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a b s t r a c t

Mean field games were introduced independently by J-M. Lasry and P-L. Lions, and by
M. Huang, R.P. Malhamé and P.E. Caines, in order to bring a new approach to optimization
problems with a large number of interacting agents. The description of such models split
into two parts, one describing the evolution of the density of players in some parameter
space, the other the value of a cost functional each player tries to minimize for himself,
anticipating on the rational behavior of the others.

Quadratic Mean Field Games form a particular class among these systems, in which
the dynamics of each player is governed by a controlled Langevin equation with an
associated cost functional quadratic in the control parameter. In such cases, there exists a
deep relationship with the non-linear Schrödinger equation in imaginary time, connection
which lead to effective approximation schemes as well as a better understanding of the
behavior of Mean Field Games.

The aim of this paper is to serve as an introduction to Quadratic Mean Field Games and
their connection with the non-linear Schrödinger equation, providing to physicists a good
entry point into this new and exciting field.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Differential Games represent a field of mathematics at the frontier between optimization problems and Game Theory. It
relates to optimization problems in the sense that they model socio-economic phenomena in which agents have control
of some parameters (e.g. their velocity, or the amount of resource they dedicate to some goal), which can be modified in
the course of time in order to minimize some given cost functional. It relates also to Game Theory because the cost function
of a given agent is assumed to depend not only on his (or her) own state but also on the one of the other agents involved,
implying a strategic approach to the parameter choices.

When the number of agents becomes large, differential games may become technically very complex. Practical appli-
cations for a large number of players are therefore extremely difficult to implement [1]. In some aspects, this situation
is reminiscent of the problems encountered by physicists when considering systems with a large number of interacting
components, for which an exact treatment is in most of the cases intractable, but where a ‘‘mean field’’ approximation
provides in many circumstances a very decent description. Owing explicitly to this source of inspiration, P-L. Lions and
J-M. Lasry [2–4], and independently M. Huang, R.P. Malhamé and P. E. Caines [5], introduced a ‘‘mean field’’ approximation
scheme adapted to these differential games. The key idea at the root of Mean Field Games (MFG in the following), is that the
very complexity associated with a large number of players allows for a drastic simplification when considering that a given
agent is not really sensitive to the individual choices of every agent, but only to an averaged quantity (the mean field) which
aggregates the decisions made by the other participants to the game.

Since the first articles in 2005–2006, Mean Field Games have developed into a very active field of research and undergone
a rapid growth in several directions : On the more formal side, important results have been obtained on the existence and
uniqueness of the associated PDEs [6,7] or on the convergence of a many player game to its mean field version [8–10].
Significant work has been also done in order to find numerical schemes able to handle this kind of problems [11–13]. More
recently, application oriented studies have been performed in the context of finance [4,14,15], economic problems [16–18],
or engineering [19,20].

This recent period is thus marked by important results coming from the mathematical and engineering science commu-
nities, with more recent contributions from economists, but very little involvement from physicists.

One important goal of this review is to demonstrate that this has not to be the case, and that, as they did for other problems
that have emerged in the context of social sciences (cf. e.g. [21–27]), physicists can bring an interesting and important point
of view to the study of Mean Field Games. Indeed, although the MFG equations allow for a drastic simplification of the
original problem, they are still very difficult to analyze. Very few exact solutions exist, mainly in the static case or in very
simplified settings [28–32]. Furthermore the numerical schemes that have been developed, in spite of their quantitative
accuracy, do not necessarily provide a complete understanding of themechanism at work inMean Field Games. A physicist’s
approach to MFG, in which one develops concurrently both an intuition of the qualitative behaviors and quantitatively
accurate approximation schemes, is therefore very much needed.

Thus, rather than an exhausting review of existing mathematical results, the aim of this paper is to provide a good
entry point for physicists to this fascinating new and rapidly developing field of Mean Field Games. For a recent survey
of mathematical results, the reader is referred to the existing reviews [6,7,16] and books [9,33,34] covering in very much
detail the results obtained by the mathematical community. In this paper, we shall on the other hand focus on a particular
class of Mean Field Games, the so-called ‘‘quadratic Mean Field Games’’ which is still representative of the subject at large,
and has the peculiarity of exhibiting a direct, formal, and deep relationship with the non-linear Schrödinger equation. This
connection brings a wide set of existing tools to this field, which because of the long history of the non-linear Schrödinger
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equation in physics are both extremely familiar to physicists and lead to very significant progresses in the comprehension
of the solutions of Mean Field Games models.

The body of this article is divided into five parts. In Section 2, we introduce in detail the generic form ofMean Field Games,
and present some of its extensions and applications. This sectionwill be the only one that genuinely qualifies as a [bird’s-eye]
survey of the mathematical literature.

The rest of the article is devoted to the study of the behavior of the quadratic mean field games, stressing in particular
how tools which are well known to the physics community can be used effectively to understand the correspondingmodels.
In Section 3, we derive the connection between quadratic MFG systems and the non linear Schrödinger equation. As a first
application, we present a few exact relations satisfied by some of the MFG statistics and revisit the stationary problem. We
also derive exact solutions of ‘‘soliton’’-type for some specific MFG problems, part of them being previously known, and
some others new. In the two following sections, we study thoroughly the case of strong interactions, both in stationary and
non-stationary settings. Section 4 presents the main methods and results; in Section 5 we extend these results in various
ways (higher dimensions, general initial conditions, etc.). Finally, in Section 6 we consider the case of weak interactions that
can be cast into the same framework.

2. Mean Field Games

In this section, we first describe in some detail the construction of Mean Field Games in the form in which they were
originally introduced [2,3], and review some generalizations, as well as some example of applications.

2.1. The ‘‘Mean Field Games’’ Paradigm

In its original form, a MFG problem can be set as follows. As a starting point, we consider a differential game with N
players (or agents). Their individual states are described by a continuous variable Xi

∈ Rd, i = 1 . . .N , which, depending
on the context, may represent a physical position, the amount of resources owned by a company, the house temperature
in a network of controlled heaters, etc. These state variables evolve according to some controlled dynamics, which here is
assumed to be described a linear Langevin equation,

dXi
t = aitdt + σdWi

t (2.1)

with initial conditions Xi
t = xi0. For simplicity, σ is chosen here to be a constant, each of the d components of Wi is an

independent white noise of variance one, and the control parameter is the velocity ait . This control is adjusted in time by the
agent i in order to minimize a cost functional over a time interval [0, T ]

c[ai](xit , t) = ⟨⟨

∫ T

t

(
L(Xi

τ , a
i
τ ) − Ṽ [mτ ](Xi

τ )
)
dτ ⟩⟩noise + ⟨⟨cT (Xi

T )⟩⟩noise. (2.2)

The cost functional is an average over all realizations of the noise for an agent starting at xit at time t and represents the
rational expectations of each player. In differential games, it is made of two parts: a time integral over a ‘‘running cost’’, here
L(x, a) − Ṽ [m](x), and a ‘‘final cost’’, cT (x), depending on the state of the agent at the end of the optimization period T . The
running cost here splits into two terms, a ‘‘free Lagrangian part’’, L(x, a), depending only on the agent’s state x and control
a, and a ‘‘potential’’ term, −V [mt ](x), which takes into account the interaction between agents and is a functional of the
empirical density of agentsmt in the state space,

mt (x) =
1
N

∑
j

δ(x − Xj(t)). (2.3)

Implicitly, we have assumed that all agents have an identical behavior in the sense that they may differ only by their
initial conditions and the subsequent choices of control parameters. Finally, as usual in control theory [35] one introduces a
value function which is defined as the minimum, over all controls, of the cost function, given the initial condition x at time
t . It is independent on the agent label i and reads

ut (x) ≡ min
a

c[a](x, t). (2.4)

Up to now, we have only described a continuous differential game, and it has to be made clear that even in the above
simplified setting, there is no hope to solve this system beyond a very few number of players. The aim of Mean Field Games
is to provide a frame in which such a system can be analyzed in the limit of a large number of players. One thus renounces
to follow each agent individually, but rather describes the system at a statistical level through the density of agentsmt (x).

Now, the essential assumption of Mean Field Games is that the density of agents becomes deterministic in the large N
limit. As a consequence, like in standard mean field theories, for a given time dependent density mt , the trajectories of the
different players decouple, and the problem reduces to an optimization problem for a single agent. In particular, using Ito’s
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calculus, the value function for each player can be shown to be solution of the following Hamilton–Jacobi–Bellman equation
(we give a brief sketch of the derivation in Appendix A)⎧⎨⎩ ∂tut (x) + H(x,∇ut (x)) +

σ 2

2
∆ut (x) = Ṽ [mt ](x)

uT (x) = cT (x)
(2.5)

where H(x, p) ≡ infα (L(x,α) + p.α).
The optimal control is then the value of a which realizes the above infimum, namely a = a∗

t (x) =
∂H
∂p (x,∇ut(x)).

Substituting into the Langevin equation (2.1), the optimized agent density mt then evolves from an initial condition m0

according to the Kolmogorov equation [36]⎧⎨⎩ ∂tmt (x) + ∇.(mt (x) a∗

t (x)) −
σ 2

2
∆mt (x) = 0

m0(x) = m0(x)
. (2.6)

By consistency, the two agent densities (i.e. the one used in the optimization leading to Eq. (2.5) and the one resulting
from Eq. (2.6)) need to coincide andwe are left with the set of partial differential equations (2.5) and (2.6) which are coupled
together through the terms Ṽ [mt ] and a∗

t . They are both of diffusion type, but respectively backward and forward in time.
Together, they form the system of equations defining the Mean field Game which is expected to describe the large N limit
of our initial differential game [3].

In the limit of a very large optimization period T → ∞, this system of equation has a remarkable property, proven
under some specific conditions by P. Cardialaguet et al. [37]. In a wide time span, when sufficiently far from both limits,
t = 0 and t = T , the system stays in a permanent regime where the solution (mt (x), ut (x)) of the MFG system remains well
approximated by the (me(x), ue(x)eλet ), where the couple (me(x), ue(x)) is solution of an analog ergodic problem (we assume
here its existence and unicity)⎧⎪⎪⎨⎪⎪⎩

− λe + H(x,∇ue(x)) +
σ 2

2
∆ue(x) = Ṽ [me

](x)

∇(me(x)ae(x)) −
σ 2

2
∆me(x) = 0

, (2.7)

where H(x, p) = infα (L(x,α) + p · α), ae(x) =
∂H
∂p (x,∇ue(x)) and λe an appropriately chosen constant. This system of

equations is referred to as the stationary Mean Field Games system of equations. In the sequels, we will give a transparent
and intuitive interpretation of what is this ergodic solution and how it is approached in this long time horizon regime.

2.2. Overview of recent generalizations.

The class of Mean Field Games described in the previous subsection includes already a rich variety of models whose
behaviors are far from being fully understood. In the last few years, very significant effort have been made to extend the
Mean Field Games approach beyond this original class of problems, or to consider them from a rather different point of view.
These efforts reflect in part the necessity to approach a more realistic description of economic or social (or other) questions,
which imposes to relax somehow the restrictive hypothesis originally assumed in the original formulation described above.

As we have already stressed, the behavior of even the simplest Mean Field Games model are very poorly understood
(in the sense a physicist uses for this word), and we shall not address in any detail these extensions here. Starting from
Section 3, we shall actually further limit our study to a particular subclass of these Mean Field Games (namely the quadratic
MFG), which, as we shall see, provide a nice entry point to the field for physicists. We shall however in this subsection and
the following one provide a brief survey of the main existing lines of research. We refer the interested reader to recent
mathematical review [6] and monographs [33,34].

Generalized cost functions
A very natural way to generalize the basic MFG of Section 2.1 is to enlarge the set of admissible cost functions. A first

obvious step, actually already taken in the first papers of Lasry and Lions [2,3], is to assume that the functional Ṽ in Eq. (2.2)
may also have an explicit dependence in time, reading thus Ṽ [mτ ](Xi

τ , τ ).
There are furthermore some situation where the running cost cannot be written as the sum of a ‘‘free Lagrangian term’’

L(xτ , aτ ) depending only on the state and control variable of a given agent and a ‘‘potential’’ term Ṽ [mτ ](x) which describe
its interaction with the distribution of all agents. This is the case, for instance when considering pedestrian flow [13], where
congestion effects need to be taken into account. Note that congestion here does not mean that agents avoid crowded places
(which in any casewould be taken into account by a proper choice of the functional Ṽ ), but that being at a locationwhere the
density of agents is high is making more costly the use of a large velocity. In that case, it is therefore necessary to introduce
a term coupling directly the control parameter with the agent densities. A particular model for the congestion phenomena
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where the running cost contains a term proportional to

(mτ + µ)γ |aiτ |
β
β−1

(with µ, γ ≥ 0 and β ∈ (1, 2]) has been discussed by Lions in [38] and more recently by Adchou and Porretta [39].
In another context, Gomes et al. [40] have also introduced, and analyzed in the stationary case, a model in which the cost

function of a given player is affected not only by the distribution of the other players state variable, but also by the value of
their control variables. This kind of models arises naturally in the context of Mean Field Game model of trade crowding, and
has been coinedMean Field Games of Control by Cardialaguet and Lehalle [15].

Different kinds of players
One simplifying assumption in the basic MFG of Section 2.1 is that all the players are essentially identical (exchangeable),

and therefore distinguish themselves only through the value of their state variable.
A natural extension within the Mean Field game hypothesis is to consider that there exist different groups of agents, G(k),

k = 1, . . . , K , each being characterized by a specific cost function which may also depend separately on the partial densities

m(k)(x) =
1
N

∑
i∈G(k)

δ(x − Xi)

and not only on the total density m(x) =
∑

k m
(k)(x). In such cases, each agent has to minimize a cost functional similar to

Eq. (2.2), but specific to its group, in which the ‘‘potential’’ Ṽ [m](x) is replaced by Ṽ (k)
[m(1), . . . ,m(K )

](x).
One example of these Mean Field Games involving more than one kind of population is the model of segregation studied

by Adchou et al. [41], which is in some sense the analog of the model introduced by Schelling in 1971 to study segregation
effects in the United States cities [42].

If the introduction of different kinds of ‘‘small players’’ may lead to rather new kinds of behavior, it however does not lead
to a very significant conceptual change in the general theory of Mean Field Games. This aspect is however rather different
when the group(s) of small players interact (strategically) with one or many ‘‘big players’’ [43], a situation which is often
encountered when modeling financial markets. For instance, in [14], Lachapelle et al. considered the question of the price
formation in a financial market where a small number of ‘‘institutional investors’’ cohabit with a large number of high
frequency traders. In this context, the high frequency traders sell or buy only small quantities and only the coherent action
of a large (O(1)) fraction of them can affect the outcome. On the other hand the institutional investors can buy or sell very
large quantities that can have a significant impact on their own.

In such circumstance, one can still consider that themean field hypothesis is still valid for the population of small players.
However, the situation is different for the big players as the fully stochastic nature of their individual evolution need to be
taken into account. This eventually leads to amixed description, with amean field game coupled to the stochastic differential
game for a small number of (big) players.

Mean field games on graphs
Another extension of the MFG concept is to apply it to cases where the state space is discrete rather that continuous.

This changes rather significantly the structure of the Mean Field Game since the Fokker–Planck equation is replaced by a
set of rate equations, and similarly the Hamilton–Jacobi–Bellman equation by discrete Bellman equations. The approach
to such models is thus technically rather different but may provide a useful simplified setting when analyzing a particular
qualitative effect, such as for instance congestion [44]. Furthermore, some economic or social problem naturally lead to
such graph-MFG model. In health science for instance, they provide a natural setting for a game theoretical version of the
SIR (Susceptible/Infected/Recovered) model for spread of disease, which have been investigated in detail by Laguzet and
Turinici [30].

2.3. Probabilistic approach and the Master Equation

All the Mean Field Game extensions described in the previous subsection involve non-trivial changes with respect to
the original formulation of Section 2.1. However, essentially all of them suppose that the evolution of the density of (small)
players is described by a deterministic equation and that its fluctuations can be neglected.

However, a number of circumstances require to take into account the existence of stochastic effects, which may survive
even in the limit of infinitely many players. For instance, this is the case in presence of a common noise [45] or when one
has to take into account the stochastic dynamics of big players [43]. Moreover, such an extension is also needed when one
wants to relate an N-player game with its MFG counterpart in the N → ∞ limit.

In these cases, it is not possible to assume that the density of agents can be replaced by its average value, and its stochastic
nature needs to be taken into account. At a heuristic level this can be understood as implying that the system of coupled
forward Fokker–Planck equation and backward Hamilton–Jacobi–Bellman equation (Eqs. (2.5)–(2.6) ) has to be replaced by a
system of coupled stochastic Fokker–Planck equation and stochastic backward Hamilton–Jacobi–Bellman equation. In some
instances, such as the case of a large population in a random environment, one can actually construct, and deal with, the
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resulting stochastic mean field game [46]. However, for most cases, it is necessary to reformulate the Mean Field Games
approach to take into account the full complexity of these models.

This means that one does not rely any more on a Hamilton–Jacobi–Bellman equation, which supposes that the time
dependent probability distribution of player is fixed, but rather consider this distribution as a variable to be fixed in the
optimization process itself. In [8], Carmona andDelarue have initiated a purely probabilistic description ofMean FieldGames,
which is an alternative approach to the one based onPDEs introducedby Lasry and Lions. This probabilistic approachprovides
one way to tackle the difficulty implied by the stochasticity of the distribution of players [33,47]. Another framework for
this reformulation has been introduced by P.-L. Lions and called the ‘‘Master Equation’’ approach [38]. Its basic ingredient
consists in writing the value function u (cf. Eq. (2.4)) as a function of time, state variable and the full distributionm. This leads
to a single differential equation for uwhich is of second order inm [10,48].

This Master Equation is a very powerful and sophisticated tool, that for obvious reason we shall not describe in any detail
here, but it represents presumably the most active direction in the development of MFG in the mathematical community
[34,38,45,46,48,49].

3. Quadratic Mean Field Games: Schrödinger approach

3.1. Quadratic Mean Field Games

In the rest of this paper, we shall restrict our attention to quadraticMean Field Games, which are defined by the fact that
the ‘‘free Lagrangian’’ part of the running cost has a quadratic dependence in the control:

L(X, a) =
1
2
µa2 (3.1)

This class of MFGwill be shown to admit amapping to a non linear Schrödinger Equation, which leads to an almost complete
description of their behavior.

In addition, we will assume that the potential Ṽ [m](x) can be written as the sum of two terms

Ṽ [m](x) = U0(x) + V [m](x) (3.2)

whereU0(x) is an ‘‘external potential’’ which depends only on the state x of the agentwhileV [m](x) describes the interactions
between agents and is invariant under simultaneous translation of both x andm(·). The simplest form that we will consider
for this interaction will be linear and local,

V [m](x) = g m(x) (3.3)

where g > 0 corresponds to attractive interactions. We shall also consider non local interactions

V [m](x) =

∫
dy κ(x − y)m(y) , (3.4)

and non linear ones

V [m](x) = f [m(x)] , (3.5)

both admitting the simplest form, Eq. (3.3) as a particular case, with, respectively, κ(x − y) = g δ(x − y) and f (m) = g m.
In the context of crowd dynamics, U0(x) would represent the preference of an agent for a given position x, whereas the

term V [m](x) takes into account his preference or aversion for crowded places. In this paper we will limit our study to the
attractive case (e.g. g ≥ 0 in Eq. (3.3)). Two limiting regimes will be of particular interest: the case of strong interactions
dominated by V [m](x) and the case of weak interactions in which U0(x) is the larger term.

To summarize, we consider a set of N agents, whose individual states at time t are described by continuous variables
Xi

t ∈ Rd, which evolves through a controlled linear Langevin dynamics

dXi
t = aitdt + σdWi

t , (3.6)

where σ > 0 is a constant, the components ofWi are independent white noises of variance 1 and ai is the control chosen by
agent i to minimize the cost functional

c[ai](xit , t) = ⟨⟨

∫ T

t

(µ
2

∥aiτ∥
2
− Ṽ [mτ ](Xi

τ )
)
dτ ⟩⟩noise + ⟨⟨cT (Xi

T )⟩⟩noise (3.7)

where Ṽ [m](x) is a functional of the density m. In this setting, the optimal control is a∗
t (x) = −

1
µ
∇u(x, t) with u(x, t) the

value function (2.4) and the MFG system (2.5)–(2.6) writes here

∂tut (x) −
1
2µ

∥∇ut (x)∥2
+
σ 2

2
∆ ut (x) = Ṽ [mt ](x) (3.8)

∂tmt (x) −
1
µ

∇.(mt (x)∇ut (x)) −
σ 2

2
∆mt (x) = 0 (3.9)

with, respectively, final and initial conditions, uT (x) = cT (x) andm0(x) = m0(x).
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In the following we introduce first a change of variables which shows that this system of equations is equivalent to a
Schrödinger Equation in imaginary time, and the related formalismwhichwewill use in the rest of this work.We also briefly
review three solvable models: non-interacting agents, interactions in the absence of an external potential, and quadratic
potential. These models are interesting in their own rights, but they may also serve as reference models in perturbative
approaches studied in the next sections.

3.2. Schrödinger formalism

As a first step, we use the well known fact that the Hamilton–Jacobi–Bellman equation for the value function u(x, t) in
(3.8) can be cast into a standard heat equation using a Cole–Hopf transformation [50]

Φ(x, t) = exp
(
−ut (x)/µσ 2) . (3.10)

The new variableΦ(x, t) obeys a time-backwards diffusion equation,

− µσ 2 ∂tΦ(x, t) =
µσ 4

2
∆Φ(x, t) + Ṽ [mt ](x)Φ(x, t) , (3.11)

with the final condition Φ(x, T ) = exp(−cT (x)/µσ 2). Note that it follows from Eq. (3.11) that Φ(·, ·) > 0 as soon as
Φ(x, T ) > 0 everywhere.

The next step is a change of variables for the densitymt (x) [12]

Γ (x, t) =
mt (x)
Φ(x, t)

. (3.12)

This second variable now follows a similar heat equation, but forward in time,

µσ 2 ∂tΓ (x, t) =
µσ 4

2
∆Γ (x, t) + Ṽ [mt ](x)Γ (x, t) , (3.13)

with the initial condition Γ (x, 0) = m0(x)/φ(x, 0).
Under these transformations, the MFG system has been recast in a pair of non-linear heat equations, differing only by the

sign on the left hand side and by their asymmetric boundary conditions.
Let us now consider the scalar nonlinear Schrödinger equation describing the quantum evolution of a wave amplitude in

a reversed potential −Ṽ [ρ],

ih̄ ∂tψ(x, t) = −
h̄2

2µ
∆ψ(x, t) − Ṽ [ρ](x)ψ(x, t) , (3.14)

with ρ ≡ ψ∗ψ and
∫
Rd ρ(x) = 1. We note that Eq. (3.14) and its complex conjugate are equivalent to Eqs. (3.11)–(3.13)

under the formal correspondence µσ 2
→ h̄, φ(x, t) → ψ(x, it) and Γ (x, t) → [ψ(x, it)].

Furthermore the ergodic system (2.7), reads here

− λe −
1
2µ

∥∇ue(x)∥2
+
σ 2

2
∆ue(x) = Ṽ [me

](x) (3.15)

1
µ

∇(me(x)∇ue(x)) +
σ 2

2
∆me(x) = 0 . (3.16)

When considering the new variables, Φe
= exp

(
−ue/µσ 2

)
and Γ e

= me/Φe, we see that both have to follow the same
equation

λeψ e
= −

µσ 4

2
∆ψ e

− Ṽ [me
](x)ψ e , (3.17)

with eitherψ e
= Φe(x) orψ e

= Γ e. In this context, the connection with the nonlinear Schrödinger equation (3.14) appears
more clearly since if ψ e(x) is a solution of Eq. (3.17), then the two time dependent functions

φ(x, t) = exp
{
+

1
µσ 2 λ

et
}
ψ e(x) (3.18)

Γ (x, t) = exp
{
−

1
µσ 2 λ

et
}
ψ e(x) , (3.19)

are solutions of, respectively Eqs. (3.11)–(3.13), and simultaneously both solutions of Eq. (3.17), in the very same way as

ψ(x, t) = exp
{
−

i
h̄
λet
}
ψ e(x)

and its complex conjugate are solutions of both Eq. (3.14) and Eq. (3.17).
The non linear Schrödinger equation has been used for decades to describe systems of interacting bosons in the mean

field approximation (see e.g. [51–55]), and in the context of fluid mechanics [56]. We now introduce a formalism which is
well known in these domains and will prove again very useful in the present context of quadratic mean field games.
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3.3. Ehrenfest’s relations and conservation laws

By analogy with the NLS Equation [52], we introduce an operator formalism on some appropriate functional space and
derive the evolution equations for some quantities of interest. To do so, we first define a position operator X̂ = (X̂1, . . . , X̂d),
where X̂ν acts as a multiplication by the νth coordinate xν . We also define a momentum operator Π̂ ≡ −µσ 2∇. For an
arbitrary operator Ô defined in terms of X̂ and Π̂ , we define its average

⟨Ô⟩(t) ≡ ⟨Φ(t)|Ô|Γ (t)⟩ =

∫
dxΦ(x, t) Ô Γ (x, t) , (3.20)

where the couple (Φ(t),Γ (t)) defines the state of the system and evolves according to Eqs (3.11)–(3.13). Note that when Ô
depends only on the position: Ô = Ô(X̂), the latter average reduces to the usual mean value with respect to the density:

⟨Ô⟩(t) =

∫
dxmt (x)O(x). (3.21)

Differentiating Eq. (3.20) with respect to t , one gets, as for the Schrödinger equation [57], the time evolution of the mean
value of an observable in terms of a commutator:

d
dt

⟨Ô⟩ = ⟨
∂ Ô
∂t

⟩ −
1
µσ 2 ⟨[Ô, Ĥ]⟩ , (3.22)

where we have introduced the Hamiltonian

Ĥ = −
Π̂

2

2µ
− Ṽ [mt ](X̂) . (3.23)

In particular, one gets

d
dt

⟨X̂⟩ =
⟨Π̂ ⟩

µ
, (3.24)

d
dt

⟨Π̂ ⟩ = ⟨F̂[mt ]⟩ , (3.25)

where F̂[mt ] ≡ −∇Ṽ [mt ](X̂) is named by analogy the ‘‘force’’ operator. In the same way, introducing the varianceΣν of the
νth coordinate, (ν = 1, . . . , d) ,

Σν ≡

√
⟨X̂ν

2
⟩ − ⟨X̂ν⟩2 (3.26)

and the averaged ‘‘position–momentum’’ correlator for the νth coordinate

Λν ≡ ⟨X̂νΠ̂ν + Π̂ν X̂ν⟩ − 2⟨X̂ν⟩⟨Π̂ν⟩ (3.27)

one has
d
dt
Σν =

1
2µ

Λν

Σν
, (3.28)

d
dt
Λν = 2

(
⟨X̂ν F̂ν[mt ]⟩ − ⟨X̂ν⟩⟨F̂ν[mt ]⟩

)
+

2
µ

(
⟨Π̂2

ν ⟩ − ⟨Π̂2
ν ⟩

2) . (3.29)

Furthermore, when local interactions are assumed,

Ṽ [m](x) = U0(x) + f [m(x)] , (3.30)

the mean force depends only on the external potential

⟨F̂⟩ = ⟨F̂0⟩ (3.31)

⟨X̂ F̂⟩ = ⟨X̂F0⟩ −

∫
dx xmt (x)f ′

[mt (x)] , (3.32)

where F̂0 ≡ −∇xU0(X̂) , and Eqs. (3.25)–(3.29) can be simplified accordingly.
Finally, with such interactions, we can introduce an action functional

S[Φ,Γ ] ≡

∫ T

0
dt
∫
Rd

dx
[
−
µσ 2

2

(
Φ(∂tΓ ) − (∂tΦ)Γ

)
−
µσ 4

2
∇Φ.∇Γ +Φ U0(x)Γ + F [Φ Γ ]

]
, (3.33)

where F (m) =
∫ m f (m′)dm′ , which extremals are solutions of the system (3.11), (3.13). Indeed, the variational equation

δS/δΓ = 0 (respectively δS/δΦ = 0) is equivalent to Eq. (3.11) (respectively Eq. (3.13)) with Ṽ [m] in the form Eq. (3.30).
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This property will provide us with a variational approximation scheme for the solutions of the MFG system. Note however
that the boundary conditions associated with Eqs. (3.11) and (3.13) have to be carefully taken into account. For a pair (Φ,Γ )
solving the MFG equations, the action equation (3.33) can be rewritten as

S[Φ,Γ ] = −

∫
dt dx

[
µσ 2

2

(
Φ(∂tΓ ) − (∂tΦ)Γ

)]
+

∫
dt Etot(t)

where we have introduced the ‘‘total energy’’,

Etot(t) ≡ Ekin + Epot + Eint (3.34)

with ‘‘kinetic’’, ‘‘potential’’, and ‘‘interaction’’ energies defined respectively as

Ekin =
1
2µ

⟨Π̂
2
⟩, (3.35)

Epot = ⟨U0(x̂)⟩, (3.36)

Eint =

∫
dxF [m(x, t)]. (3.37)

The integrand in the action functional (3.33) does not depend explicitly on time, so that by Noether theorem, there is a
conserved quantity along the trajectories. This conserved Noether charge is (due to the sign conventions here) minus the
previously defined total energy, so that

dEtot(t)
dt

= 0 (3.38)

and for any pair (Φ(x, t),Γ (x, t)) solving the MFG equations, one has

S[Φ,Γ ] = −
µσ 2

2

∫
dt dx [Φ(∂tΓ ) − (∂tΦ)Γ ] + EtotT . (3.39)

3.4. Exactly solvable cases

The list of completely solvableMFGmodels is up to now rather short, andmainly restricted to stationary settings [58], this
situation being most probably due to the difficulties encountered when working within the original representation (2.5)–
(2.6). Hereafter, we add a few examples to that list, by considering first situations inwhich either the external potentialU0(x)
or the interaction term V [m] is absent or fully negligible. These cases will be also used in the following sections as starting
points to develop a perturbative approach when both terms are present in the potential but one is significantly larger than
the other and dominates the optimization process.

We conclude the present contribution to that list with the case of a harmonic external potential and local interactions,
for which exact solutions can be found for rather specific boundary conditions but no constraint on the relative strength
between the two terms of the potential.

3.4.1. Non interacting case
We consider first the uncoupled case V [m] = 0 so that the potential reduces to U0(x). The absence of interactions means

that the MFG is not really a game anymore since the agents behave independently of the strategies of the others. However,
this degenerate case appears naturally in perturbative approaches to weakly interacting regimes which will be considered
in Section 6.

Here the potential reduces to the density independent part, Ṽ [m](x) = U0(x) so that Eqs. (3.11) and (3.13) become actually
linear,

µσ 2∂tΦ = +Ĥ0Φ, (Φ(x, T ) = ΦT (x)) (3.40)

µσ 2∂tΓ = −Ĥ0Γ , (Γ (x, 0) =
m0(x)
Φ(x, 0)

) (3.41)

with Ĥ0 the linear operator

H0 = −
Π̂

2

2µ
− U0(x). (3.42)

In this case, the solutions of the system of equations (3.40)–(3.41) can be expressed in terms of the eigenvalues
λ0 ≤ λ1 ≤ . . . and the associated eigenvectors ψ0(x), ψ1(x), . . . of Ĥ0. Explicitly one has⎧⎨⎩Φ(x, t) = ϕ0 e

−
λ0(T−t)
µσ2 ψ0(x) + ϕ1 e

−
λ1(T−t)
µσ2 ψ1(x) + · · ·

Γ (x, t) = γ0 e
−
λ0t
µσ2 ψ0(x) + γ1 e

−
λ1t
µσ2 ψ1(x) + · · ·

.
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Assuming Ĥ0 non degenerate and the eigenfunctions ψk normalized, the coefficients {ϕk}k=1,2,... are fixed by boundary
conditions at t = T ,

ϕk =

∫
dxψk(x)ΦT (x) , (3.43)

which in particular specifies the expression ofΦ(x, 0),

Φ(x, 0) = ϕ0 e
−
λ0T
µσ2 ψ0(x) + ϕ1 e

−
λ1T
µσ2 ψ1(x) + · · · . (3.44)

This then fixes the initial value Γ (x, 0), and thus the coefficients {γk}k=0,1,... of Γ (x, t) as

γk =

∫
dxψk(x)

m0(x)
Φ(x, 0)

. (3.45)

This spectral analysis allows us to see how, in the non-interacting case, the asymptotic solution converges to the ergodic
solution away from the time boundaries when the horizon T becomes very large. Indeed, introducing the characteristic
convergence time

τerg = µσ 2/(λ1 − λ0)

one has

Γ (x, t) ≃ γ0 e
−
λ0t
µσ2 ψ0(x) for all t ≫ τerg (3.46)

Φ(x, t) ≃ ϕ0e
−
λ0(T−t)
µσ2 ψ0(x) for all t ≪ T − τerg. (3.47)

Hence, when both conditions are fulfilled, the densitym(x, t) becomes asymptotically time independent as,

m(x, t) ≃ γ0ϕ0 e
−
λ0T
σ2 Ψ 2

0 (x) for all τerg ≪ t ≪ T − τerg.

Normalization imposes that γ0ϕ0 e
−
λ0T
σ2 = 1, so that in the limit of large optimization time, the density profile converges

exponentially fast (with the characteristic time τerg) to a time independent profile:

lim
T→∞

∥m(x, t) − me(x)∥ ≤ Ce
−

t
τerg (3.48)

lim
T→∞

∥m(x, T − t) − me(x)∥ ≤ Ce
−

t
τerg (3.49)

for all times t , with C a constant. Furthermore, the solution of the ergodic problem equation (2.7) for a non interacting mean
field game is given by λe = λ0, ue(x) = −µσ 2 logψ0(x) + c and me(x) = ψ2

0 (x).
Thus any choice of a Hamiltonian Ĥ0 with explicitly known eigenstates would lead to an exactly solvable non-interacting

mean field game problem. The list of analytically diagonalizable Ĥ0 indeed contains quite a few systems, among which the
case of quadratic potentials. Furthermore, for one-dimensional systems, andmore generally for classically integrable Hamil-
tonian of arbitrary dimensions, very good approximations can be obtained based on the EBK approximation scheme [59].
We also note here that the ergodic problem requires only the knowledge of the eigenstate ψ0 associated with the smallest
eigenvalue λ0, and the rate of convergence to it depends only on the first two eigenvalues.

3.4.2. Local attractive interactions in the absence of external potential
We now turn to the opposite cases when the external potential U0(x) is negligible with respect to interactions. More

specifically we consider one dimensional models in which the interaction term equation (3.5) is local, with the particular
form

V [m](x, t) = f [m(x, t)] = g m(x, t)α

with α > 0 and g > 0. It includes the simple linear form of the interaction potential equation (3.3) for α = 1. In such cases,
the stationary (ergodic) problem equation (3.17) reduces to a generalized Gross–Pitaevskii equation

−
µσ 4

2
∂2xxψ

e
− g(ψ e)2α+1

= λeψ e. (3.50)

The lowest energy state can be computed using a known procedure [55], that we recall for convenience in Appendix B. It is
associated with an energy

λe = −
1
4

(
Γ ( 2

α
)

Γ ( 1
α
)2

) 2α
2−α (

g
α + 1

) 2
2−α

(
2α
µσ 4

) α
2−α

(3.51)
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( Γ (·) is the Euler’s Gamma function), and has the following expression

ψ e(x) = ψM

[
cosh(

x − x0
ηα

)
]−

1
α

, (3.52)

where the maximum value ΨM reads

ψM =

(
λe(α + 1)

g

)1/2α

. (3.53)

The stationary solution is a localized density around some arbitrary point x0 (a soliton in the language of the NLS equation),
and its typical spatial extension

ηα =
2

√
α

(
Γ ( 1

α
)2

Γ ( 2
α
)

) α
2−α (

α + 1
2α

µσ 4

g

) 1
2−α

(3.54)

depends only on the ratio (µσ 4/g) and results from the competition between the noise which tends to broaden the
distribution and the attractive interactions. In the particular case α = 1, the interaction potential becomes linear (Eq. (3.3))
and the above expressions reduce to:

λe|α=1 = −
g2

8µσ 4 , (3.55)

ΨM |α=1 =

√
g

4µσ 4 , (3.56)

η1 =
2µσ 4

g
. (3.57)

Two remarks are in order here. First, the expressions above are clearly not well-defined for α = 2. As we shall discuss in
Section 5, this is related to the fact that the soliton is unstable for α > 2. Moreover, we stress that the generalized Gross–
Pitaevskii equation (3.50) is invariant under translation and therefore the soliton equation (3.52) can be centered around
any point x0 of the real axis. In presence of a weak but non zero external potential U0 (Section 4) and local interactions as
above, it will follow that a very good approximation for the ergodic state will be a soliton centered at the maximum xmax of
U0. We also use this property hereafter to derive exact results in the case of an external quadratic potential.

3.4.3. Quadratic external potential
In the rest of this section on exact results, we shall use the formal connection with the NLS equation (3.14) to derive

particular exact solutions of the MFG system (3.11)–(3.13) in dimension one, for a local interaction potential of the form
Eq. (3.5) and a quadratic external potential U0(x) = −

1
2kx

2, k > 0. We thus consider a total potential

Ṽ [m](x) = −
k
2
x2 + f (m(x)) .

Following [55], we use forΦ and Γ the ansatz

Φ(x, t) = exp
[
−
γ (t) − xP(t)

µσ 2

]
ψ e(x − X(t)) (3.58)

Γ (x, t) = exp
[
+
γ (t) − xP(t)

µσ 2

]
ψ e(x − X(t)) , (3.59)

where ψ e(x) is the solution of the ergodic equation

−
µσ 4

2
∂2xxψ

e(x) − Ṽ [(ψ e)2](x)ψ e(x) = λeψ e(x) ,

which, for small k, is well approximated by the expression on the r.h.s. of Eq. (3.52) (with x0 = 0). Note that for this ansatz
the resulting density ism(x, t) = Φ(x, t)Γ (x, t) = ψ2

e (x − X(t)), and is thus independent of P(t) and γ (t).
Inserting these expressions into the system (3.11)–(3.13), we get the necessary and sufficient conditions for Eqs. (3.58)–

(3.59) to be an exact solution of the time dependent problem:

Ṗ(t) = kX(t) (3.60)

Ẋ(t) =
P(t)
µ

(3.61)

γ̇ (t) =
k
2
X(t)2 +

P(t)2

2µ
− λe . (3.62)
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The two first equations describe the motion of the center of mass X(t) of the density distribution. The third one can be
integrated in

γ (t) =
X(t)P(t)

2
− λet + γ0 .

This solution describes the evolution of a density distribution with finite spatial extension, that we may call ‘‘soliton’’
because it moves without deformation as a classical particle of mass µ in an inverted quadratic potential U0(x) =

−
1
2kx

2. It corresponds, however, to rather specific boundary conditions since the initial density should be of the form
m(x, t = 0) = ψ2

e (x − x0), and the function ΦT specifying the terminal boundary condition should be of the form ΦT (x) =

K exp{x pT/µσ 2
}ψe(x − xT ) where pT and xT are related through the mixed condition xT cosh(ωT ) − pT

√
kµ sinh(ωT ) = x0.

The two constants γ0 and K being unessential, this family of solutions is fully described by only two parameters, says x0 and
xT .

Assuming that initial and final conditions have been chosen as above, positions of the center of mass X(t) at initial and
final times are then fixed to X(0) = x0 and X(T ) = xT , and for all intermediate times we get

X(t) = x0
sinh(ω(T − t))

sinh(ωT )
+ xT

sinh(ωt)
sinh(ωT )

with ω ≡
√
k/µ. In the long horizon limit T → ∞, apart from initial and final time intervals of order τerg = 1/ω, the center

of mass remains localized in a close vicinity of the unstable fixed point of the external potential U0. This is a general feature
that we shall discuss in more detail in the following section.

4. Strongly attractive short ranged interactions I

This section is devoted to simple one dimensional models where the agents have a strong incentive to coordinate
themselves. This first example of asymptotic regime allows us to make a clear exposition of the main concepts that can
be effectively used, leading to a rather complete understanding of the behavior of mean field game equations. In the next
two sections, we shall use essentially the same tools, addressing somewhat more intricate settings in the same regime in
Section 5, and considering other asymptotic regimes in Section 6.

We consider here one dimensional models with interaction potentials which are local and linear as in Eq. (3.3). The total
potential is therefore of the form

Ṽ [m](x) = U0(x) + g m(x) ,

(g > 0), with a weak external potential U0(x), in a sense explicited below. We also assume that the initial distribution of
agentsm0(x) is localized andwell described by itsmeanposition and variance.Wepostpone to the next section the discussion
on different interaction potentials or initial conditions.

A characteristic featurewhich can be easily found in the regime of strongly attractive short-ranged interactions is that the
agents have a strong incentive to form compact groups evolving coherently which, by analogy with the NLS nomenclature,
we shall call ‘‘solitons’’ [60]. The initial and final boundary conditions will eventually be an obstruction for the existence of
these solitons for a short period of time τ ∗ close to t = 0 and t = T , with τ ∗

→ 0 in the limit when the interaction strength
g → ∞. However, for a sufficiently large time horizon T , we expect that the dynamics of such solitons dominates for a
large time interval of order [τ ∗, T − τ ∗

]. This naturally raises a few questions that split into two sets: On the one hand, we
have to understand what are the shape and characteristic scales of these solitons, and how fast they form near t = 0 and
disappear near t = T . On the other hand, andmaybemore importantly since it dominates most of the time interval, we need
to understand what governs their dynamics. We first address this simpler question on the dynamics of the solitons, and will
consider in a second stage their formation and destruction near the time boundaries.

4.1. Dynamics of the solitons

In the limit of large interaction strength g → ∞, and excluding a neighborhood of time boundaries, we can assume a
strongly localized density of agent m(x, t) with a short characteristic length η. Indeed, for a strength g large enough, the
variations of U0 on the scale η can be considered as weak, and in particular the variations of the external potential around
any point, δU0 = ∇U0.δx+

∑
γ ,γ ′ (∂2γ ,γ ′U0)δxγ δxγ ′ +· · ·, are dominated by the first term ∇U0.δx for a displacement of order

|δx| ∼ η. In that case, denoting Xt = ⟨X̂⟩(t) the average position of the soliton, and Pt = ⟨Π̂ ⟩(t) its average momentum, the
Ehrenfest relations (3.24) and (3.25) together with Eq. (3.31) reduce to

d
dt

Xt =
Pt

µ
, (4.1)

d
dt

Pt = ⟨F0(Xt )⟩ ≃ −∇U0(Xt ) . (4.2)

We again recognize the classical dynamics of a point particle of mass µ evolving in the potential U0(x) as in the particular
example of the quadratic external potential studied at the end of previous section.
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However, unlike classical mechanics, where a given trajectory is fully specified by its initial position and momentum, a
mean field game problem is defined through mixed initial and terminal conditions. In the present setting, initial formation
and final destruction of a soliton should occur fast enough that neither the position of the density center ofmass nor themean
momentum is expected to evolve in any significant way in the meanwhile. We are thus led to the following identifications

Xt=0 =

∫
dx xm0(x) (4.3)

Pt=T = ⟨Π̂ ⟩(T ) = µσ 2
∫

dx (∇Φ(x, T ))Γ (x, T ) (4.4)

Eq. (4.3) fixes the initial position of the trajectory; Eq. (4.4) can be written as

PT = −

∫
dxmT (x)∇uT (x) (4.5)

which, using the final boundary condition in Eq. (2.5), gives

PT = −⟨∇cT (x)⟩ ≃ −∇cT (XT ) (4.6)

where the last approximation holds if m(x, T ) is localized on the scale of variations of cT (x), which has to be checked
afterwards for consistency.

The dynamics of the soliton is thus the classical dynamics of a point particle of mass µ evolving in the potential U0(x),
with an initial condition equation (4.3) for the position at t = 0 and a mixed terminal condition equation (4.6) involving
position and momentum at t = T .

It should be stressed however that, compared to the classical situation for which the initial position and momentum
are specified, such boundary conditions change drastically the qualitative behavior of the system under study. To start with,
while the specification of both initial position andmomentumentirely determines a trajectory, a finite number of trajectories
may fulfill themixed conditions (4.3)–(4.6). Onemay therefore have to evaluate the cost functional equation (3.7) on each of
them to select the correct solution of the MFG problem. Furthermore, such a mode of selection indicates that a MFG system
may switch abruptly from one type of trajectory to another under a small variation of some parameter and possibly of the
optimization time, which would correspond to a genuine phase transition in the MFG behavior.

The mixed initial–terminal character of the boundary conditions has also an implication in the context of the ergodic
problem equation (2.7) studied in [37], and to its relationship with unstable fixed points of the dynamics. This is presumably
a very general feature of the MFG behavior in the limit of large optimization times T → ∞, and we consider this question
in some detail here since soliton dynamics is the simplest setting in which it appears.

The dynamics described by Eqs. (4.1) and (4.2) is illustrated in Fig. 1 for a one dimensional MFG system for an external
potential with a single maximum.

Let τerg be the inverse of the Lyapunov exponent associated with the unstable fixed point {X = Xmax, P = 0} of the
dynamics (Xmax is defined as the position of the maximum of the potential U0 and is equal to 0 in this particular example).
For large enough values of the time horizon, T ≫ τerg, the MFG system has to spend most of the time in a neighborhood of
the fixed point, and the dynamics between initial and final conditions is dominated by the associated stable and unstable
manifolds, respectively,

W s
= {(X(0), P(0)) ∈ R such that (X(t), P(t)) → (Xmax, 0) as t → +∞} (4.7)

W u
= {(X(0), P(0)) ∈ R such that (X(t), P(t)) → (Xmax, 0) as t → −∞}. (4.8)

In fact, trajectories are essentially identical for all T ≫ τerg: They start from the intersection of the stable manifold W s

with the line of initial condition X = X0, closely follow W s until they reach a very small neighborhood of the fixed point
(X, P) = (Xmax, 0) and then switch to the unstable manifoldW u that they follow until they reach the intersection ofW u with
the line P = −∇CT (X) specifying the terminal conditions. Of course for large but finite T the actual trajectories are slightly
off W s and W u and the larger T the closer to these manifolds they are, and thus the longer they stay in the immediate
neighborhood of (Xmax, P = 0). Moreover, the dynamics before and after the dominant fixed point essentially decouple: the
dynamics on the stable manifold toward the unstable fixed point is barely affected by a change in the terminal condition at
t = T .

For U0 with a single maximum, the soliton at rest centered on this maximum can be identified with the ergodic state
defined in [37]. When the external potential has multiple local maxima, only the absolute one is associated with the genuine
ergodic state, but solitons localized on the other local maxima may play the role of ‘‘effective ergodic states’’ in some
configurations.

4.2. Initial and final stages: formation and destruction of the soliton

Weturnnow to the slightlymore delicate question of describing the formation of the solitonnear t = 0 and its destruction
near t = T . We limit ourselves here to the simpler case where the initial densitym0(x) and the final cost functionΦT (x) can
reasonably be described through a Gaussian ansatz, and postpone to Section 5 the case of more general configurations.
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Fig. 1. Phase portrait in the plane (X, P) for the dynamics of the center of mass of a one dimensional MFG soliton in an external potential with a single
maximum. The vertical dashed red line is the loci of the initial states compatible with initial position X0 = −3/2; The slanted dashed line is the loci of final
states compatible with the mixed final condition PT + XT = 7/2. The evolution time T determines the actual trajectory. For large values of T , the soliton
has to closely follow the stable manifold (blue curve) up to a small neighborhood of the unstable fixed point at (0, 0) and switch to the unstable one (green
line) up to its final position. Here U0(x) = −

1
2 x

2
−

1
4 x

4 , µ = 1, X0
= −3/2, cT (x) = x(x − 7)/2.

4.2.1. Variational method for the Gaussian ansatz
One very effective approximation scheme for the Non-Linear Schrödinger equation is the variational method [54]. A

valid approach to it is the use of the action functional equation (3.33), from which the system (3.11)–(3.13) can be derived.
Variational approximations then amount to minimizing the action only within a small subclass of functions. Assuming that
the agents’ density is going to contract rapidly around its mean value and thenmove as a whole toward the optimal position,
we consider the following ansatz which is a generalization of the exact solution (3.58)–(3.59) found for quadratic potential
U0:

Φ(x, t) = exp
[

−γt + Pt · x
µσ 2

]
1(

2πΣ2
t
) 1

4
exp

[
−

(x − Xt )2

(2Σt )2
(1 −

Λt

µσ 2 )
]
. (4.9)

Γ (x, t) = exp
[

+γt − Pt · x
µσ 2

]
1(

2πΣ2
t
) 1

4
exp

[
−

(x − Xt )2

(2Σt )2
(1 +

Λt

µσ 2 )
]
, (4.10)

Within this ansatz, the resulting densitym(x, t) = Γ (x, t)Φ(x, t) reads

m(x, t) =
1√

2πΣ2
t

exp
[
−

(x − Xt )2

2(Σt )2

]
,

which is a Gaussian centered in Xt with standard deviationΣt . Furthermore, for Γ andΦ given by Eqs. (4.10)–(4.9),

⟨Π̂⟩ = Pt , (4.11)

⟨Λ̂⟩ = Λt , (4.12)

with Λ̂ defined by Eq. (3.27). Pt is thus the averagemomentum at time t , andΛt the average position–momentum correlator
of the system.

Inserting that variational ansatz into the action equation (3.33), we get S̃ =

∫ T

0
L̃(t)dt with the Lagrangian L̃ = L̃τ + Ẽtot

where

L̃τ = −

∫
dx
µσ 2

2
[Φ(x, t)(∂tΓ (x, t)) − (∂tΦ(x, t))Γ (x, t)] (4.13)

= ṖtXt −
Λt

2Σt
Σ̇t − γ̇t +

1
4
Λ̇t (4.14)

with the [conserved] total energy

Ẽtot ≡ Ẽkin + Ẽint + ⟨U0(x)⟩ , (4.15)
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where

Ẽkin =
P2
t

2µ
+
Λ2

t − µ2σ 4

8µΣ2
t

, (4.16)

Ẽint =
g

4
√
πΣt

. (4.17)

⟨U0(x)⟩ =

∫
dxU0(x)m(x, t) . (4.18)

From now on, we choose γt = (Λt/4) so that the last two terms in the last line of Eq. (4.13) cancel. Minimizing the
reduced action functional with respect to a variation of the parameters gives first the evolution equations for Xt and Pt :

Ẋt =
Pt
µ

(4.19)

Ṗt = −

∫
dx∇U0(x)m(x, t) = −⟨∇U0⟩t , (4.20)

which have the same form as Eqs. (3.24)–(3.25). The r.h.s. of Eq. (4.20) depends both on X and Σ , and generally couples
the motion of the center of mass to the shape of the distribution. However, as soon as m(x, t) is sufficiently narrow with
respect to the scale given by the inverse curvature of the potential U0, the approximation ⟨∇U0⟩t ≃ ∇U0(Xt ) holds, and the
dynamics for the center of mass (Xt , Pt ) decouples from the dynamics of (Σt ,Λt ). In the rest of this section, we consider a
situation where the distribution m(x, t) is sufficiently narrow at all times so that such a decoupling occurs and focus on the
dynamics of (Σt ,Λt ). In particular, the energy of the center of mass, P2

t /2µ + ⟨U0(x)⟩, is separately conserved and can be
dropped from the expression for the total energy. The evolution equations for the reduced system (Σt ,Λt ), are thus:

Σ̇t =
Λt

2µΣt
(4.21)

Λ̇t =
Λ2

t − µ2σ 4

2µΣ2
t

+
g

2
√
πΣt

. (4.22)

These equations have a single stationary state (Σ∗,Λ∗) with

Σ∗ =
√
π
µσ 4

g
, (4.23)

Λ∗ = 0. (4.24)

The stationary standard deviationΣ∗ is thus, up to a numerical constant of order one, equal to the width of the exact soliton
solution in the absence of an external potential (3.57). The total energy at the fixed point is

Ẽ∗

tot =
1

8
√
π

g
Σ∗

(4.25)

(note that Ẽ∗
tot =

1
2 Ẽ

∗

int = −Ẽ∗

kin).

4.2.2. Time evolution of the reduced system (Σ t ,Λt ) in the long horizon limit
Here again, (Σ∗,Λ∗) is an unstable fixed point for the dynamics, so that, in the long horizon limit, all trajectories will

follow the associated stable and unstable manifolds, which fixes the value of the total energy to Ẽ∗
tot. Using Eq. (4.21) in the

expression for the total energy gives then an autonomous equation for the evolution ofΣt on the stable or unstablemanifolds

µ

2
Σ̇2

t −
µσ 4

8Σ2
t

+
g

4
√
πΣt

= Ẽ∗

tot , (4.26)

which can be set in the form
Σ̇t

Σ∗

= ∓
1
τ ∗

(
1 −

Σ∗

Σt

)
, (4.27)

where theminus (respectively plus) sign in front of the r.h.s. describes the stable (respectively unstable)manifold. The factor
τ ∗ is the characteristic time

τ ∗
=

√
µΣ2

∗

2Ẽ∗
tot

=
√
4π

Σ∗

vg
, (4.28)

with

vg ≡
g
µσ 2 (4.29)

the characteristic velocity associated with the interactions.



16 D. Ullmo, I. Swiecicki and T. Gobron / Physics Reports 799 (2019) 1–35

Let us consider first the formation of the soliton. The initial distribution m0(x) fixes the initial standard deviation
Σ0 =

∫
dx (x − ⟨x⟩)2m0(x). In terms of the reduced variable qt = Σt/Σ∗, Eq. (4.27) can then be integrated as

F (q0) − F (qt ) =
t
τ ∗
, (4.30)

with F (q) = +q + log |1 − q|.
Eq. (4.30) is an exact implicit solution for the motion along the stable manifold of (Σ∗,Λ∗) toward the fixed point. It is

interesting however to consider various limiting regimes which are derived straightforwardly from the limiting behavior of
the function F (q):

F (q) ≃ −q2 for q ≪ 1 , (4.31)

F (q) ≃ + log |1 − q| for q ≃ 1 , (4.32)

F (q) ≃ +q for q ≫ 1 . (4.33)

We have thus the three following possible behavior depending on the width of the initial distribution:

• If the initial distribution of agent is much narrower than the length scaleΣ∗ characterizing the soliton, the varianceΣ2
t

increases linearly at a rate Σ2
∗
/τ ∗ until time τ ∗ after which it converges exponentially to Σ∗ (with the characteristic

time τ ∗).
• If the initial distribution of agent is already close to Σ∗, it converges exponentially to Σ∗ with the characteristic time
τ ∗.

• If the initial distribution of agent is much wider than the length scale Σ∗ characterizing the soliton, the standard
deviation Σt decreases linearly at rate Σ∗/τ

∗ up to a time tc = (Σ0/Σ∗)τ ∗ from which it converges exponentially
toΣ∗ (with the characteristic time τ ∗).

Considering now the destruction of the soliton near T , and again foreseeing that the density will remain localized on a
scaleΣT that can be assumed small, we can write out a simplified form of the terminal condition forΣ2. Indeed, the ansatz
Eq. (4.9) forΦ implies that u(x, T ) = −µσ 2 logΦ(x, T ), and thus reads

u(x, T ) = γT +
1
4
µσ 2 log(2πΣ2

T ) − PT x +
µσ 2

−ΛT

4Σ2
T

(x − XT )2 + · · ·

Assuming the final density localized, we can make a Taylor expansion for the terminal condition u(x, T ) = cT (x) near XT

u(x, T ) ≃ cT (XT ) +
dcT
dx

⏐⏐
XT

· (x − XT ) +
d2cT
dx2

⏐⏐
XT

·
(x − XT )2

2
+ · · · .

Identifying term by term the coefficients of both expansions, we recover from the first order term the terminal condition
equation (4.6) for the center of mass motion, while the second order term gives

d2cT
dx2

(XT ) =
µσ 2

−ΛT

2Σ2
T

= µ

( σ 2

2Σ2
T

−
Σ̇T

ΣT

)
=
µ

τ ∗

Σ∗

ΣT

(
2
Σ∗

ΣT
− 1

)
, (4.34)

where we have used both the evolution equation (4.27) along the unstable manifold and the relation τ ∗
= 2Σ2

∗
/σ 2.

In the reduced notations, qT = ΣT/Σ∗, the equation for the terminal width reads

qT − 2
q2T

=
τ ∗

µ

d2cT
dx2

(XT ) . (4.35)

In the strong interaction limit, g → ∞, the characteristic time τ ∗ goes to zero and the right hand side of this equation (which
is the only term depending on the terminal cost cT (x)) becomes negligible. Thus, in accordance with the approximation
scheme used here, one has to take qT ≃ 2, so that the final distributionm(x, T ) has an extension of order 2Σ∗ and thus small,
as anticipated. Accordingly, the variance at large times is given by

F (qt ) = F (qT ) −
T − t
τ ∗

, (4.36)

where qT is the smallest solution of Eq. (4.35), and qt , τ ∗ and F (q) are defined as above.

4.3. Discussion

In this section, we have considered the strong positive interaction regime under three simplifying assumptions : i) the
state space is one dimensional; ii) the interaction between the agents is local and linear (V [m](x) = gm(x)); and iii) the initial
distribution of agentsm0(x) is reasonably well described by a Gaussian.

Under these hypotheses, the image that emerges for the evolution of the agent in the state space is extremely simple. The
dynamics is divided in three stages : the initial formation of the soliton near t = 0, its propagation, and its final destruction
near t = T .
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Actually, for most of the time interval ]0, T [ the density of agents m(x, t) is well approximated by a soliton of extension
Σ∗ ∼ η(1) (Eq. (3.57)), which is the shortest length scale of the problem. This soliton evolves as a classical particle in a
potential U0(x) (i.e. following the Hamilton equations (4.1)–(4.2)), with the initial and terminal conditions (4.3)–(4.4). In
the long horizon limit T → ∞, this motion is furthermore dominated by the maxima of U0(x) which correspond to an
unstable fixed point of the dynamics where the ‘‘soliton’’ spends most of its time [37], while the initial (resp. final) motion
takes place along the related stable (resp. unstable)manifold. Theremay also exist intermediate regimes for the long horizon
limit where other unstable fixed points, when they exist, may also show up in the dynamics and play the role of ‘‘effective
ergodic state’’.

This propagation phase is flanked by significantly shorter initial and final phases where the soliton is respectively formed
and destroyed. When the initial distribution of agent m0(x) has an extension Σ0 of the order of the stationary value Σ∗ or
smaller, a soliton forms within a typical time of order τ ∗ (Eq. (4.28)). For initial extensionsΣ0 much larger thanΣ∗, the time
of formation of the soliton is larger, (Σ0/Σ∗)τ ∗. In the final phase, the typical extension of the distribution is of order 2Σ0
for strong interactions and the soliton always disappears in a time of order τ ∗.

5. Strongly attractive short ranged interactions II

In this section,we continuewith the study of the strong positive coordination regime, butwe relax someof the simplifying
assumptions made in Section 4 concerning the dimensionality of the space, the form of the interactions, and the shape of
the initial distribution of agents.

We will show that the dominant phase of the dynamics, namely the propagation of the soliton, is essentially unaffected
(or only trivially affected) by these modifications. Most of our discussions here will concern the formation and destruction
phases of the soliton (and in practice we will essentially focus on the former).

This section will be divided in three parts. In the first one, we shall extend the variational approach of Section 4 to higher
dimensionality problems and to different forms of the interaction between agents. In a second subsection, we shall discuss
the ‘‘collapse’’ of the distribution of agents which does occur for nonlinear local interaction or in higher dimension evenwith
linear interactions. Finally, in the last subsection, we shall discuss the formation of the soliton when the initial distribution
m0(x) has some structure and cannot be just described by its mean and variance.

5.1. Gaussian ansatz in higher dimensions and nonlinear interactions

In this subsection, we generalize the variational approach of Section 4.2.1 to the casewhere the ‘‘state space’’ of the agents
is of dimension higher than one and for non-linear interaction between the agents of the form V [m](x) = gmα(x), so that

Ṽ [m](x) = U0(x) + g [m(x)]α , (5.1)

with, as in the previous section, g > 0, α > 0 and U0(x) assumed non zero but weak.
We first generalize the variational ansatz equation (4.10)–(4.9) to

Φ(x, t) = exp
{

−γt + Pt · x
µσ 2

} d∏
ν=1

[
1(

2π (Σν
t )2
)1/4 exp

{
−

(xν − Xνt )
2

(2Σν
t )2

(1 −
Λνt

µσ 2 )
}]

(5.2)

Γ (x, t) = exp
{

+γt − Pt · x
µσ 2

} d∏
ν=1

[
1(

2π (Σν
t )2
)1/4 exp

{
−

(xν − Xνt )
2

(2Σν
t )2

(1 +
Λνt

µσ 2 )
}]

(5.3)

Inserting these expressions into the action equation (3.33) (see Appendix C), we get an action functional in the variables
(Xνt , P

ν
t ){ν=1,...,d} and (Σν

t ,Λ
ν
t ){ν=1,...,d}. We consider first the equations of motion for the Xνt and Pνt :

Ẋνt =
Pνt
µ

(5.4)

Ṗνt = −⟨∂νU0(x)⟩t ≃ −∂νU0(Xt ) (5.5)

which decouples from the dynamics of theΣν ’s andΛν ’s when the approximation in (5.5) is assumed. This approach is valid
whenever the density of agents is sufficiently narrowwith respect to the inverse curvature of the potential, condition which
in the strong positive coordination regime will be fulfilled at almost all times (except possibly within a very short time near
t = 0 or near t = T ). As in the one dimensional case, the mean position X and mean momentum P hence follow the motion
of a classical particle of mass µ in the external potential U0(X), with initial and terminal conditions which are the direct
generalization of Eqs. (4.3)–(4.6):

Xνt=0 =

∫
ddxxνm0(x) (5.6)

Pνt=T = −⟨∂νcT (x)⟩T ≃ −∂νcT (XT ). (5.7)
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This motion can be more complex than in the one-d case since the conservation of the total energy is not sufficient to make
the dynamics integrable anymore. However, in the long horizon limit, it is still dominated by the maxima of the potential
U0(xmax) and takes place very close to the stable and unstable manifolds of the unstable fixed point (X = xmax, P = 0).

We assume from now on that the motion of the center of mass decouples from the evolution of the shape of the
density profile and consider the dynamics of (Σν

t ,Λ
ν
t ){ν=1,...,d} alone. We consider the case of a local interaction of the form

V [m] = gmα and from the variation of the reduced action, we get the following evolution equations:

Σ̇ν
=

Λν

2µΣν
, (5.8)

Λ̇νt =
(Λνt )

2
− µ2σ 4

2µ(Σν
t )2

+
2gα
α + 1

d∏
ν′=1

[
1

√
α + 1(2π )α/2

(
1
Σν′

t

)α]
. (5.9)

These equations admit a single stationary state (Σ ∗,Λ∗), with

Λν
∗

= 0 (5.10)

Σν
∗

= Σ∗ =

[
4α
α + 1

(
1

(α + 1)(2π )α

)d/2 g
µσ 4

]−1/(2−αd)

. (5.11)

As in Section 3.4.2 for the one dimensional case d = 1, there is no solution for α = 2/d. We understand here this critical
value of α as the transition between the situation 0 < α < 2/d where (Σ ∗,Λ∗) is a saddle point for the total energy of the
reduced system equation (C.10), and the situation α > 2/d where it is a minimum, leading to a change of stability. From a
physical point of view, this means that for α > 2/d, attractive interactions dominate at short distance while diffusion, which
tends to disperse the densitym(x, t) dominates at large distance, which makes the ‘‘soliton’’ unstable. Note that the stability
(resp. instability) of the soliton is associated with instability (resp. stability) of trajectories.

5.2. Collapse for dα > 2

To get a better picture of the main differences between the regime α < 2/d where the soliton is stable and the regime
α > 2/d where it is unstable, we restrict ourselves to the 1-dimensional case (thus αc = 2) and introduce the canonical
variables

qt =
Σt

Σ∗

, (5.12)

pt = −
Σ∗

2
Λt

Σt
, (5.13)

The Lagrangian equation (C.8) reads

L̃(t) = pt q̇t − h(pt , qt ) , (5.14)

h(p, q) = −
p2

2µΣ2
∗

+
µσ 4

4Σ2
∗

[
1

2q2 −
1
αqα

]
, (5.15)

and the equation of motions takes the canonical form in terms of the Hamiltonian h(p, q)

q̇ = +
∂h(p, q)
∂p

= −
p

µΣ2
∗

(5.16)

ṗ = −
∂h(p, q)
∂q

=
µσ 4

4Σ2
∗

[
1
q3 −

1
q(α+1)

]
. (5.17)

With these variables, conservation of the total energy Ẽtot = −h(p, q) is manifest, and the fact that the Liouville measure
dp dq is conserved (which would be also true for d > 1 or in the full problem when variables (p, q) are coupled with the
global motion (P, X)) makes it possible to classify a priory the fixed points by their stability.

Specifically here, the dynamical system (5.16)–(5.17) has one fixed point at (q∗ = 1, p∗ = 0), where the second
derivatives of h(q, p) are given by

∂2h
∂2p

⏐⏐⏐
(q∗,p∗)

=
−1
µΣ2

∗

,
∂2h
∂p∂q

⏐⏐⏐
(q∗,p∗)

= 0 ,
∂2h
∂2q

⏐⏐⏐
(q∗,p∗)

=
µσ 4

4Σ2
∗

(2 − α) . (5.18)

We see therefore that, as expected, the stability of the fixed point is entirely determined by the sign of (α − 2).

• For 0 < α < 2, (q∗, p∗) is a saddle point for h(q, p) and thus an unstable fixed point. The dynamics is in that case
qualitatively similar to the one of Section 4.2.2: Near t = 0 (formation of the soliton), the system starts from the initial
q0 fixedby the initial densitym0(x) and follows the stablemanifold of (q∗, p∗),which it approaches exponentially closely
on a very short time scale. The destruction of the soliton follows a similar scenario, but on the unstable manifold. The
typical phase portrait in this case is shown in Fig. 2a.
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Fig. 2. Phase portrait in the canonical variables (q, p). (a): 0 < α < 2. The fixed point is unstable and long time trajectories stay close to the stable and
unstable manifolds (α = 1, µσ 2

= 1). (b) and (c): α > 2. The fixed point is locally stable (b) but non closed trajectories can be seen at larger scale (c)
(α = 3, µσ 2

= 1).

• If α > 2, (q∗, p∗) is a minimum of h(q, p) and thus a stable (elliptic) fixed point for the classical dynamics governed by
Eqs. (5.16)–(5.17). For a given set of initial and final conditions, one cannot exclude the possibility that a periodic orbit
in the neighborhood of (q∗, p∗) turns out to be solution of the equations ofmotion, whichwould correspond to a kind of
breathing of the soliton. Our guess, however, is that these breathing modes, when they exist, are not the only solution
of the equations of motion, and can be eliminated because they do not minimize the cost (3.7) (in the sense that they
correspond to local minima, but not absolute minima of this cost). In the limit of long time horizon, the system will
prefer to flow toward other fixed points: either a low density (non-Gaussian) noise-dominated phase (described in our
ansatz by the limit q → ∞), or a large density phase dominated by the interactions (here obtained in the limit q → 0).
This case is illustrated in Fig. 2b–2c in the particular case α = 3.

Hence, for α > 2, we have two possible options: either a large spreading of the distribution, or a collapse. In the first case,
namely a large excursion toward large q’s (and thus largeΣ ’s) the initial spreading of the density should be large enough so
that the noise becomes the dominating force. Within the approximation scheme we use here, what the system does is then
to spread out relatively slowly under the influence of the noise, and (possibly) re-compactify toward the end (i.e. for t near
T ) if the terminal constraint makes this mandatory. In practice however, a system in this configuration is effectively not any
more in the strong interaction regime. There is no short time scale associated with the interaction between the agents, and
the influence of U0(x) may become as significant as the one of the noise. Furthermore since the distribution of agents does
not remain localized, the dynamics of (qt , pt ), does not decouple from the center of mass (Xt , Pt ), and even the validity of the
Gaussian ansatz (4.10)–(4.9) becomes questionable. The analysis of this regime should actually follow the line of Section 6.
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Second, if the initial and final conditions select a regime where the density of agents remains sufficiently large, then the
systemwill rather choose a large excursion towardΣt → 0, and thus a collapse of the density of agents. In that case, we need
to consider explicitly a ‘‘finite-range’’ interaction. Indeed, the rational behind the utilization of a ‘‘zero-range’’ interaction
potential equation (3.5) is that the actual range of the interactions is the smallest length scales in the problem, which cannot
hold any more here sinceΣt would eventually become smaller than whatever this range is.

Let us illustrate this in the case α = 3 depicted in Fig. 2b–2c. The interaction V [m](x) = gm(x)3 can be seen as the ξ → 0
limit of

V [m](x) = g
∫

dy2dy3dy4K (x, y2, y3, y4)m(y2)m(y3)m(y4) ,

with

K (y1, y2, y3, y4) ≡
1

2(
√
2πξ )3

exp

⎡⎣−
1

16ξ 2
∑
i̸=j

(yi − yj)2

⎤⎦ −→
ξ→0

δ(y1 − y2)δ(y2 − y3)δ(y3 − y4) .

The analysis of this ‘‘finite range’’ interaction can be done along the same line as before, up to the replacement of the
interaction energy term by

Ẽint =
g
8

(
1√

2π (ξ 2 +Σ2
t )

)3

−→
ξ→0

g
8(2π )3/2Σ3

t

(which is indeed the second term of Eq. (C.10) for d = 1 and α = 3).
With the (qt , pt ) variable, the Hamiltonian equation (5.15) becomes

h(p, q) = −
p2

2µΣ2
∗

+
µσ 4

4Σ2
∗

[
1

2q2
−

1
3

(
1 +

ξ 2

Σ2
∗

)(
ξ 2 +Σ2

∗

ξ 2 +Σ2
∗
q2

)3/2
]

(which as ξ → 0 indeed corresponds to the Hamiltonian equation (5.15) with α = 3). Here Σ∗ is the value of Σ at a
stationary point and is a solution of

ξΣ4
∗

(ξ 2 +Σ2
∗
)5/2

=
2(2π )3/2

3
ξµσ 4

g
. (5.19)

Note that the left hand side of Eq. (5.19) depends only on the ratioΣ∗/ξ and has a single maximum atΣ∗/ξ = 2. For ξ (and
the right hand side of (5.19)) small enough, Eq. (5.19) has thus exactly two positive solutions, says,Σ (1)

∗ andΣ (2)
∗ , which are

respectively smaller and larger than 2ξ , each one associated to a stationary point for the dynamics; the second derivative of
H(p, q) with respect to q now reads

∂2h
∂2q

⏐⏐⏐
(q∗,p∗)

=
µσ 4

4Σ2
∗

(
4ξ 2 −Σ2

∗

ξ 2 +Σ2
∗

)
(5.20)

while the other two second derivatives remain as in (5.18). Thus the smallest valueΣ (1)
∗ is associated with a hyperbolic fixed

point and the larger one Σ (2)
∗ with an elliptic fixed point. The corresponding phase portrait is shown in Fig. 3, where both

fixed points appear. The stable ‘‘soliton’’ is associated with this new fixed point, and its sizeΣ (1)
∗ is governed by the range of

the interaction ξ and not any more by the balance between the strength of the interaction and the one of the noise.

5.3. Non-Gaussian initial densities of agents

In this last part of the section, we shall consider the situation where we relax the assumption that the initial density of
agents m0(x) can be correctly described by a Gaussian. For sake of clarity we limit this discussion to the one-dimensional
case and local linear interactions Ṽ [m](x) = +gm(x). We first consider the situation where the initial density m0(x) can be
described as the juxtaposition of two well separated Gaussian-like bumps, and then discuss some aspects of the general
case. Furthermore, we restrict the discussion to the initial times (formation of the soliton), assuming that final boundary
conditions are compatible with a Gaussian distribution.

To clarify the question of structured, but non Gaussian, initial distributions of agents, it is useful to consider the example
of an initial condition which can be split into two well separated parts m0(x) = ma

0(x) + mb
0(x), both separately well

approximated by a Gaussian and characterized by their relative masses, mean positions and standard deviations, hereafter
denoted by ρk

=
∫
mk

0(x)dx, X
k
0 andΣk

0 , with k = a, b, respectively.
We consider a variational ansatz which is a straightforward generalization of Eqs. (4.10)–(4.9), namely
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Fig. 3. Phase portrait in the canonical variables (q, p) for α = 3 and a non local interaction kernel of range ξ = .3Σ∗ . Besides the elliptic fixed point at
q = 1 (blue dot) already present in the limit ξ → 0, there appears a new (hyperbolic) fixed point at q = O(ξ ) (red dot) which governs the dynamics for
optimization time long enough (µσ 2

= 1).

Φ(x, t) = Φa(x, t) +Φb(x, t) ,

Γ (x, t) = Γ a(x, t) + Γ b(x, t) ,

where, for k = a, b,

Φk(x, t) =

√
ρk exp

[
−γt + Pk

t · x
µσ 2

]
1(

2π (Σk
t )2
)1/4 exp

[
−

(x − Xk
t )

2

(2Σk
t )2

(1 −
Λk

t

µσ 2 )
]

Γ k(x, t) =

√
ρk exp

[
+γt − Pk

t · x
µσ 2

]
1(

2π (Σk
t )2
)1/4 exp

[
−

(x − Xk
t )

2

(2Σk
t )2

(1 +
Λk

t

µσ 2 )
]

and follow the same approach as in Section 4.2.1. We make the two following assumptions: (i) both parts ma
t (x) and mb

t (x)
remain well separated for the time necessary to get an equilibrium shape, |Xa

t − Xb
t | ≫ Σa

t + Σb
t , and (ii) the extensions

Σa
t ,Σ

b
t of both parts are small on the scale at which U0(x) varies significantly.

Under these assumptions, the time evolution greatly simplifies as each sub-part behaves independently from the other
and follows Eqs. (4.1)–(4.2) for its center of mass, and Eqs. (4.21)–(4.22) for the distribution parameters, with an effective
coupling constant gk

= ρkg in the interaction potential.
Thus, using the results of the previous section, we get that each sub-part k forms a soliton with a rescaled extension

Σk
∗

=
1
ρk
Σ∗ (with Σ∗ as in (4.23)), which implies that the smaller part gets the larger extension. This first evolution takes

place on time scales τ k
∗

=

√
ρkτ∗ (see Eq. (4.28) and the discussion at the end of Section 4.2.2).

Let us now analyze the separate motion of the centers of mass for each part, (Xk
t , P

k
t ). In order to keep with the simplest

picture, we completely neglect the effect of U0(x) (relaxing this assumption does not introduce major conceptual changes)
and suppose that in the long time limit, the density of agents should form a single soliton of mass one and at rest. In such a
case, the solitons evolve as independent classical particles with unknown constant velocities vk = Pk

0/µ, which have to be
determined.

Conservation of total energy and the final condition chosen implies that the system of the two initially separated solitons
has the same energy as a single soliton at rest, that is∑

k=a,b

ρk
{
1
2
µ[vk]2 + [ρk

]
2Ẽ∗

tot

}
= Ẽ∗

tot (5.21)

where we have used that the energy of a soliton in the center of mass Ẽ∗
tot (see Eq. (4.25)) scales as the square of the coupling

constant g . Then, in the absence of an external potential U0, total momentum is conserved (cf. Eq. (3.25)),∑
k=a,b

µρkvk = 0. (5.22)

The velocities of the solitons before collision are thus

|vk| = (1 − ρk)

√
6Ẽ∗

tot

µ
=

√
3
4π

(1 − ρk)vg , (5.23)

for k = a, b and with vg defined by Eq. (4.29), the velocity scale associated with the interactions.
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If the pair of solitons has an extension initially larger than their invariant valueΣk
∗
, they contract with the initial velocity

given by Eq. (4.27),

Σ̇
a,b
t ≃ −

Σk
∗

τ∗
= −

1
√
4π
ρkvg . (5.24)

We find that light solitons have a contraction velocity slower than their center of mass, resulting in a positive velocity of the
front of matter toward the other soliton before they reach their equilibrium shape. However, equilibration time is smaller
for lighter solitons, τ kc = ρk Σ0

Σ∗
τ∗, so that the front of matter, Xk

t +Σk
t moves by a finite fraction ofΣ0 in the time necessary

forΣk
t to reach the valueΣk

∗
(the maximal value over ρk is found to be 3

4(1+
√
3)
Σ0 ≃ .27Σ0). Thus the picture we gave here

is consistent with the hypothesis of an initial separation,Σa
0 +Σb

0 ≪ |Xa
0 − Xb

0 |.
For arbitrary initial conditions, the exact scenario may become significantly more complex, and a precise description

which would be universally valid is obviously beyond the scope of the present work. We limit ourselves to what can be
anticipated on a general basis.

The case of two solitons studied above can easily be generalized to a larger number: if the initial density of agentsm0(x) can
be separated in a few non-overlapping sub-part of mass ρk and size larger than (Σ∗/ρ

k), each of these sub-parts contracts
and forms a local soliton of extension inversely proportional to its mass which moves until it merges with a neighboring
soliton. Furthermore, if the size ρk of these sub-parts is uniformly bounded from below, then the formation of local solitons
is characterized by the velocity scale vg and occurs on a short time scale in the limit of strong interactions. In this setting,
lighter solitons take more time to form, and move faster than the heavier ones. When more than two solitons are present,
various scenarios are possible which differ by the order in which they merge together, implying different choices of initial
conditions.

More general initial densities of agentswith inhomogeneities but no clearly separated sub-partswould have to be studied
in a case by case basis. However, the fact that the extension of local solitons is inversely proportional to their mass leads us
to expect the formation of solitons for strong enough interaction potential, even if the determination of their distribution
would remain a-priori a difficult problem.

6. Perturbative approach to the weakly interacting regime

In contrast with the two previous sections, we now turn to the case when the interactions between agents are small with
respect to the external potential so that they can be described as a perturbation of a non-interacting model.

The general strategy here is relatively clear. If the ‘‘interaction potential’’ V [m](x) is small, one should first solve the (non-
interacting) Schrödinger equation (as in Section 3.4.1); we then plug in the interactions, assumed to be small, and insert the
potential term V [m](x) as a perturbation, using the standard tools of quantum mechanics. We shall see however that the
forward/backward structure of the Mean Field Game equations introduces some subtleties in this relatively straightforward
scenario.

Here, we limit ourselves to the description of interactions up to first order corrections. Furthermore, we shall consider
here the long horizon limit T → ∞, and concentrate mainly on the convergence to the ergodic state. We thus discard the
effects of the final boundary conditions, which show up only in the late stage of the process.

As an application, we will consider a one-dimensional model with a quadratic (inverted) external potential

U0(x) = −
k
2
x2 (6.1)

and a weak short-ranged interaction potential

V [m](x) = g m(x) (6.2)

where g is a small positive coupling constant.

6.1. Non-interacting model

We start with a brief discussion of the non-interacting limit Ṽ [m](x) ≡ U0(x), mainly to fix some notations and to recall
some properties we shall make use of in this section.

From the results of Section 3.4.1, we know that the time evolution of both functions Φ and Γ can be derived from the
eigenfunctions ψn(x) and eigenvalues λn of the Hamiltonian

H0 = −
1
2µ
Π̂2

− U0(x) . (6.3)

The time evolution of the two functions Φ(x, t) and Γ (x, t) can be expressed in terms of these eigenfunctions through the
construction of a propagator

GH0 (x, x
′, t) ≡

∑
n≥0

e−λn t/µσ2
ψn(x)ψn(x′) , (6.4)
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where the subscript H0 stands for the ‘‘free’’ Hamiltonian (6.3). We have

Φ(x, t) =

∫
dxΦ(x′, t ′)GH0 (x

′, x, t ′ − t) t ≤ t ′ (6.5)

Γ (x, t) =

∫
dx′ GH0 (x, x

′, t − t ′)Γ (x, t ′) t ≥ t ′ (6.6)

We now consider the influence of both the initial density of agents m0(x) = Φ(x, 0)Γ (x, 0) and the terminal condition
Φ(x, T ) = K exp

(
−cT (x)/µσ 2

)
. In the long horizon limit T ≫ τerg, where we define the ergodic time as

τerg ≡
µσ 2

λ1 − λ0
, (6.7)

the system gets close to the ergodic state at all intermediate times t such that t ≫ τerg and (T − t) ≫ τerg. The terminal
condition becomes thus irrelevant, except possibly in the late stages that we do not consider here. The ergodic state in the
absence of interactions is

Φ
H0
e (x, t) ≡ C e+λ0t/µσ2

ψ0(x) (6.8)

ΓH0
e (x, t) ≡ C−1e−λ0t/µσ2

ψ0(x) (6.9)

(with C some arbitrary constant that we fix to one here), so that the resulting density profile is time independent,m(x, t) =

mH0
e (x) = ψ2

0 (x). The backward time evolution ofΦ(x, t) coming from the ergodic stateΦH0
e at some fixed final time is trivial,

and in particularΦ(x, 0) = ψ0(x). The initial condition for Γ thus reads

Γ (x, 0) =
m0(x)
ψ0(x)

(6.10)

and for all further times t

Γ (x, t) =

∫
dx′GH0 (x, x

′, t)
m0(x′)
ψ0(x′)

. (6.11)

Sincem(x, t) = Φ(x, t)Γ (x, t) (cf. (3.12)), the time evolution for the density can be written as

m(x, t) =

∫
dx′FH0 (x, x

′, t)m0(x′) (6.12)

where we have introduced the density time-propagator

FH0 (x, x
′, t) ≡ ψ0(x)GH0 (x, x

′, t)
e+λ0t/µσ2

ψ0(x′)
. (6.13)

As stressed before, these expressions for the propagation of the density of agents are valid in the long optimization time
limit T ≫ τerg, and their simplicity can be eventually traced back to the fact that Φ(x, t) remains in its ergodic state Φe as
long as (T − t) ≫ τerg, and in particular near t = 0.

We end this subsection with a few comments. First, we stress that for times large enough, the propagator (6.4) factorizes

GH0 (x, x
′, t) ≃ e−λ0t/µσ2

ψ0(x)ψ0(x′) for all t ≫ τerg, (6.14)

and one recovers as expected the ergodic state Γ (x, t) = Γ e(x, t) from (6.11), andm(x, t) = mH
e (x) from (6.12). This implies

in particular that for any normalized initial densitym0(x)∫
dx′FH0 (x, x

′, t)m0(x′) ≃ me(x) for all t ≫ τerg. (6.15)

Finally, one can check easily thatme is a fixed point of the propagation equation (6.12),

mH0
e (x) =

∫
dx′FH0 (x, x

′, t)mH0
e (x′) , (6.16)

as again expected. We shall make use of these properties below.

6.2. First order perturbations : the ergodic state

Wewant now to compute the first order corrections to the previous non-interactingmodel when aweak interaction term
V (x, t) = g m(x, t) is added to the potential.

Let us denote by ψe the solution of the nonlinear ergodic problem,

λeψe(x) = −
µσ 4

2
∆ψe(x) − U0(x)ψe(x) − g (ψe(x))3 . (6.17)
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For g small enough, both ψe and λe can be computed using perturbation theory around the lowest energy state of H0
(Eq. (6.3)). To first order in g , one gets easily

ψe(x) = ψ0(x) + g
∑
n>0

V0,n

(λn − λ0)
ψn(x) + o(g) (6.18)

λe = λ0 − g V0,0 + o(g) (6.19)

where ψn is the unperturbed eigenfunction of H0 and for all n,m ≥ 0,

Vn,m ≡

∫
dxψ2

0 (x)ψn(x)ψm(x). (6.20)

The density in the ergodic state then reads, up to first order,

me(x) = ψ2
0 (x) + 2g ψ0(x)

∑
n>0

V0n

(λn − λ0)
ψn(x) + o(g) .

6.3. First order perturbations : dynamics

We now construct the dynamic evolution toward the ergodic state, given an initial density profilem0.
The basic toolwe shall use in this subsection is essentially the timedependent perturbation theory of quantummechanics.

However the forward/backward structure of the mean field game equations introduces some extra complication since, as
we shall see, it requires to have perturbative results which remain valid for very long times (of the order of the optimization
time T ).

For this reason, it turns out to be necessary to develop the perturbation theory not around the unperturbed Hamiltonian
H0 (Eq. (6.3)) but around the Hamiltonian associated with the true ergodic state

He(x) = −
Π2

2µ
− U0(x) − g (ψe(x))2 , (6.21)

where for nowψe(x) denotes the exact solution of the ergodic problemequation (6.17).We thenwrite the full timedependent
Hamiltonian as He plus a perturbation:

H(x, t) = He(x) − g (m(x, t) − me(x)) (6.22)

where me(x) is the (assumed known) ergodic density of state and m(x, t) is the yet unknown time dependent density of
agents.

Let Te be a time at which the system is in the ergodic state (possibly up to an exponentially small error in T that we fully
neglect here).Φ(x, t) is solution of

µσ 2 ∂tΦ(x, t) = H(x, t)Φ(x, t) (6.23)

with the terminal condition

Φ(x, Te) = eλeTe/µσ
2
ψe(x). (6.24)

Following standard time-dependent quantum perturbation theory [61], Φ(x, t) reads, up to first order in the perturbation
and for all t in [0, Te],

Φ(x, t) = eλet/µσ
2
ψe(x)

+
g
µσ 2

∫ Te

t
ds
∫

dyψe(y) e(λes/µσ
2)
[m(y, s) − me(y)]Ge(y, x, s − t)

where we have denoted by Ge(y, x, t) the propagator (6.4) associated with He.
In analogy with Eq. (6.13), we introduce the density time-propagator associated with He,

Fe(y, x, t) = ψe(y)Ge(y, x, t)e+λet/µσ2 1
ψe(x)

, (6.25)

and we write the evolution ofΦ as

Φ(x, t) = eλet/µσ
2
[
1 +

g
µσ 2

∫ Te

t
ds
∫

dy [m(y, s) − me(y)]Fe(y, x, s − t)
]
ψe(x). (6.26)

Note that in this last expression, the reasons for the choice of a perturbation theory around He rather than around H0 can be
made clear: first, the exponential factor may differ greatly from the same expression with λ0 instead of λe, since t can get
large independently of g; second, with the present choice, the time integral on the right hand side is well defined, even in
the limit Te → ∞ (assuming the convergence of the expansion).
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In particular, the value at t = 0 reads

Φ(x, 0) =

[
1 +

g
µσ 2

∫ Te

0
ds
∫

dy [m(y, s) − me(y)]Fe(y, x, s)
]
ψe(x). (6.27)

Given an initial distribution of agentsm0, the initial value of Γ (x, 0) can be now computed up to first order as

Γ (x, 0) =

[
1 −

g
µσ 2

∫ Te

0
ds
∫

dy [m(y, s) − me(y)]Fe(y, x, s)
]
m0(x)
ψe(x)

(6.28)

Now, since Γ (x, t) is solution of

−µσ 2 ∂tΓ (x, t) = H(x, t)Γ (x, t) (6.29)

it can be written up to first order in g as

Γ (x, t) =

∫
dx′Ge(x, x′, t)Γ (x′, 0)

+
g
µσ 2

∫ t

0
ds
∫

dx′dy Ge(x, y, t − s)[m(y, s) − me(y)]Ge(y, x′, s)Γ (x′, 0) .

Collecting the previous results, one can write an expression for the density of agents at first order in perturbation theory.
We get

m(x, t) =

∫
dx′Fe(x, x′, t)m0(x′)

+
g
µσ 2

∫ t

0
ds
∫

dy dx′Fe(x, y, t − s) [m(y, s) − me(y)] Fe(y, x′, s)m0(x′)

+
g
µσ 2

[∫ Te

t
ds
∫

dy [m(y, s) − me(y)] Fe(y, x, s − t)
][∫

dx′Fe(x, x′, t)m0(x′)
]

−
g
µσ 2

∫ Te

0
ds
∫

dydx′Fe(x, x′, t) [m(y, s) − me(y)] Fe(y, x′, s )m0(x′) (6.30)

Note that there are thus three terms at the first order of perturbations with a different origin: though the two last terms
are rather classical and correspond to the first order perturbation of each of the two factors Γ (x, t) andΦ(x, t), respectively,
the third one is specific to the forward/backward structure and corresponds to a modification of the initial data Γ (·, 0).

As a coherence check of the above expression, we can consider the long time limit t → ∞, of Eq. (6.30) and verify that,
at first order in g , it is indeed coherent with the expected result that m(x, t) ≃ me(x) whenever t ≫ τerg. Using the fact that
at the lowest order, |m(x, t) − me(x)| ≤ Ce−t/τerg , (which we write as m(x, t) ≃ me(x)), we get from Eq. (6.14), at first order
in g

m(x, t) ≃

∫
dx′Fe(x, x′, t)m0(x′)

+
g
µσ 2

∫ t

0
ds
∫

dy dx′Fe(x, y, t − s) [m(y, s) − me(y)] Fe(y, x′, s)m0(x′)

−
g
µσ 2

∫ t

0
ds
∫

dydx′Fe(x, x′, t) [m(y, s) − me(y)] Fe(y, x′, s )m0(x′)

≃

∫
dx′Fe(x, x′, t)m0(x′)

+
g
µσ 2

∫ t

0
ds
∫

dy dx′
[
Fe(x, y, t − s) − Fe(x, x′, t)

]
× [m(y, s) − me(y)] Fe(y, x′, s)m0(x′)

≃ me(x) (6.31)

where we have used also the fact that Fe(x, y, t) ≃ me(x) to get the last line, valid up to first order in g . For short times,
t ≤ µσ 2/|V1,1 − V0,0| (assuming that V1,1 ̸= V0,0), the dynamics toward the ergodic state does not differ too much from the
unperturbed one and the densities and propagators on the right hand side of Eq. (6.30) can be replaced by their first order
approximations in the first line, and their expressions at g = 0 in the next three lines. We thus get an explicit form of the
first order solution to the Mean Field Game equations:

m(x, t) = mH0
e (x) +

∫
dx′FH0 (x, x

′, t) (m0(x′) − mH0
e )
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+

∫
dx′(Fe(x, x′, t) − FH0 (x, x

′, t))m0(x′)

+
g
µσ 2

∫ t

0
ds
∫

dy dx′
[
FH0 (x, y, t − s) − FH0 (x, x

′, t)
]

×

[
mH0 (y, s) − mH0

e (y)
]
FH0 (y, x

′, s)m0(x′)

+
g
µσ 2

∫ Te

t
ds
∫

dy dx′

[
mH0 (y, s) − mH0

e (y)
]

×
[
FH0 (y, x, s − t) − FH0 (y, x

′, s )
]
FH0 (x, x

′, t)m0(x′) (6.32)

where the term on the second line accounts for the first order correction to the propagator.
For large times, (t ≫ τerg), this expression converges exponentially tome(x) for the same reasons as in Eq. (6.31).
For short times, (t ≪ τerg), it leads tom(x, t) = m0(x)+∂tm(x, 0) t+O

(
(t/τerg)2

)
, where, within first order approximation,

∂tm(x, 0) ≃ ∂tm
(0)
0 (x) +

g
µσ 2 ∂tm

(1)
0 (x) (6.33)

with

∂tm
(0)
0 (x) =

∫
dx′∂tFH0 (x, x

′, 0)m0(x′) (6.34)

the ‘‘free’’ contribution. We can furthermore write the first order correction as the sum

∂tm
(1)
0 (x) = ∂tm

(e)
0 (x) + ∂tm

(a)
0 (x) + ∂tm

(r)
0 (x) (6.35)

with

∂tm
(e)
0 (x) =

(
g
µσ 2

)−1 ∫
dx′

[∂tFe(x, x′, 0) − ∂tFH0 (x, x
′, 0)]m0(x′) (6.36)

∂tm
(a)
0 (x) = − m0(x)

∫
∞

0
ds
∫

dyδmH0 (y, s)∂tFH0 (y, x, s) (6.37)

+

∫
∞

0
ds
∫

dy dx′δmH0 (y, s)FH0 (y, x, s)∂tFH0 (x, x
′, 0)m0(x′) (6.38)

∂tm
(r)
0 (x) = −

∫
∞

0
ds
∫

dy dx′δmH0 (y, s)FH0 (y, x
′, s)∂tFH0 (x, x

′, 0)m0(x′). (6.39)

In the expressions above we have introduced the notation δmH0 (y, s) ≡ [mH0 (y, s) − mH0
e (y)], and the spatial integrals for

∂tm
(0)
0 , ∂tm

(e)
0 , ∂tm

(a)
0 and ∂tm

(r)
0 , can be further simplified using that

∂tFH0 (x, y, 0) =
σ 2

2
(ψ0(x)δ"(x − y) − ψ"0(x)δ(x − y))

1
ψ0(y)

,

(and the equivalent expression for ∂tFe(x, y, 0)).
The term ∂tm

(e)
0 can be understood as originating from the modification of the ergodic state (cf. Section 6.2), ∂tm

(a)
0 is

related to the influence of interactions on anticipations and ∂tm
(r)
0 is due to the more (in time) classical, retarded effect of

interactions.
We now apply these results to the example of the harmonic oscillator potential equation (6.1), for which we compute the

first order, O(g/µσ 2), corrections to ∂tm(x, 0).

6.4. Weakly interacting agents in a harmonic potential

We consider now in more detail the harmonic case

U0(x) = −
k
2
x2 .

Our goal here is to obtain explicit expressions for the various quantities involved in Eq. (6.32), and more specifically the
density propagator FH0 and the time-dependent density of agentsmH0 (x, t).

When the potential is harmonic the eigenfunctions of the unperturbed Hamiltonian (6.3) can be written as

ψn(x) =
1

√
2nn!

1
π1/4

√
ℓ0

exp
(

−
x2

2ℓ20

)
Hn

(
x
ℓ0

)
, n ≥ 0 (6.40)
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where ℓo = σ
(
µ

k

)1/4 and Hn(u) is the nth Hermite polynomial; the associated eigenvalues are λn = µσ 2ω(n + 1/2) with
ω =

√
k/µ. In particular the ground state of H0 reads

ψ0(x) =
1

π1/4ℓ
1/2
o

exp
(

−
1
2
x2

ℓ2o

)
. (6.41)

By Mehler formula (see reference [62] or Appendix D for a derivation) the propagator equation (6.4) reads explicitly

GH0 (x, x
′, t) =

1√
2πℓ20 sinh(ωt)

exp

[
−

(x2 + x′2) cosh(ωt) − 2xx′

2ℓ20 sinh(ωt)

]
(6.42)

≃
e−ωt/2

√
π l0

exp

[
−

(x2 + x′2)
2ℓ20

]
when (ωt ≫ 1)

This in turn implies that

FH0 (x, x
′, t) = GΣF (t)(x − x′e−ωt ) , (6.43)

with

ΣF (t) = ℓ0
√
(1 − e−2ωt )/2 ,

where GΣ is a centered Gaussian of widthΣ

GΣ (x) =
1

√
2πΣ

exp
[
−

x2

2Σ2

]
. (6.44)

Using Eq. (6.43), the implementation of Eq. (6.32), beyond the zero’th order term, now reduces to quadratures.
In the particular case of a Gaussian initial condition

m0(x) ≡ GΣ0 (x − x0) (6.45)

the integration in Eq. (6.12) can be performed and the time dependent density profile is Gaussian at all times, with

mH0 (x, t) = GΣm(t)(x − x0 e−ωt ) (6.46)

with

Σm(t) = ℓ0

√(
1 − (1 − 2Σ2

0 /ℓ
2
0) e−2ωt

)
/2. (6.47)

For time small enough, the density-propagator FH0 (x, x
′, t) is peaked around x′

= xeωt , and the integral in Eq. (6.12) is
dominated by a neighborhood of size eωt ΣF (t) around this value. If the initial profilem0(x′) is slowly varying on this length-
scale, the corresponding term can be factorized out of the integral in Eq. (6.12) (which is akin to performing a stationary
phase approximation), leading to a simpler expression for the density at short times

m(x, t) ≃ eωtm0
(
xeωt

)
.

(Note that this does not require m0 to be a Gaussian.) If the typical scale of variationsΣ0 of the initial distribution of agents
is significantly larger than the length ℓ0 characterizing the ground state ψ0(x), this approximation will be valid up to time
t ∼ ω−1 log(Σ0/ℓ0).

We turn now to the short time evolution of the density for a Gaussian initial density as in (6.45). In expression (6.33) all
integrations over space are Gaussian and can bemade explicitly, which leaves only the integration over time to be performed
numerically. The result up to first order in the interaction strength is illustrated in Fig. 4 for a particular set of parameters
(see caption for more details).

A few remarks are in order. In Fig. 4a, the short time free evolution of the density is what is expected, i.e. a motion toward
the maxima x = 0 of the ‘‘utility’’ function U0(x); the corrections due to the interactions are indeed quite small in the case
presented here. This smallness is due in part to the fact that the three contributions in (6.35) ‘‘push’’ in different directions
and compensate one another for a large part (see Fig. 4c). The terms ∂tm

(e)
0 (x) associated with the modification of the ergodic

state and ∂tm
(a)
0 (x) associatedwith anticipations tend to accelerate themotion,when the retarded contribution ∂tm

(r)
0 (x) tends

to slow it down (as the interactions make the initial mean location slightly more favorable than in the free case). Beyond a
tendency to make the distribution slightly more narrow, the net effect of interactions for this particular example is thus to
effectively slightly slow the motion of the group. We stress however that for the example considered here the width of the
initial density has been chosen slightly smaller than the one of the ergodic state, and their mean positions not too far away.
Other choices may have led to a stronger influence of the anticipations.
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Fig. 4. Short time evolution of a density of agent in a harmonic potential in the limit of weak interactions (the units of time and length are the one set
by the harmonics oscillator, i.e. ω = 1 and l0 = 1). (a) Initial density of agents and its short time evolution. Solid black: Initial density of agent m0(x),
chosen here as a Gaussian of widthΣ = .5 centered at x0 = 2. Solid gray: Short time evolution m0(x) +∆t∂tm

(0)
0 (x) in the non interacting approximation

(∆t = 0.1). Dashed black: Short time evolutionm0(x)+∆t(∂tm
(0)
0 (x)+ (g/µσ 2)∂tm

(1)
0 (x)) including the first order corrections associated with interactions

( the ‘‘small parameter’’ (g/µσ 2) has been set to one to enhance visibility). (b) Time derivative of the density. Solid gray: non interacting term ∂tm
(0)
0 (x).

Solid black first order interaction term ∂tm
(1)
0 (x). (c) The three contributions to the interacting term (Eq. (6.35)). Dashed (blue online) contribution ∂tm

(e)
0 (x))

associated with the perturbation of the ergodic state. Long-dashed (magenta online) contribution ∂tm
(a)
0 (x)) associated with anticipations. Dotted (brown

online) contribution ∂tm
(r)
0 (x)) associated with the classical (retarded) effects of interactions. Solid line: total contribution (same curve as in (b)).

7. Conclusion

In this paper, after a general introduction to Mean Field Games in the form in which they have been introduced originally
by Lasry and Lions, [2–4], and a bird’s eye survey of the recentmathematical development in that field, we have considered in
detail a class ofmean field gamemodels, referred to here as ‘‘quadratic’’ MFG. Suchmodels describe the collective behavior of
a large number of agents, whose individual dynamics follow a controlled linear Langevin equation, when the control derives
from the minimization of a quadratic cost functional.

Aswe have emphasized, there exists a formal, but deep, relationship between theMFG equations describing thesemodels
and the nonlinear Schrödinger equation. Our main purpose was to explore this relationship and its implications on the
structure of the solutions of MFG problems.

Indeed, the nonlinear Schrödinger equation has a very long history in physics, andmany tools and approximation schemes
have been developed along the years to analyze its properties in different parameter regimes. Using the connection between
MFG and NLS, we have shown that it is possible to adapt some standard tools fromQuantumMechanics (Ehrenfest relations,
perturbative expansions), or to rely on concepts and techniques more specific to the nonlinear Schrödinger equation (here
the concept of soliton, the existence of an action from which the equations of motion derive, and the related variational
approaches) and that it may indeed lead to a sharp control over the behavior of quadratic MFG models in various regimes.
In particular we have introduced variational methods that are well adapted in the limit of strong interaction, while on the
opposite, weak interaction limit, a perturbation theory can be developed. A few (partly new) exact results have been derived
along the way.

In this paper, we have mostly limited ourselves to an introduction of these methods in the context of Mean Field Games,
and illustrated them on a few simple examples, but it is already clear that this is very far from exhausting the possible
applications of the connection with the nonlinear Schrödinger equation.

To start with, preliminary results show that other tools developed in the context of the nonlinear Schrödinger equations,
from simple ones such as the Thomas Fermi approximation tomore sophisticated one related to inverse scatteringmethods,
can be used to analyze further the behavior of ‘‘paradigmatic’’ population models in the same spirit as what have been done
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here. More elaborated models, including for instance the presence of two or more groups of agents with different behaviors,
or other specific modifications can also certainly be analyzed following the same approach.

Obviously, the class of models considered here forms only a small subset of all possible Mean Field Games, but is already
large enough to contain non trivial examples for which no explicit exact solutions are to be found. It includes both potential
models (for which an action functional can be defined) and non-potential ones (for which this is not possible), as well
as monotone (repulsive interactions in the model treated here) and non-monotone ones (here the attractive case) [63].
Therefore, it seems to us relatively clear that, within a relatively short amount of time, the connection between quadratic
Mean Field Games and the nonlinear Schrödinger equation will provide a good understanding of a large class of Mean Field
Game problems. We believe that quadratic MFG are at some level representative of a much more general class of Mean
Field Games and expect that the connection outlined here will contribute significantly to a better understanding of general
MFG models, as well as extending the field of their possible applications. In this process, we are confident that the physics
community, with its specific knowledge and point of view, can, and should, play an significant role. We hope that this paper
will be instrumental in this respect.
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Appendix A. Derivation of the Hamilton–Jacobi–Bellman equation

The Hamilton–Jacobi–Bellman equation is one of the basic tool of optimal control and is discussed in detail in many
textbooks, such as for instance [64]. As it might be less familiar to physicists, we provide a brief sketch of its derivation
below.

Starting from the definition Eq. (2.4) of the value function u(x, t), the principle of dynamic programming consists in
splitting the optimization in two parts, the first one for the infinitesimal time interval [t, t +dt], and the second for all times
beyond this. This reads

u(x, t) = min
a(t)

⟨⟨

[
L(x(t), a(t)) − Ṽ [mt ](x(t))

]
+ u(x + dX, t + dt)⟩⟩noise , (A.1)

with dX given by the Langevin equation (2.1). Using Itô lemma we then have

⟨⟨[u(x + dX, t + dt)]⟩⟩noise = u(x, t) +

[
∂tu(x, t) + a · ∂xu(x, t) +

σ 2

2
∂2x,xu(x, t)

]
dt ,

which, inserted in Eq. (A.1) yields the Hamilton–Jacobi–Bellman equation

∂tut (x) + H(x, ∂xut (x)) +
σ 2

2
∂xxut (x) = Ṽ [mt ](x) , (A.2)

where H(x, p) ≡ infα (L(x,α) + p.α).
The boundary condition u(x, t = T ) = cT (x) is then obtained by noting that at the end of the optimization interval, there

is no control variable on which the agent can act to optimize its cost, and therefore the utility function is just given by the
final cost cT .

This completely solves the optimization problem for the cost function when one assumes that the value function is twice
differential. In more general settings, weak or viscosity solutions for the HJB equation has to be considered instead [65].

Appendix B. Solutions of the generalized Gross–Pitaevskii equation in one dimension

In one dimension and in the absence of external potential, U0 = 0, the ergodic problem considered in Section 3.4.2
reduces to the following generalized Gross–Pitaevskii equation (3.50):

µσ 4

2
∂2xxψ

e(x) + g(ψ e(x))(2α+1)
= −λψ e(x) . (B.1)

Integrating once gives

µσ 4

4
(∂xψ e(x))2 +

g
2α + 2

(ψ e(x))(2α+2)
+
λ

2
(ψ e(x))2 = 0 , (B.2)

where the integration constant (the right hand side of Eq. (B.2)) is set to zero since a solution associated with the minimum
value for λe has to decay to zero at infinity:

lim
|x|→∞

ψ e(x) = lim
|x|→∞

∂xψ
e(x) = 0 .



30 D. Ullmo, I. Swiecicki and T. Gobron / Physics Reports 799 (2019) 1–35

The function ψ e(x) needs to have (at least) a non zero maximum ψM , which value is thus the unique positive solution of

g
2α + 2

ψ
(2α+2)
M +

λ

2
ψ2

M = 0 , (B.3)

which imposes λe < 0 and ,

ψM =

(
−(α + 1)λe

g

)1/2α

. (B.4)

Defining a characteristic length ηα as

ηα =

√
µσ 4

−2α2λe
, (B.5)

Eq. (B.2) can be reduced in the form

α2 η2α
(∂xψ e(x)
ψM

)2
−
(ψ e(x)
ψM

)2(1 −
(ψ e(x)
ψM

)2α)
= 0 , (B.6)

which can be readily integrated as

ψ e(x) = ψM
[
cosh(

x − x0
ηα

)
]− 1

α . (B.7)

Finally, the value of λ is fixed through the normalization condition:∫
dx (ψ e(x))2 = 1 .

Setting

Iα =

∫
+∞

0
(cosh(x))−

2
α dx = 4

1−α
α
Γ ( 1

α
)2

Γ ( 2
α
)
, (B.8)

we get

λe = −
( g
α + 1

) 2
2−α
( α√

2µσ 4Iα

) 2α
2−α = −

1
4

( Γ ( 2
α
)

Γ ( 1
α
)2

) 2α
2−α ( g

α + 1

) 2
2−α

( 2α2

µσ 4

) α
2−α

, (B.9)

and the expression of the characteristic length (B.5) becomes

ηα = 2
(Γ ( 1

α
)2

Γ ( 2
α
)

) α
2−α

(α + 1
2α2

µσ 4

g

) 1
2−α
. (B.10)

Appendix C. Gaussian variational ansatz

In this appendix, we provide some of the intermediate results that has been used when discussing the variational
approach used in Sections 4 and 5.

We consider a MFG model with d-dimensional state space, non-linear local interactions and an external potential as in
(5.1).

The action equation (3.33) can be written as

S[Φ,Γ ] =

∫ T

0
dtL(t) ,

with a Lagrangian L(t) = Lτ + (Ekin + Epot + Eint) where

Lτ (t) = −
µσ 2

2

∫
dxΦ(x, t)

(
(∂tΓ (x, t)) − (∂tΦ(x, t))Γ (x, t)

)
,

Ekin(t) =
1
2µ

⟨Π̂2
⟩t = −

µσ 4

2

∫
dx∇Φ(x, t) · ∇Γ (x, t) ,

Epot(t) = ⟨U0⟩t =

∫
dxΦ(x, t)U0(x)Γ (x, t) ,

Eint(t) =

∫
dx F [Φ(x, t)Γ (x, t)] =

g
α + 1

∫
[Φ(x, t)Γ (x, t)]α+1dx.
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We hereafter develop a variational ansatz by minimizing this action on a restricted class of functions (Φ(x, t),Γ (x, t))
defined as in (5.3)–(5.2) that we recall here for convenience:

Φ(x, t) = exp
{

−γt + Pt · x
µσ 2

} d∏
ν=1

[
1(

2π (Σν
t )2
)1/4 exp

{
−

(xν − Xνt )
2

(2Σν
t )2

(1 −
Λνt

µσ 2 )
}]

. (C.1)

Γ (x, t) = exp
{

+γt − Pt · x
µσ 2

} d∏
ν=1

[
1(

2π (Σν
t )2
)1/4 exp

{
−

(xν − Xνt )
2

(2Σν
t )2

(1 +
Λνt

µσ 2 )
}]

, (C.2)

Computation of the Lagrangian

We obtain for the first two terms

Lτ (t) = −γ̇t +

d∑
ν=1

Λ̇νt

4
+ Ṗt · Xt −

d∑
ν=1

Λνt Σ̇
ν
t

2Σν
t

(C.3)

Ekin(t) =
P2
t

2µ
+

d∑
ν=1

(Λνt )
2
− µ2σ 4

8µ(Σν
t )2

, (C.4)

and we choose from now on

γt = γ0 +

d∑
ν=1

Λνt

4
, (C.5)

so that the first two terms in (C.3) cancel.
The computation of the potential energywould require the external potentialU0 to be given. However, since Epot depends

only onm(x, t) = Γ (x, t)Φ(x, t), and not separately on bothΓ (x, t) andΦ(x, t) it depends on Xt andΣ t only. Furthermore,
using a Taylor expansion of U0(x) around Xt , we get

Epot(t) = U0(Xt ) +
1
2

d∑
ν=1

(Σν
t )

2∂2ννU0(X) + O(∥Σ t∥
4). (C.6)

Finally, the interaction energy in the variational ansatz reads

Eint(t) =
g

α + 1

∫
[Φ(x, t)Γ (x, t)]α+1dx

=
g

α + 1

d∏
α=1

[
1√

2π (Σν
t )2

∫
dx exp

{ (α + 1)(x − Xνt )2

2(Σν
t )2

}]

=
g

α + 1
1

((α + 1)(2π )α)d/2

d∏
ν=1

( 1
Σν

t

)α
. (C.7)

The two pairs of variables, (X, P) and (Σ ,Λ) are coupled only through the potential energy (C.6), as a consequence of
the curvature of U0 on the scale ∥Σ t∥. Assuming that these corrections are negligible, the two pairs decouple and evolve
independently. The motion of the center of mass follows a reduced dynamics in the external potential U0:

Ẋt =
Pt
µ
,

Ṗt = −∇U0(X) ,

and the total energy of the center of mass P2
2µ +U0(X) is separately conserved. On the other hand, the dynamics in the center

of mass, (Σ t ,Λt ) is governed by the reduced action S̃(Σ ,Λ) =
∫ T
0 dtL̃(t) with

L̃(t) = L̃τ (t) + Ẽtot(t) , (C.8)

L̃τ (t) = −

d∑
ν=1

Λνt Σ̇
ν
t

2Σν
t
, (C.9)

Ẽtot(t) =

d∑
ν=1

(Λνt )
2
− µ2σ 4

8µ(Σν
t )2

+
g

α + 1

d∏
ν=1

[
1

√
α + 1(2π )α/2

( 1
Σν

t

)α]
. (C.10)
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The 2d equations of motion (5.8)–(5.9) are obtained by computing the variations of the action along the trajectories and
equating them to zero. They read

Σ̇ν
t =

Λνt

2µΣν
t

(C.11)

Λ̇νt =
(Λνt )

2
− µ2σ 4

2µ(Σν
t )2

+
2gα
α + 1

d∏
ρ=1

[
1

√
α + 1(2π )α/2

( 1
Σ
ρ
t

)α]
. (C.12)

These equations admit one stationary point at which the variances and position–momentum correlators are the same in
all directions, namely

Λν
∗

= Λ∗ = 0 (C.13)

Σν
∗

= Σ∗ =

[
4α
α + 1

( 1
(α + 1)(2π )α

)d/2 g
µσ 4

]−1/(2−αd)

, (C.14)

while the total energy at the stationary point (Σ ∗,Λ∗) is

Ẽ∗

tot =
2 − αd
8α

µσ 4

Σ∗

. (C.15)

Note also that the reduced kinetic and interaction energy are respectively

Ẽ∗

kin = −
αd

2 − αd
Ẽ∗

tot , (C.16)

Ẽ∗

int =
2

2 − αd
Ẽ∗

tot. (C.17)

EliminatingΛt and its derivatives from the evolution equations (C.11)–(C.12) leads to a set of second order coupled equations
in the variablesΣν

t only:

Σ̈ν
t = −

σ 4

8Σν
t

+
α

α + 1

d∏
ρ=1

[
1

√
α + 1(2π )α/2

( 1
Σ
ρ
t

)α] g
µΣν

t
. (C.18)

Using expressions (C.14)–(C.15), and introducing the reduced variables qνt = Σν
t /Σ∗, we get the simpler expression:

q̈νt =
α

2 − αd
2Ẽ∗

tot

µΣ2
∗

⎡⎣−

( 1
qνt

)3
+

1
qνt

d∏
ρ=1

( 1
qρt

)α⎤⎦ , (C.19)

and in these variables, conservation of energy reads

d∑
ν=1

(q̇νt )
2

=
2Ẽ∗

tot

µΣ2
∗

[
α

2 − αd

d∑
ν=1

( 1
qνt

)2
−

2
2 − αd

d∏
ν=1

( 1
qνt

)α]
+

2Ẽtot
µΣ2

∗

. (C.20)

Invariant manifolds in one dimension

The fixed point (Σ∗,Λ∗) of the dynamical system (5.8)–(5.9) is unstable for α ∈ ]0, 2[ and the associated soliton is stable.
Along the stable and unstable manifolds associated with the stationary point, the total energy Ẽtot = Ẽ∗

tot and Eq. (C.20) reads

d∑
ν=1

(q̇νt )
2

=
2Ẽ∗

tot

µΣ2
∗

[
α

2 − αd

d∑
ν=1

( 1
qνt

)2
−

2
2 − αd

d∏
ν=1

( 1
qνt

)α
+ 1

]
. (C.21)

In one space dimension, the expressions for the width (C.14) and the total energy (C.15) at the stationary point simplify:

Σ∗|d=1 =

[
(2π )α/2(α + 1)3/2

4α
µσ 4

g

]1/(2−α)
, (C.22)

Ẽ∗

tot|d=1 =
2 − α

8α
µσ 4

Σ∗

, (C.23)
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and Eq. (C.21) can be integrated, giving the equation for the stable and unstable manifolds. Introducing the function F (q) as
the integral

F (q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ q

0

dv

(v −
v1−α/2

1−α/2 − (1 −
1

1−α/2 ))
1/2

if q < 1 ,

−

∫
∞

q

dv

(v −
v1−α/2

1−α/2 − (1 −
1

1−α/2 ))
1/2

if q > 1.
(C.24)

The equation for the stable manifold reads

F (qt ) − F (q0) =
t
τ∗
, (C.25)

while the equation for the unstable manifold is

F (qt ) − F (qT ) =
T − t
τ∗

, (C.26)

where the characteristic time τ∗ is

τ∗ =

√
µΣ2

∗

2Ẽ∗
tot

(C.27)

Note that the function F (q) behaves as F (q) ≈
1

√
α
log |1 − q| when q ≈ 1, as F (q) ≈

2−α
2α q2 for q ≪ 1 and like F (q) ≈ q for

q ≫ 1 .

Appendix D. Propagator for the harmonic oscillator

In this appendix, we give a brief derivation of the expression for the propagator equation (6.42) corresponding to a
harmonic potential. This formula is a rather classical result and various derivations can be found in [62]; the following one
is given here for completeness. We first set the length unit so that ℓ0 ≡ 1.

We consider the nth eigenfunction of the harmonic oscillator ψn (6.40) and introduce its Wigner transform as

Wn(x, p) ≡

∫
dy e−iyp ψn(x − y/2)ψn(x + y/2) ,

We get

Wn(x, p) = 2(−1)n exp
[
−(x2 + p2)

]
Ln
(
2(x2 + p2)

)
,

where Ln ≡
ex
n!

dn
dxn (x

ne−x) is the nth Laguerre polynomial.
The Wigner transform of the propagator (6.42) therefore reads

WĜ(x, p, t) ≡

∑
n

exp
(

−
tλn
µσ 2

)
Wn(x, p)

= 2 exp
[
−(x2 + p2)

]
exp

[
−
ωt
2

]∑
n

(−1)n exp
[
−

nωt
2

]
Ln
(
2(x2 + p2)

)
=

exp
[
−(x2 + p2) tanh

(
ωt
2

)]
cosh

(
ωt
2

) ,

where, in order to get the last line, we have used that∑
n

Ln(z)ξ n = exp[−zξ/(1 − ξ )]/(1 − ξ )

with z = 2(x2 + p2) and ξ = −e−ωt .
Through an inverse Fourier transform, the propagator (6.42) is now expressed as

G(x, x′, t) ≡

∫
dp
2π

eip(x
′
−x)WĜ( 1

2 (x + x′), p, t)

=
1

√
2π sinh(ωt)

exp
[
−

(x2 + x′2) cosh(ωt) − 2xx′

sinh(ωt)

]
.

Reinserting by homogeneity the dependence on the length scale ℓ0 leads to Eq. (6.42).
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