry; I am not aware
of applications where the critical exponents in two dimensions, or the Curie temperature in
five, play an important role.

Appendix. An ageing program

This program in Fortran 66 (mostly) denotes R and D as imin and idea and uses 64-bit
integers as random numbers. The function isign gives the sign of the second argument,
multiplied with the absolute value (here: 1) of the first argument. Questions should be sent to
stauffer@thp.uni-koeln.de.

parameter(nmax=6000000,init=nmax/10, nmem=init)

dimension ibirth(127), idhist(127), numage(127), ibhist(127)

byte imin(nmem), iage(nmem), idea(nmem)

integer*8 numage, ibhist, idhist, ibm, ibirth, iverh

real*8 avdea, avmin

data iseed/1/, max/ 50000/, ibirth,idhist,numage,ibhist/508*0/

print *, nmax, init, nmem, iseed, max, ’ 10%, 64 bit rng’

ibm=2*iseed-1

do 2 i=1,init

iage(i)=1

imin(i)=1

2 idea(i)=16

ibirth(1)=2147483648.0d0*2*2147483648.0d0

do 9 j=2,127

9 ibirth(j)=2147483648.0d0*(4.40d0/j-2.00d0)*2147483648.0d0

npop=init

do 3 itime=1,max

iverh=2147483648.0d0*(npop*4.0d0/nmax-2.0d0)*2147483648.0d0

n0=npop
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c first comes the loop over all Verhulst and genetic deaths; no

ageing do 1 i=n0,1,-1

ibm=ibm*16807

if(ibm.gt.iverh.and.iage(i).lt.idea(i)) goto 1

imin(i)=imin(npop)

idea(i)=idea(npop)

iage(i)=iage(npop)

npop=npop-1

1 continue

if(npop.le.0) stop 9

c deaths are finished, now come births

n0=npop

do 7 i=1,n0

im=imin(i)

if(iage(i).le.im) goto 7

ibm=ibm*65539

if(ibm.gt.ibirth(idea(i)-im)) goto 7

npop=npop+1

if(npop.gt.nmem) stop 8

ibm=ibm*16807

imin(npop)=max0(1,im+isign(1,ibm))

ibm=ibm*16807

idea(npop)=idea(i)+isign(1,ibm)

iage(npop)=0

7 continue

avmin=0.0d0

avdea=0.0d0

do 8 i=1,npop

iage(i)=iage(i)+1

avmin=avmin+imin(i)

8 avdea=avdea+idea(i)

if(itime.le.max/2) goto 3

do 10 i=1,npop

numage(iage(i))=numage(iage(i))+1

ibhist(imin(i))=ibhist(imin(i))+1

10 idhist(idea(i))=idhist(idea(i))+1

3 if(mod(itime,1000).eq.0)print*,itime,npop,avmin/npop,avdea/npop

do 11 i=1,126

11 if(numage(i+1).ne.0) print *, i, numage(i),ibhist(i)

1 ,idhist(i),-alog(float(numage(i+1))/float(numage(i)))

stop

end

Random odd integers are easily and efficiently produced by multiplying them by 16 807
(or by 1313 if 64-bit integers are available), where most computers then throw away all leading
bits and keep the last 32 (or 64) bits only. Thus if something is to be done with a fixed
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probability p, you do this if and only if your random integer is below ip = (2p −1)∗231 since
the random integers are between −231 and +231 in Fortran. (C has unsigned long integers
between 0 and 232). If instead you call a built-in random number generator RAND, RANF
or RND, it may do the same or something similar but will normalize each time the resulting
integer to the interval between 0 and 1, which is slower and less transparent than calculating
ip once.
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