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Abstract
The density-dependent distribution function of the orientation of the long axis of
rod-like colloidal particles in the liquid crystalline nematic phase is numerically
calculated as the solution of a nonlinear integral equation. From this solution,
which is obtained by an iterative method that is explained in detail, the free
energy, the pressure and the chemical potential can be computed, as well as the
nematic order parameter. Moreover, the first-order phase transition from the
disordered isotropic fluid phase to the nematic phase is analysed numerically.
This study, presented at the level of advanced undergraduates or starting
graduate students, not only illustrates the existence of liquid crystalline ordering
for nonspherical particles, but also shows explicitly how thermodynamics,
structure and symmetry are related.

1. Introduction

We are all familiar with the fluid and the crystalline state of matter, and know that these
phases—when the molecules are approximately spherical—are distinguished by the degree of
ordering of the positions of molecules. The study of the melting and freezing transition is,
however, not a part of most physics curricula, even though this symmetry-breaking transition
could serve as a daily-life example for this important concept in modern physics. The reason is
perhaps that the translational and rotational symmetry of the liquid phase are both fully broken
in the crystal phase, which makes this problem hard to crunch with methods available to most
undergraduate students. In this paper a simpler yet realistic symmetry-breaking transition in a
condensed-matter system is discussed: only rotational symmetry gets broken while up-down
symmetry and translational invariance survive.

Cigar- or needle-shaped molecules exhibit additional forms of ordering except for
fluid and crystalline phases: not only the positions but also the orientations of the molecules
can be ordered. The most disordered phase is then the isotropic fluid phase, where all the
particles translate and rotate freely (figure 1(a)), and the most ordered phase is the crystalline
phase, where all the particles reside at regular lattice sites and point in the same direction
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Figure 1. Schematic illustrations of typical configurations of rod-like particles in the (a) isotropic,
(b) nematic, (c) smectic and (d) crystalline solid phase. The nematic and smectic phase are the
examples of liquid crystalline phases with partial ordering; their properties are often in between
those of completely disordered isotropic fluids and completely ordered crystals.

(figure 1(d)). In between there are mesophases, or liquid crystalline phases, characterized by
ordering of the orientations of the particles, possibly with positional ordering. The simplest
example is the nematic phase (figure 1(b)), for which the rod-like molecules translate randomly
through space (as in a fluid), while pointing on average in a particular direction (this direction is
called the nematic director). Another example of a liquid crystalline phase is the smectic phase
(figure 1(c)), which consists of a sandwich-like structure of homogenous two-dimensional
layers of oriented molecules, stacked on top of each other. Because of the periodicity in the
direction of the director, the smectic phase can be seen as crystalline in one direction and
liquid-like in the other two directions. The properties of these liquid crystalline phases are in
between those of liquids and crystals (hence their names). For example, they can flow like
a liquid but diffract light like a crystal. It is the combination of properties that causes liquid
crystals to be so useful in applications, e.g. the liquid crystalline displays (LCDs). Liquid
crystalline structures do not only occur in systems of rod-like molecules such as cholesterol,
but also in solutions of macromolecules such as DNA, or in suspensions of rod-like colloidal
particles such as tobacco mosaic virus [1, 2].

An important quantity for these systems is the concentration of rods, expressed as the
number density n = N/V , with N the total number of rods in the system and V the volume of
the solvent. Below a certain concentration of rods, n < nI , these systems are in the isotropic
phase (I), which is the low-concentration regime where the rods hardly hinder each other, and
hence their thermal motion causes them to translate and rotate freely without any preferred
position or orientation. Above a certain concentration, n > nN, the rod–rod interactions are
relevant and these systems are in the nematic phase (N): the rods keep translating freely through
the solvent (by thermal motion), but with their orientations much more often in the vicinity of
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the north- and south pole of the unit sphere than on the equator. The transformation from the
low-density isotropic phase to the high-density nematic phase turns out to be a first-order phase
transition. This means that in the regime nI < n < nN, the isotropic and the nematic phases
coexist with each other. The system spontaneously divides into two subsystems—a nematic
phase and an isotropic phase—separated by a meniscus (a spontaneously formed interface).

In this project we will consider a simple but yet realistic model for a suspension of
colloidal rods. In this model the rods are described as rigid cylinders of length L and diameter
D, with L � D. The interactions between the rods are hard, like those between billiard balls:
the rods cannot penetrate or deform each other, but they do not feel each other until they
touch. This is clearly a simplification of reality, since real colloidal rods or DNA molecules
are charged and somewhat flexible. Despite the simplifications, it has turned out that this
model catches the essential physics of the isotropic–nematic transition. We will calculate the
concentrations nI and nN of the coexisting isotropic and nematic phase, as well as the degree of
orientational ordering in the nematic phase. These questions can be answered by considering
the probability distribution ψ(u) for a rod to have an orientation u on the unit sphere (u is a
unit vector parallel to the long axis of the cylinder). This distribution is trivial in the isotropic
phase (i.e. when n < nI), as any orientation on the unit sphere is equally probable and hence
ψ(u) = 1/4π . However, in the nematic phase (n > nN) the distribution ψ(u) is nontrivial:
it is the solution of a nonlinear integral equation that we will solve numerically. The method
that we employ here is iterative: starting from an (educated) initial guess for ψ(u) we keep
improving it until self-consistency is obtained. Such a procedure is very common in the theory
(and hence in the numerics) of interacting many-body systems.

2. The coordinate system

We first choose a convenient coordinate system in which the Cartesian z-axis is parallel
to the nematic director. The three Cartesian components of a unit-vector can now be
characterized by a polar angle θ ∈ [0, π ] and by an azimuthal angle φ ∈ [0, 2π ], i.e.
we write u = (sin θ cos φ, sin θ sin φ, cos θ) where the third component refers to the z-axis.
In this coordinate frame the unit surface element is given by du = sin θ dθ dφ. The symmetry
of the nematic phase is such that the orientation distribution is independent of φ, as the
nematic director is (by definition) the symmetry axis for global rotations. As a consequence
we can write ψ(u) = ψ(θ). Moreover, the nematic phase has up-down symmetry: there is
no difference between the northern and southern hemisphere (this symmetry distinguishes a
nematic phase from a (ferro)magnetic phase where the up-down symmetry is broken). The
up-down symmetry implies that ψ(θ) = ψ(π − θ), and hence we only need to calculate ψ(θ)

for θ ∈ [0, π/2]. The normalization of ψ(θ) must be such that∫
du ψ(u) = 4π

∫ π/2

0
dθ sin θψ(θ) = 1. (1)

3. The nonlinear self-consistency problem

In this section, we present the nonlinear integral equation that describes the orientation
distribution ψ(θ) for a given density n of rods, as first given by Onsager in the 1940s [1]. It is
based on the minimum condition of the Helmholtz free energy with respect to ψ(θ). Onsager’s
derivation will be repeated in a simplified fashion in the appendix. Onsager introduced the
dimensionless concentration of the rods

c = π

4
L2Dn,
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and showed that the distribution function ψ(θ) is the solution of the nonlinear integral equation

ψ(θ) = 1

Z
exp

[
−16c

π

∫ π/2

0
dθ ′ sin θ ′K(θ, θ ′)ψ(θ ′)

]
, (2)

where the prefactor 1/Z is a constant such that the normalization of equation (1) is satisfied.
In equation (2) we introduced the integral kernel

K(θ, θ ′) =
∫ 2π

0
dφ

√
1 − (cos θ cos θ ′ + sin θ sin θ ′ cos φ)2. (3)

Finding the solution of the nonlinear equation (2) is a self-consistency problem, because the
unknown distribution ψ(θ) is expressed in terms of itself.

In order to facilitate the numerical calculations below, we introduce also the auxiliary
function

A(θ) = 16c

π

∫ π/2

0
dθ ′ sin θ ′K(θ, θ ′)ψ(θ ′), (4)

which describes the orienting field that all the other rods exhibit on a given rod with a polar
angle θ . Expression (2) can be rewritten as a Boltzmann distribution

ψ(θ) = 1

Z
exp[−A(θ)], (5)

with A(θ) playing the role of a potential energy.

4. The discrete grid

We will determine the distribution ψ(θ) for a finite set of polar angles θk in the interval
[0, π/2], with k = 1, 2, . . . , Nθ and Nθ the number of θ in the set. Although many possible
choices exist we will here use the equidistant set

θk = π

2

k

Nθ + 1
, k = 1, 2, . . . , Nθ . (6)

Since dθ sin θ = −d cos θ , the trapezoidal integration scheme allows us to approximate

∫ π/2

0
dθ sin θg(θ) ≈

Nθ∑
k=1

�kg(θk), (7)

where g(θ) is an arbitrary function of θ , and where we define the positive measure of the
integration interval associated with θk

�k =



1 − (cos θk + cos θk+1)/2, k = 1
(cos θk−1 − cos θk+1)/2, k = 2, 3, . . . , Nθ − 1
(cos θk + cos θk−1)/2, k = Nθ .

(8)

This choice guarantees the correct normalization �k�k = 1 for all Nθ � 2. A reasonable
choice is Nθ = 20–40, and accurate results require Nθ = 100–200.

The numerical scheme requires a particular choice for the number Nθ , e.g Nθ = 40. Once
this number is defined we can make declarations (in Fortran-, Mathematica-, or C-program,
or any other programming language) of one-dimensional arrays of length Nθ containing the
discrete set of angles θk (from equation (6)) and the measures �k (from equation (8)), with
k = 1, 2, . . . , Nθ . We also need a two-dimensional Nθ × Nθ array (a matrix) with elements
Kkl = K(θk, θl), with k, l = 1, 2, . . . , Nθ . These coefficients can be computed by the standard
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trapezoidal rule on an equidistant grid of, say, Nφ = 200 azimuthal angles φj = 2πj/(Nφ + 1)

with j = 1, 2, . . . , Nφ ,

Kkl = 2π

Nφ + 1


3

2
gkl(φ1) +

Nφ−1∑
j=2

gkl(φj ) +
3

2
gkl

(
φNφ

)

 , (9)

where gkl(φ) =
√

1 − (cos θk cos θl + sin θk sin θl cos φ)2. Since these coefficients do not
depend on the value of c, it is advisable to store the elements of Kkl once they have been
computed, such that they can be read from a file instead of recomputed when another calculation
(on the same θ -grid) is desired.

5. The iterative scheme

In addition to the arrays θk,�k and Kkl , we define three one-dimensional arrays of length Nθ

as Ak ≡ A(θk), which is the auxiliary function defined in (4),τk ≡ τ(θk), which is the initial
guess (or trial) solution, and ψk ≡ ψ(θk), the desired solution. For the initial guess, it is
convenient to choose the Gaussian distribution τk = (c/π)2 exp[−2c2θ2/π ] for θ ∈ [0, π/2],
as it turns out to be very similar, but of course not identical, to the final solution ψ(θ). A
simpler, though less efficient choice, is the isotropic distribution (τk = 1/4π for all k), which
is suitable as soon as c > 4 [3]. With τk as the initial guess, a loop can be set up. For this,
we define an iteration counter i (initially i = 0), and the maximum number m of iterations
that we are willing to perform, typically m = 100. Finally, we also need a measure for the
accuracy with which we are satisfied. We define a tolerance t, which sets the magnitude for
the largest acceptable deviation between the distributions of two consecutive iterations, for
instance t = 10−5. For a given density c, the loop is as follows:

(i) Increase the counter by one: i = i + 1. If i > m print out: ‘not converged’, and exit the
loop.

(ii) Use the trial solution τk to calculate the auxiliary function

Ak = 16c

π

Nθ∑
l=1

�lKklτl for all k = 1, 2, . . . , Nθ (10)

This represents, on the grid, the function A(θ) as defined in equation (4).
(iii) Calculate the normalization constant:

Z = 4π

Nθ∑
k=1

�k exp[−Ak] (11)

which represents normalization of expression (5) on the grid.
(iv) Calculate the improved (new) estimate of the distribution function:

ψk = 1

Z
exp[−Ak] for all k = 1, 2, . . . , Nθ . (12)

This is the grid version of equation (5).
(v) Calculate the maximum δ of the difference between two consecutve solutions:

δ = maxk|ψk − τk|. (13)

(vi) If δ < t then ψk and τk are so close that self-consistency is obtained within the tolerance;
store the solution ψ(θk) = ψk , and exit the loop. If δ > t , self-consistency has not
been obtained; proceed by setting the new trial distribution to the newly obtained guess
(τk = ψk), and restart the loop at (i).
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The outcome of this scheme should be the desired distribution function ψ(θk), unless
convergence has not been obtained within m iterations. True convergence is found when the
solution ψk does not depend significantly on numbers defining the numerical procedure (e.g.:
m,Nθ ). Including this procedure in a loop where a number of concentrations c ∈ [cmin, cmax]
are considered, should be no problem.

6. Thermodynamic and structural properties

Now that we are capable of determining ψ(θ) for a given density c, we are ready to study the
thermodynamics and the structure of isotropic and nematic liquid crystal phases of rods. It is
of interest to consider the c-dependence of the orientation distribution ψ(θ), e.g. by plotting
this function for c = 4.5, 5.0, 6.0, 7.0, 10. One should observe that the distribution becomes
more and more peaked about θ = 0 for increasing c. Note that it is crucial that at least
a few polar angles θk of the set are small enough to support the very peaked high-density
distributions. One represents the degree of nematic ordering with the so-called nematic order
parameter = 〈(3 cos2 θ − 1)/2〉, which we rewrite as

S = 4π

∫ π/2

0
dθ sin θψ(θ)

3 cos2 θ − 1

2
� 4π

Nθ∑
k=1

�kψk

3 cos2 θk − 1

2
. (14)

In the isotropic phase S = 0, in the coexisting nematic phase S � 0.79 (see below), and
S approaches unity upon increasing c further [3–7]. We note that this parameter can be
measured experimentally (often the full distribution ψ(θ) requires more information than is
experimentally available).

The distribution ψ(θ) for a given c is also the key to determining thermodynamic
quantities. This can be understood if one realizes that the nonlinear integral equation (2)
stems from the condition that ψ(θ) minimizes Onsager’s free energy fO[ψ] of equation (A.3).
This means that the free energy f (c) (per particle per kBT ) at density c can be calculated by
evaluating fO[ψ] with ψ(θ) the (numerically determined) distribution. Setting the arbitrary
volume b equal to (π/4)L2D for convenience, we obtain for the free energy

f (c) = ln c − 1 + 4π

∫ π/2

0
dθ sin θψ(θ) ln ψ(θ)

+ 32c

∫ π/2

0
dθ sin θ

∫ π/2

0
dθ ′ sin θ ′K(θ, θ ′)ψ(θ)ψ(θ ′)

� ln c − 1 + 4π
∑

k

�kψk ln ψk + 32c
∑
k,l

�k�lKklψkψl (15)

where the solution ψ(θk) was used. Once the free energy is known the (dimensionless)
pressure follows as p(c) = c2df (c)/dc, which yields

p(c) = c + 32c2
∫ π/2

0
dθ sin θ

∫ π/2

0
dθ ′ sin θ ′K(θ, θ ′)ψ(θ)ψ(θ ′)

� c + 32c
∑
k,l

�k�lKklψkψl. (16)

This dimensionless pressure is related to the osmotic pressure 	 by 	 = kBTp/b, which
is the excess pressure of the suspension with colloidal rods at a dimensionless concentration
c over that of a pure solvent (for which c = 0). The dimensionless chemical potential
µ(c) = f (c)+p(c)/c follows from equations (15) and (16). Some numerical results are given
in table 1.
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Table 1. Density dependence of the pressure p and the order parameter S, on the basis of a grid of
Nθ = 320 equidistant θ and a tolerance t = 10−5.

c p S

4.5 14.76 0.834
5.0 15.98 0.878
5.5 17.31 0.904
6.0 18.69 0.923
6.5 20.10 0.936
7.0 21.54 0.946
7.5 22.98 0.953
8.0 24.44 0.959
8.5 25.91 0.964
9.0 27.38 0.968
9.5 28.85 0.972

Table 2. Grid dependence of the isotropic–nematic coexistence data.

Nθ cI cN SN pIN µIN

10 3.210 4.079 0.7895 13.52 5.056
20 3.261 4.181 0.7989 13.89 5.172
40 3.282 4.191 0.7947 14.05 5.221
80 3.288 4.191 0.7929 14.10 5.236

160 3.290 4.191 0.7924 14.11 5.240
320 3.290 4.191 0.7922 14.12 5.241

Before turning our attention to the calculation of phase coexistence, we remark that
analytical expressions for f (c), p(c) and µ(c) are available in the isotropic phase (where
ψ(θ) = 1/4π ). These results are based on the fact that

∫ π/2
0 dθ sin θ

∫ π/2
0 dθ ′ sin θ ′K(θ, θ ′) =

π2/2, from which one finds that

fiso(c) = ln(c/4π) − 1 + c piso(c) = c + c2 µiso(c) = ln(c/4π) + 2c.

The availability of these analytical results not only saves us the effort of determining these
functions numerically, they are also a blessing for checking the code against bugs and for
estimating the accuracy of the numerical procedure on the grid. The reason is that nothing
prevents us from performing the test of calculating ψ(θ) with our iterative scheme for a density
as low as e.g. c = 1. The result should be a numerical estimate of ψ(θ) = 1/4π and of the
corresponding thermodynamic quantities f, p,µ, S.

Coexistence of an isotropic phase (with density c = cI) and nematic phase (with density
c = cN and order parameter SN) requires mechanical and diffusive equilibrium between these
two phases. These conditions are met if and only if the pressure and the chemical potential in
the isotropic and nematic phase are the same, i.e.

piso(cI) = p(cN) µiso(cI) = µ(cN). (17)

These conditions can be seen as two equations piso(cI)−p(cN) = 0 and µiso(cI)−µ(cN) = 0
for the two unknown densities cI and cN. It is straightforward to find the roots cI and
cN numerically using numerical root-finding methods such as Newton–Raphson, or build-in
routines in e.g. Mathematica. The dependence of the isotropic–nematic coexistence data on
Nθ is illustrated in table 2. One observes that pretty accurate coexistence data can be obtained
from Nθ as small as 10, whereas convergence to about four decimals requires Nθ = 320.
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There is another physically instructive way to check and interpret the obtained numerical
values for the coexisting densities cI and cN. It is based on a plot of the Helmholtz free energy
per unit volume F/V as a function of density n, or in our dimensionless units φ(c) ≡ cf (c) as
a function of c. Plotting the isotropic branch φiso(c) = c ln[c/4π ] − c + c2 for c ∈ (2.5, 5.0)

and the numerically determined nematic branch φnem(c) for c ∈ (3.5, 5.0) should reveal that
φiso(c


) = φnem(c
) for the density c
 � 3.539. For c > c
 the nematic branch of the free
energy is lower than the isotropic one, and vice versa for c < c
. Naively one could argue that
the phase transition should take place at c = c
, since there, the free energy minimum crosses
from one phase to the other. This reasoning is incorrect, however. The reason is that the
system at a given density c ∈ (cI, cN) can lower its total free energy even further by splitting
up into two subvolumes that coexist with each other: one with an isotropic phase at density cI

and the other with a nematic phase at density cN. If we denote the fraction of the volume that
is occupied by the isotropic and the nematic phase by x and 1 − x, respectively, then particle
conservation dictates that c = xcI + (1 − x)cN, or equivalently x = (cN − c)/(cN − cI). The
resulting total free energy per unit volume of the phase separated system is then the linear
combination φsep = xφiso(cI) + (1 − x)φnem(cN), which can be written as

φsep(c) = φiso(cI) +
c − cI

cN − cI
(φnem(cN) − φiso(cI)) .

Plotting this linear function φsep(c) together with φiso(c) and φnem(c) should reveal that the
phase-separated system has indeed a lower free energy than the homogenous isotropic or
nematic phase, but only for c ∈ (cI, cN). In fact φsep(c) represents the common tangent
construction (or Maxwell construction); it is the optimal way to lower the free energy by
a phase separation into two phases. One checks that the common tangent construction is
equivalent to the condition of mechanical and diffusive equilibrium given in equation (17).
One may, however, find it difficult to assess this common tangent construction from the scale
of the plot, which is dominated by an essentially linear behaviour with c. A convenient trick to
improve the visibility is to subtract cµIN from all the three curves φsep(c), φiso(c), and φnem(c),
which eliminates the linear term. This combination reveals two clear minima at cI and cN,
of the same depth given by −pIN. This is, of course, no coincidence, as the combination
φ(c) − µc is the grand potential per unit volume, which at fixed µ (here µ = µIN) is minimal
at the equilibrium density, the minimal value being the negative of the pressure.

7. Outlook

We have studied the orientational ordering and the thermodynamic properties of a system
of rod-like colloidal particles in the isotropic and the liquid crystalline nematic phase. The
key quantity is the orientation distribution function ψ(θ), which is numerically determined by
solving a nonlinear integral equation iteratively. The liquid crystalline structure is independent
of temperature because we restricted attention to hard-core interactions only. In this athermal
limit the phase transition is driven by entropic effects only: at low densities the orientation
entropy is maximized at the expense of free volume (a measure for translational entropy),
and at high densities the free volume is maximized at the expense of orientation entropy.
A similar iteration scheme as presented here can also be applied to study extensions of the
present model to for instance binary mixtures of rods of different lengths [8, 9] or different
diameters [10], self-assembling rods with a length that can shrink or grow [11], mixtures of
flexible and stiff rods [12], mixtures of rod- and disc-like particles [13], polydisperse mixtures
of rods (with a continuous distribution of sizes) [14, 15]. These extensions involve a separate
distribution function ψ(s)(θ) for every chemical species s in the system (or for every element
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s of the contour of a chain in the case of flexible rods), and a kernel K(ss ′)(θ, θ ′) to describe
the interactions between species s and s ′. This is obviously a bit more involved than in the
present project, but the rewards include a richer phenomenology such as demixing transitions
with critical and triple points in the phase diagrams. Another possible extension of the present
calculations involves the description of spatial inhomogeneities, such as in the smectic phase
of figure 1(c) [16], the adsorption and film formation of rods in contact with a planar external
wall [17], or the isotropic–nematic interface [18]. In these cases the distribution function is
not only dependent on θ , but also on the Cartesian coordinate z and sometimes even (weakly)
on φ; the corresponding kernel is of the type K(z − z′, θ, θ ′, φ − φ′). However, the iteration
scheme is not fundamentally different from that of the present study.
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Appendix. The free energy according to Onsager

It is well known that a system with a fixed number of particles (N) in a fixed volume V at
a given temperature T will arrange itself such that its Helmholtz free energy F = U − T S

is minimized. Here U is the internal energy and S the entropy of the system. In the 1940s
Onsager formulated an expression for the free energy of a system of N rods in terms of the
(yet unknown) orientation distribution function ψ(θ). Here we briefly discuss a simplified
version of Onsager’s argument. In order to understand Onsager’s argument one needs to
recall from elementary statistical mechanics that the Helmholtz free energy of a classical
ideal-gas mixture of Nxi particles of species i = 1, 2, . . . , s in a volume V can be written as
NkBT

∑s
i=1 xi(ln(Nxib/V ) − 1). Here xi is the fraction of species i, such that

∑s
i=1 xi = 1.

The parameter b is an irrelevant constant of dimension volume to make the argument of the
logarithm dimensionless. Onsager viewed the suspension of N identical rods as a multi-
component mixture, where he distinguished the rods by their orientation. The fraction of rods
with an orientation u is therefore ψ(u), and this fraction plays the role of the composition
variable xi above. Assuming first that the rods do not interact with each other, then the free
energy of this system is that of an ideal gas with a very large number of components, and one
writes

F id [ψ] = NkBT

∫
du ψ(u)

(
ln

Nbψ(u)

V
− 1

)
, (A.1)

where the integration is over the unit-sphere, and where b is an arbitrary constant of dimension
volume for which we will make a convenient choice later. Of course we now have the
normalization

∫
du ψ(u) = 1.

However, the rods of interest here do interact since they cannot penetrate each other.
In other words, the rods exclude some volume to each other, and hence the volume that is
available to a rod with orientation u is not the total volume V but a smaller volume that we
call the free volume Vf (u). The idea is now to calculate Vf (u), which then replaces V in
equation (A.1). We denote the volume that a rod with orientation u′ excludes to another rod
with orientation u by the so-called excluded volume E(u, u′), to be calculated below for the
long cylindrical rods of interest here. In order to find the free volume for a given rod with
orientation u one needs to subtract the excluded volume due to all the other N − 1 rods from
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the total volume. Since we are interested in N � 1 (e.g. N = 1020) we set N − 1 ≈ N and
write

Vf (u) = V − N

2

∫
du′ E(u, u′)ψ(u′), (A.2)

where the factor 1/2 corrects for double counting. Replacing the volume V in equation (A.1)
by the free volume of equation (A.2), and using the low-density Taylor expansion ln Vf (u) �
ln V − (n/2)

∫
du′E(u, u′)ψ(u′), yields the Onsager expression for the free energy (per

particle, per kBT ) given by

fO[ψ] =
∫

du ψ(u) (ln(nbψ(u)) − 1) +
n

2

∫
du

∫
du′ E(u, u′)ψ(u)ψ(u′). (A.3)

Although this derivation may suggest that severe approximations have been made in order to
arrive at equation (A.3), it turns out to be the exact low-n expansion, i.e. the next order term of
the right-hand side is O(n2). Moreover, it was shown by Onsager that equation (A.3) is even
exact for rods in the needle limit L/D → ∞, i.e. in that case the corrections can be ignored
for densities in the regime of isotropic and nematic phases. In fact Onsager’s expression (A.3)
for the free energy of a system of infinitely long hard rods is one of the very few exactly known
free-energy expressions for off-lattice systems of interacting particles.

The next problem to tackle is the calculation of the excluded volume. Using simple
geometric arguments it is easy to see that E(u, u′) only depends on the angle γ between
the two rods, defined such that u · u′ = cos γ . It is also easy to convince oneself that the
excluded volume of two perpendicular rods (γ = π/2) is an O(L2D) volume, whereas it is
only O(LD2) for two parallel rods (γ = 0). It is a more complicated geometric problem to
find the general γ -dependence

E(u, u′) = 2L2D|sin γ | + O(LD2) = 2L2D
√

1 − (u · u′)2, (A.4)

where the O(LD2) contributions can be ignored in the long-rod limit L � D. We work in
this limit here. Derivations of this result can be found in a remarkable appendix of Onsager’s
original paper [1]. We have now calculated expressions (A.3) and (A.4) that give the free energy
of a suspension of rod-like particles with density n at a given orientation distribution ψ(u).
However, the orientation distribution of such a suspension is not a quantity that can be imposed
externally (in contrast with the composition of a mixture of gases, which can be controlled and
fixed externally). Rather the suspension determines, at a given n, its own distribution ψ(u) in
such a way as to minimize the free energy fO[ψ]. We have to consider the constraint that the
normalization

∫
du ψ(u) = 1 must be retained. Mathematically this minimum condition can

be written as a vanishing (functional) derivative of fO[ψ] − λ
∫

duψ(u) with respect to ψ ,
where λ is a Lagrange multiplier. This implies that the equilibrium distribution satisfies

ln ψ(u) + n

∫
du′ E(u, u′)ψ(u′) = λ − ln(nb) ≡ exp(−Z). (A.5)

The prefactor Z is fixed by the condition that
∫

du ψ(u) = 1. If we now insert the
excluded volume expression (A.4) into (A.5), together with the representation u · u′ =
cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′) in the present coordinate system, one arrives directly
at the nonlinear integral equation (2) with the kernel K(θ, θ ′) as defined in (2) and the
prefactor Z given in equation (5).
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