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We provide a semiclassical description of the electronic transport through graphene n-p junctions in the
quantum Hall regime. This framework is known to experimentally exhibit conductance plateaus whose origin is
still not fully understood. In the magnetic regime (E < vF B), we show that the conductance of excited states
is essentially zero, while that of the ground state depends on the boundary conditions considered at the edge of
the sample. In the electric regime (E > vF B), for a steplike electrostatic potential (abrupt on the scale of the
magnetic length), we derive a semiclassical approximation for the conductance in terms of the various snakelike
trajectories at the interface of the junction. For a symmetric configuration, the general result can be recovered
using a simple scattering approach, providing a transparent analysis of the problem under study. We thoroughly
discuss the semiclassical predicted behavior for the conductance and conclude that any approach using fully
phase-coherent electrons will hardly account for the experimentally observed plateaus.
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I. INTRODUCTION

Graphene, a two-dimensional material made of a monolayer
of carbon atoms arranged in a hexagonal lattice, has been
studied theoretically for some time,1–4 but means to isolate and
manipulate it experimentally have only been developed a few
years ago.5 Since then, the exotic properties of this material
have aroused considerable interest in the condensed-matter
physics, chemistry, and material science communities.6,7

These properties mostly originate from graphene’s peculiar
low-energy band structure, both gapless and linear. Conduction
and valence bands touch each other at the corners of the
(hexagonal) first Brillouin zone, two of which (K ,K ′) are
inequivalent. At low energies, the dispersion relation vanishes
at these Dirac points and the effective Hamiltonian for
electrons in graphene is that of a massless pseudorelativistic
particle traveling at an effective “speed of light” vF . Here,
the internal degree of freedom associated with graphene’s two
inequivalent sublattices plays the role of the spin (the true spin
providing merely a degeneracy factor as long as spin-orbit
interaction or magnetic impurities are neglected, as we shall
do here).

Two of the most prominent features that distinguish
graphene from conventional two-dimensional electron gases
(2DEGs) are the occurrence of Klein tunneling,8–11 i.e., the
absence of backscattering of charge carriers when approaching
potential barriers under normal incidence, and that of an
anomalous quantum Hall effect (QHE)12,13 stemming from
the peculiar quantization of the Landau levels in this material.

A nice experiment probing the physics that emerges from
the interplay of Klein tunneling and the anomalous QHE was
carried out in 2007 by Williams and collaborators.14 Using a
global back gate and a local top gate, they were able to apply
gate voltages of different signs in two regions of a graphene
sheet, creating a n-p junction at the regions’ interface,
an ideal setup to study Klein tunneling. Using a strong
perpendicular magnetic field they performed quantum Hall
transport measurements across this graphene n-p junction.

Quite remarkably, for some combinations of n and p filling
factors, the experimental data exhibit conductance plateaus at
the fractions 1/2 and 3/4 of the quantum of conductance of
spin-degenerate systems, G0 = 2e2/h, at odds with the usual
graphene quantum Hall series.

These observations were confirmed by other
experiments15–17 and extended to the setup of single-layer
n-p-n junctions18 and bilayer n-p-n junctions.19 The observed
plateaus in n-p junctions can be cast in terms of the QHE
edge channel picture, within good accuracy, by the expression

Gnp = G0
NnNp

Nn + Np

, (1)

where Nn and Np stand for the number of incoming/outgoing
edge modes, which depend on the gate voltages applied to the
n and p regions, and consequently on their filling factors.

Very early, Abanin and Levitov20 proposed an interpretation
for Eq. (1) in terms of a “quantum chaos hypothesis.” The key
element is that since n and p edge channels in the quantum
Hall regime have opposite chirality (direction of propagation),
they interfere with each other at the junction interface. The
quantum chaos hypothesis amounts to assuming that this
interference effect gives rise to a mode-mixing mechanism that
is sufficiently strong that an incoming channel at the interface
will have equally likely probabilities of leaving the interface
in any of the outgoing channels, leading to a current partition
consistent with Eq. (1). This picture is further motivated by the
observation that the values of the conductance plateaus Gnp

coincide with the average conductance 〈G〉, predicted by the
random matrix theory (RMT) for chaotic systems.21,22

Albeit very appealing, a complete interpretation of the
experimental results by means of the quantum chaos hypoth-
esis is still problematic. As already pointed out in Ref. 20,
RMT gives an average 〈G〉 = Gnp, but also predicts universal
conductance fluctuations (UCFs) of the order of e2/h. Those
are definitely not currently observed by experiments. UCFs
are ubiquitous in both quantum chaotic21,22 and diffusive
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systems.23,24 They have been studied experimentally as well
as theoretically for ordinary graphene flakes (see, for instance,
Ref. 25 for a review). In the quantum Hall regime, numerical
investigations of graphene n-p junctions26,27 and of graphene-
superconductor junctions28 showed that modifications of the
disorder strength may cause small changes in the magnitude
of the UCFs but do not imply qualitative modifications of the
transmission. These observations thus support the conclusion
that in the absence of decoherence, the role of which still has
to be established in the problem we are investigating, disorder
by itself cannot explain the conductance plateaus observed
experimentally in quantum Hall n-p junctions.

Further insight is gained from another recent experimental
work investigating the fingerprints of Klein tunneling in a
graphene p-n-p junction, this time in the presence of a weak
magnetic field.11 In this case, the authors observe beautiful
quantum interference patterns quantitatively explained by
a semiclassical approximation in terms of a set of simple
transmitted and reflected paths across the junction. It is
noteworthy that, although the sample quality of all cited
experiments is similar, in Ref. 11 there is no indication that
disorder plays a significant role. Obviously, one should be
cautious before drawing conclusions from this observation,
since by going from small to large magnetic fields one
dramatically changes the physics of the problem. Nonetheless,
it certainly justifies the study of the transmission properties of
clean n-p junctions in the quantum Hall regime.

An even stronger motivation to consider a model of clean
ballistic graphene is that, at the classical level, the snakelike29

trajectories of electrons on a graphene steplike symmetric n-p
junction have equal reflection and transmission probabilities
(see the beginning of Sec. IV), leading to current partition
consistent with the experiments.

The goal of this paper is to use a semiclassical analysis
to investigate whether the classical current partition behavior
is transposed into the “quantum chaos hypothesis” in the
quantum coherent transport limit. Extending over previous
results already presented in Ref. 32, we shall see that the
answer is actually negative, and that clean graphene n-p
junctions in a high magnetic field provide an example where
the classical behavior is not a good approximation to the
semiclassical (or quantum) behavior. We find that, in the
full quantum coherent transport regime, the transmission
fluctuations due to quantum interference between different
electronic paths across the junction are large and nonuniversal.
The relation between these results and the experimental ones
is discussed in Secs. VI and VII.

Our analysis is based on the Landauer conductance formula

G = G0

∑
n,α

Tn,α, (2)

where Tn,α is the transmission coefficient, n stands for the
channel index, and α for the valley index that specifies
in which of the valleys K (α = +1) or K ′ (α = −1) the
edge channel is polarized.33 We evaluate the transmission
coefficients via the Green’s-functions formalism introduced by
Fisher and Lee37 and later generalized by Baranger and Stone38

(mainly to include the presence of a magnetic field). Here
we use semiclassical Green’s functions obtained for graphene

by two of us in a previous publication.39 The semiclassical
approximation allows us to express G analytically and can
be used to model systems of realistic sizes, which are hardly
reachable by numerical techniques that use an atomistic basis.

The description of a graphene n-p junction depends
sensitively on the relative strength of the magnetic and electric
fields at the interface between the electron-doped and “hole”-
doped regions. This is best understood by recalling the insight
gained in graphene electronic transport in presence of crossed
electric (in-plane) and magnetic (perpendicular) fields:40,41

the electromagnetic Lorentz invariant quantities L1 = E · B
and L2 = E2 − v2

F B2 define two distinct transport regimes
characterized by the parameter

β = vF |B|
|E| . (3)

If β < 1 the electric field will always dominate the magnetic
field, as it is possible to apply a Lorentz boost and go to a
reference frame where the magnetic field is made zero. This
is referred to as the electric regime. In contrast, if β > 1
the electric field can be eliminated by going to a proper
reference frame. This regime is referred to as the magnetic
one. The Lorentz invariance stated above relies on translational
invariance, and hence is not expected to hold near the edges of
a graphene ribbon. Nonetheless, the classification in terms of
electric and magnetic regimes still makes sense for confined
systems, as will be shown in the following.

The remainder of the paper is organized as follows. We
begin by presenting our model and the key elements of the
semiclassical analysis. In Sec. III, we then discuss the physics
of the magnetic regime (in particular the limit β � 1). Within
this regime (for which no quantum chaos hypothesis has been
evoked), we show that a classical description based on the
concept of adiabatic invariance suffices to explain most of
the junction’s features. We obtain that the conductance is
essentially zero for all modes except for the lowest one, whose
transmission depends on the boundary conditions considered
at the edge of the ribbon.42,43

The electric regime, which we believe to be that of the
experiments,14–16,18 is addressed in Secs. IV and V. Those
constitute the main technical development of this paper. At
their end, we present a summary and a discussion of the main
results they contain. In Sec. IV the electric potential is taken
to be symmetric, such that the (absolute) doping is the same at
the n and p regions. This allows for a simple and transparent
analysis using a semiclassical scattering matrix approach. A
general treatment, beyond the symmetric case, of the electric
regime is presented in Sec. V. It requires determining the
exhaustive list of trajectories involved in the dynamics at the in-
terface, and making use of the semiclassical approximation to
the single-particle Green’s function in graphene39 to compute
the Fisher-Lee formulas. We present generalized expressions
of the latter, which take into account the internal pseudospin
structure of charge carriers in graphene. Some qualitative
features of the transmission in the general case are similar
to the ones found in the simpler symmetric configuration. In
particular, in both cases the conductance differs significantly
from the classical one. A qualitative analysis of the robustness
of our semiclassical findings with respect to modifications of
the model such as boundary conditions, disorder, and steepness
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of the potential barrier is conducted in Sec. VI. Our conclusions
are presented in Sec. VII.

II. MODEL

We consider a graphene sheet of finite width W in the y

direction, and connected in the x direction to infinite leads on
both sides. We assume the n-p junction is obtained by applying
an electrostatic potential in the plane of the graphene sheet,
separating it in three distinct regions:

V (x) =

⎧⎪⎨
⎪⎩

V1, x < 0 (region 1),

V1 + eEx, 0 < x < L (region J ),

V2 = V1 + �, x > L (region 2),

(4)

with V1 < 0,V2 > 0 (we assume the chemical potential fixed
at 0), and � = eEL the height of the potential step. L governs
the steepness of the potential step and E is the intensity of
the associated electric field E = Ex̂, where x̂ is the unit vector
in the x direction. Applying a strong perpendicular magnetic
field B = B ẑ, such that the quantum Hall regime lB � W

[lB = √
h̄/(eB) is the magnetic length] is reached, leads to

the classical picture of skipping-orbit motion at the edges of
regions 1 and 2, with a direction of propagation depending on
the edge and the type of charge carriers. The electron dynamics
in region J and in its neighborhood is what interests us here.

To describe the quantum dynamics of the electrons in the
graphene sheet, we use the representation � = (ψA,ψB, −
ψ ′

B,ψ ′
A)T for the wave function. Here, as usual, (A,B)

denote the real-space graphene sublattices, (ψA,ψB)T the wave
function in valley K , and (ψ ′

A,ψ ′
B)T that in valley K ′. In

such a representation the low-energy Hamiltonian of graphene
electrons is isotropic in valley space and takes the form

H = vF τ0 ⊗ (�̂ · 	σ ) + U (r)τ0 ⊗ σ0 + m(r)v2
F τz ⊗ σz, (5)

where U (r) is the electric potential generating E, the magnetic
field B derives from the vector potential A(r) via the Peierls
substitution �̂ = p̂ + eA(r), and a mass term m(r) has been
included for completeness. In Eq. (5) 	τ and 	σ are Pauli matrices
respectively associated to valley space and sublattice space
(with the usual convention that τ0 = σ0 = 11), and the scalar
product is restricted to the x-y graphene plane.

Three types of boundary conditions will be discussed: most
of the time we shall assume infinite mass confinement, but
also in some circumstances zigzag and armchair. All of these
can be incorporated in a matrix representation introduced by
Akhmerov and Beenakker,36,44

� = M�,
(6)

M = (	ν · 	τ ) ⊗ (	n · 	σ ),

where 	n is the normal to the outward pointing unit vector at
the boundary and 	ν is the polarization of the edge state in
valley space. Each boundary condition is associated to a given
matrix M, which actually amounts to a given polarization 	ν.
For instance, the case of infinite mass confinement corresponds
to imposing the condition 	B/	A = 	 ′

B/	 ′
A = i exp(iγ ) on

the boundary with γ = cos−1(	n · ŷ), as shown by Berry and
Mondragon.45 This is obtained by choosing 	ν = ẑ in Eq. (6).
Similar parametrizations are obtained for zigzag and armchair
lattice terminations (see Refs. 44 and 36).

Γ

θΓ2

1

n,α−θn,α

FIG. 1. (Color online) Illustration of a closed path � = �1 ∪ �2

along which the action integral in Eq. (7) is computed. The phase
of the mode wave function must remain unchanged (up to an integer
multiple of 2π ), leading to the quantization of the edge angle θn,α .

At the leads, that is, within regions 1 and 2 of Eq. (4), a
propagating mode (n,α) in the quantum Hall regime can be
built on the set of skipping trajectories emerging from the
boundary with an angle θn,α such that the transverse action
is quantized, according to the generalized Einstein-Brillouin-
Keller (EBK) formula,46

1

h̄

∮
p · dr − μ

π

2
+ ξsc + φbc = 2πn. (7)

In this quantization condition, the closed path on which the
integration is performed can be taken as the one shown in
Fig. 1 (bearing in mind that on �2 the path does not follow
a trajectory, and thus the momentum is not parallel to the
shown direction), μ is a Maslov index counting the caustics
traversed by the closed path, and φbc is the phase acquired by
the electron upon bouncing on the boundary. For graphene, one
needs in addition to take into account a semiclassical phase ξsc

which, in the absence of a mass term in the Hamiltonian (5),
coincides with a Berry phase,39 and is just given by half the
rotation angle of the momentum vector (see the discussion at
the beginning of Sec. V). Because inside the graphene ribbon
we only consider a massless Hamiltonian, in what follows
we refer to the semiclassical phase as a Berry phase, for
simplicity.

For infinite mass boundary conditions, the phase acquired
upon reflection on the boundary φbc = φm∞ in Eq. (7) can
be easily shown to be φm∞ = π (Dirichlet) in valley K and
φm∞ = 0 (Neumann) in valley K ′. The path of integration
� traverses one caustic (so that μ = 1) and ξ�1

sc = −ξ�2
sc .

Wrapping everything up, the quantization condition can be
written as

eBR2
i

(
θn,α − sin 2θn,α

2

)
= 2πh̄

(
n − α

4

)
(8)

with

Ri = |Vi |
eBvF

(9)

the cyclotron radius at the electron (i = 1) or hole (i = 2)
side. Note that the quantization condition (8) with n = 0 can
be fulfilled for only one of the two valleys (α = −1, for
which Neumann boundary conditions apply). Introducing the
function

f : θ → θ − sin (2θ )/2, (10)
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and noting that eBR2
i /h̄ = 2νi , where

νi =
(
k

(i)
F lB

)2

2
(11)

is the filling factor at the electron (i =1) or hole (i =2) region,
we recast Eq. (8) as

1

π
f (θn,α) =

(
n − α

4

)
ν−1

i . (12)

This form of the quantization condition makes explicit that,
besides the indices (n,α), the quantized angle θn,α only
depends on the filling factor νi . Quantization conditions for
zigzag and armchair boundary conditions can be derived in
the same way.47 Note finally that as the angle θn,α → π ,
which corresponds to a transition to a Landau level in the bulk
(for which α can be interpreted as switching to 0) a uniform
approximation should be used. This uniform approximation is
described for the scalar (Schrödinger) case in Ref. 48.

III. MAGNETIC REGIME

In this section, we study the transport in the magnetic
regime in the limit of β � 1. This corresponds to the situation
where the electric potential varies adiabatically on the scale
of the cyclotron radius. One can then use that the action (8)
of the electron along the edge is an adiabatic invariant, and is
thus conserved while propagating in the x direction. Defining
an effective local cyclotron radius R(x) = |V (x)|/(eBvF ),
conservation of the action implies that the decrease in R(x)
must be compensated by an increase in the effective angle
θ (x) along the edge, since the function f (θ ) in Eq. (10) is
monotonous on the interval [0,π ]. When this angle reaches the
value π , a transition takes place from the edge skipping-orbit
motion to the transverse bulk cyclotronic motion with a vertical
drift caused by the electric field. We will henceforth refer to this
transition by the visually appropriate term of “bubbling.” Once
an electron has bubbled from the edge, it traverses the graphene
ribbon transversally until it reaches the opposite edge, and then
propagates back into the lead that it came from. This scenario
is illustrated in Fig. 2.

In the case of a n-n junction, we see that the transmission
probability of an electron can only be 0 or 1. Quantitatively,
the bubbling abscissa of an electron is determined by the
relation R2

1f (θn,α) = R2(xbub)π , which leads to the value
xbub = βR1[1 − √

f (θn,α)/π ]. A given mode (n,α) bubbles
if xbub < L, which can be equivalently expressed through the
bubbling condition

− V2

|V1| <

√
f (θn,α)

π
(13)

(which of course is always realized for n-p junctions). This
leads naturally for a n-n junction to the result that G =
G0min(N1,N2),20 with Ni = 2[νi] + 1 (with [·] the integer
part), as expected in the context of quantum adiabatic
transport.49 Note that the quantum adiabaticity criterion,
namely that the electrostatic potential must vary less than the
inter-Landau level spacing on the scale of the magnetic length,
is actually more robust that the classical one.

For a n-p junction, transmission is zero for all modes,
except possibly for the zero-energy mode for which the
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FIG. 2. (Color online) Skipping orbit motion for classical elec-
trons coming from the upper left edge with an angle θ = π/4,
followed by bubbling. Different panels correspond to various values
of β in the magnetic regime. The black dot-dashed lines indicate
where the junction region begins and the red (gray) dotted lines
indicate where bubbling is expected to occur according to the
semiclassical theory. The adiabatic transition from the edge to the
bulk is apparent in the upper panels, while it clearly breaks down in
the lower ones even though classical bubbling still occurs.

semiclassical reasoning above cannot be applied. The latter
must be treated separately. Hence a n-p junction in the
adiabatic limit β � 1 has a conductance G = G0T0, with T0

the transmission probability of the n = 0 mode.
In the absence of intervalley scattering, the transmission

coefficient T0 of a single channel through a n-p junction in the
quantum Hall regime depends only on the valley polarization
of the edge states,42,43 namely

T0 = 1 − cos φν

2
, (14)

where the angle φν is the one separating the valley-polarization
vectors of top and bottom edge states on the Bloch sphere. For
an armchair ribbon, this leads to plateaus in the conductance
at G0 or G0/4 depending on the width of the ribbon.42 For
a zigzag ribbon, it was realized that formula (14) cannot be
applied since a potential barrier, no matter how smooth it
is, causes intervalley scattering.43 However, very similarly to
the armchair case, it turns out that the transmission depends
on the width of the ribbon and can be either 0 or 1.50 The
case of infinite mass confinement can be treated similarly to
the armchair one, yielding zero transmission just like for the
higher modes. These results for the armchair as well as infinite
mass confinement cases are illustrated in Fig. 3. The perfect
reflection for infinite mass confinement is a trivial consequence
of the conservation of the valley polarization of the edge state.
The expected result (in the limit β � 1) for the conductance of
a graphene n-p junction laterally confined by an infinite mass
is thus zero, up to exponentially small tunneling contributions.
As illustrated in Fig. 4, this limit is already reached from
this point of view for β  5, when a β  2 is already in the
transition toward the electric regime where some oscillations
in transmission (and thus the conductance) are already visible.
The data presented in Figs. 3 and 4 were obtained with
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FIG. 3. (Color online) Exact (quantum mechanical) conductance
G across the junction as a function of the potential V2 (in units of
εB = h̄vF / lB ) in the right side of the junction, with a fixed value
−V1/εB = 1.82 of the potential in the left side of the junction (which
in terms of the filling factor is ν1 = 1.65). Solid line (black online):
“infinite” mass boundary condition (note the mass actually used in
the numerical simulation is m = 0.5t , with t the hopping parameter);
dashed (red online): armchair with W/a = 80 (a is the distance
between nearest carbon atoms of the same sublattice); Dotted with
rhomb symbols (green online): armchair with W/a = 81; dotted with
triangle symbols (blue online): armchair with W/a = 82. The vertical
dot-dashed line indicates values of V2 for which the filling ratio ν2 in
region 2 is an integer. When V2 < 0 the system is effectively a n-n
junction, and the conductance is given by the number of channels
in region 2, namely 2[ν2] + 1 since min([ν1],[ν2]) = [ν2] here (see
discussion in main text). For positive V2, the conductance across the
n-p junction is governed by the transmission of the lowest channel
and, as expected according to Eq. (14), is given by G = G0 for
armchair boundary conditions with W/a = 2 (modulo 3), G = G0/4
for other armchair widths and G = 0 for the infinite mass confinement
case. The plot was obtained for β = 5, with a system of length
L/a = 60 and a magnetic length lB/a = 6.8.

a recursive Green’s-function technique, using the numerical
software KNIT developed by Kazymyrenko and Waintal.52

IV. ELECTRIC REGIME: SYMMETRIC CASE

We switch now to the electric regime. Two important
simplifications are made in the next couple of sections. First,
we consider the electric potential to be steplike on the scale of
the magnetic length (but not on that of the carbon lattice,
so as to avoid intervalley scattering), placing ourselves in
the opposite limit (β � 1) as that of Sec. III. This makes
it possible to neglect the magnetic field during the interaction
with the barrier. The second simplifying hypothesis has to do
with geometry. Compared to the experimental setup, we will
consider a graphene ribbon where the transition from the edge
to the steplike junction is very smooth (as in Fig. 5), such that
quantization of the edge modes is maintained when arriving
on the n-p interface. This amounts to taking the junction
“parallel” to the edge of the ribbon instead of perpendicular to
it. The main reason for making this choice is of course that the

60 90 120
W/a

0

0.25

0.5

0.75

1

G
/G

0

β=5
β=2
β=1
β=0.5
β=0.2

FIG. 4. (Color online) Exact (quantum-mechanical) conductance
G across the junction as a function of the width W (in units of
a) for different values of the parameter β governing the transition
between the magnetic (β � 1) and the electric (β � 1) regimes. The
system considered was confined by an “infinite” mass m/t = 0.5
and the filling factors on both sides of the junction were taken to be
ν1 = 1.65 and ν2 = 0.10 (hole doped). The length of the system and
the value of the magnetic field are the same as in the previous figure.
We observe that the adiabatic result G  0 expected from Eq. (14) is
observed for β = 5, but that β = 2 already shows some oscillations in
the conductance. For β � 1, the featured oscillations resemble those
predicted by our semiclassical calculations in Secs. IV and V.

parallel junction is a simpler problem to tackle analytically.
However, as discussed in more detail in Ref. 53, it can be
shown that except for diffractivelike contributions at the edge-
junction corner, going from a geometry for which the junction
is perpendicular to the edges of the ribbon to one where it is
parallel mainly amounts to applying a unitary transformation to
the mode basis, under which the Landauer-Büttiker formula (2)
is invariant. As in any case a completely realistic description of
the dynamics in the corners would depend on many details not
included in our model (and probably unknown), the parallel
junction is presumably as close (or as far) from a perfectly
realistic description of the junction than a perpendicular one.

We start by introducing a few notations for trajectories
such as the one illustrated in Fig. 6. Let us denote by θ1 and
θ2 the angles between the x-axis and the vector �̂ = p̂ +
eA(r) (which is parallel to the velocity in the n region, but
antiparallel to it in the p region) when the trajectory emerges

FIG. 5. (Color online) Sketch of the geometry of a parallel
junction. Due to the smooth transition from the edge of the ribbon to
the n-p steplike junction, the quantization of the incoming channels
is maintained.
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FIG. 6. (Color online) Typical trajectory along a parallel junction
(rotated by an angle π/2 with respect to Fig. 5) between initial x = x ′

and final x = x ′′ Poincaré sections. Excursions cover a length L1 on
the electron side and L2 on the hole side. Angles with respect to the
interface axis are shown.

from the edge or from the junction in, respectively, the n and
p side. The two angles are related through the Snell-Descartes
law,

|V1| cos θ1 = V2 cos θ2, (15)

which expresses conservation of the momentum in the x

direction. During the time interval between two consecutive
bounces on the edge boundary or at the junction interface
(we call this an “excursion”), an electron covers a distance
L1 = 2R1 sin θ1 on the n side (respectively, L2 = 2R2 sin θ2

on the p side) in the longitudinal x direction.
Klein tunneling or reflection at the junction interface is

given by the same probability amplitude as in the absence of
magnetic field, namely8

r̃1 = eiθ1r1 for reflection 1 → 1, (16)

t̃1 = ei(θ1+θ2)/2t1 for transmission 1 → 2, (17)

with

r1 = −cos[(θ1 + θ2)/2]

cos[(θ1 − θ2)/2]
(18)

t1 = −i
sin θ1

cos [(θ1 − θ2)/2]
. (19)

For incident waves from the p side, the corresponding
expressions for (r̃2,t̃2) and (r2,t2) are obtained by exchanging
the roles played by θ1 and θ2. The phases of the factors eiθ1

and ei(θ1+θ2)/2 in Eqs. (16) and (17) can be interpreted as
Berry phases as they correspond to half the pseudomomentum
(which as already mentioned is, for holes, antiparallel to
that of the velocity) rotation during the scattering on the
junction interface [θ1 = −(−θ1 − θ1)/2 and (θ1 + θ2)/2 =
−(−θ2 − θ1)/2]. We have therefore distinguished them from
the “genuine” reflection and transmission coefficients r1 and
t1 given by Eqs. (18) and (19). The transmission probability
through the interface is deduced from the quantum amplitude
by taking into account the flux normal to the barrier:

T = sin θ2

sin θ1
|t1|2 = sin θ1

sin θ2
|t2|2 = sin θ1 sin θ2

cos2 [(θ1 − θ2)/2]
. (20)

The rest of this section will be devoted to the symmetric
case V2 = −V1. This leads via Eq. (9) to R1 = R2 and via
Eq. (15) to θ2 = θ1, and hence L2 = L1. Excursions on both
sides of the interface cover the same distance, implying that the
reflected and transmitted waves of a scattering charge carrier
meet at equidistant “vertices” (see Fig. 7).

Let us start by quickly discussing what is expected
classically for this configuration. A classical incident electron
has a probability T = sin2 θ of being transmitted through the

N21
L

W

FIG. 7. (Color online) In the symmetric case, the length L of
excursions on both sides of the junction are equal, making reflected
and transmitted waves meet at equidistant vertices along the interface.
N is the largest number of excursions for a given interface length W .

(symmetric) potential step. Calling Xi = (ei,hi)T the vector
composed of the probabilities ei and hi for the incoming
particle to emerge at vertex i on the n or p sides of the junction
(ei + hi = 1) we have

Xi+1 =
(

1 − T T

T 1 − T

)
Xi. (21)

The matrix in Eq. (21) can be diagonalized and has eigenvalues
1 and λ = 1 − 2T , which leads to

XN = 1

2

(
1 + λN 1 − λN

1 − λN 1 + λN

)
X0. (22)

Since |λ| < 1, the asymptotic behavior is as expected X∞ =
(1/2,1/2)T and Eq. (22) tells us this limit is reached expo-
nentially quickly with the number of bounces on the interface.
An incoming classical electron has thus equal chances of being
reflected or transmitted, provided the interface between regions
1 and 2 is long enough. Let us now show that this is no longer
the case for a quantum particle.

Semiclassically, one needs now to propagate the amplitudes
z(e) and z(h) on the electron and hole sides from one vertex to
the other. Noting Zi = (z(e)

i ,z
(h)
i )T these amplitudes at vertex

i, this propagation can be obtained as Zi+1 = SZi , where the
scattering matrix can be written as a product S = PR with

P =
(

e(i/h̄)S1−i(π/2)μ1+iξ1 0

0 e(i/h̄)S2−i(π/2)μ2+iξ2

)
(23)

describing the propagation in the n and p regions and

R =
(

r̃1 t̃2

t̃1 r̃2

)
(24)

the transmission or reflection taking place at the interface. The
matrix P implies mainly a multiplication by a phase, which
includes the action integral Si along the classical trajectory,
the Maslov phase μi associated with the traversal of caustics,
and the Berry phase ξi associated with (half) the rotation of
the pseudomomentum vector �. One obtains for these various
quantities S1 = eBR2

1f (θn,α), with the function f defined in
Eq. (10), S2 = S1 − 2πh̄ν where ν = ν1 = ν2 is the filling
factor (11) in both the electron and hole regions, ξ1 = ξ2 =
−θn,α , and μ1 = −μ2 = 1 (the Maslov index accounts for a
single caustic and is counted negatively on the hole side since
velocity and momentum are opposite there). For the symmetric
junctions we consider here, we furthermore have r̃1 = r̃2 =
−eiθn,α cos θn,α and t̃1 = t̃2 = −ieiθn,α sin θn,α , so that finally

S = −e
i
h̄
S1−iπν

(−ieiπν cos θn,α eiπν sin θn,α

−e−iπν sin θn,α ie−iπν cos θn,α

)
. (25)
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For a given channel (n,α), the global phase factor in the
scattering matrix expression is irrelevant and will henceforth
be dropped. The resulting unitary matrix then has eigenvalues
λ± = e±iφ with cos φ = cos θn,α sin (πν).

Let us denote N = [W/L] the integer part of the ratio
of interface length W and excursion length L = L1 = L2.
Depending on its coordinate y ′ in the initial Poincaré section
x = x ′, a charge carrier will bounce on the interface either
N or N − 1 times. One can easily see the proportion of
charge carriers bouncing N times on the interface is given by
the quantity {W/L} = W/L − N . Reflection and transmission
probabilities for channel (n,α) are then straightforwardly given
by the simple expression(

Rn,α

Tn,α

)
= {W/L}

(
eN

hN

)
+ (1 − {W/L})

(
eN−1

hN−1

)
. (26)

(This equation is valid actually both in the classical and
semiclassical frameworks, but in this latter case with ei =
|z(e)

i |2, hi = |z(h)
i |2.) From Eq. (25) we have

eN = cos2 (Nφ) + C sin2 (Nφ), (27)

hN = sin2 (Nφ) − C sin2 (Nφ), (28)

with

C =
(

sin2 θn,α − (cos θn,α cos (πν) − sin φ)2

sin2 θn,α + (cos θn,α cos (πν) − sin φ)2

)2

. (29)

Note that, for a fixed value of the indices (n,α), these quantities
depend solely on the filling factor ν since, by the way, so does
the angle θn,α via Eq. (12).

The total reflection and transmission probabilities R =∑
n,α Rn,α and T = ∑

n,α Tn,α evaluated in this way as a
function of interface length are plotted in Fig. 8. It shows
large oscillations with no sign of emergence of an asymptotic
behavior (and of course no conductance plateaus). More
unexpectedly, the mean value of the semiclassical curves in
Fig. 8 differs from the classical limit. This is also directly
visible when comparing classical and semiclassical behaviors
of individual channels as in Fig. 9. It unambiguously signals
that interferences between trajectories at the potential interface
dominate the physics here.

The semiclassical behavior can be understood rather
straightforwardly from the scattering matrix picture. The ma-
trix (25) can indeed be interpreted as that of a rotation operator
on the Bloch sphere acting on vector Zi , defining in this way
a discrete map on the Bloch sphere. Writing this rotation
operator in the form Rn(ω) = cos (ω/2)11 − i sin (ω/2)n · 	σ ,
where n is the rotation axis on the Bloch sphere and ω is
the rotation angle, and identifying with the unitary matrix in
Eq. (25), one gets ω = 2φ and

n = 1

sin φ

⎛
⎜⎝

− sin θn,α sin (πν)

− sin θn,α cos (πν)

cos θn,α cos (πν)

⎞
⎟⎠ . (30)

For an incoming electron (whose initial Bloch vector Z0

points at the north pole), each excursion along the interface
thus amounts to a rotation, on the Bloch sphere, of angle ω

and around the axis given by Eq. (30). Two limiting cases
furthermore provide us with a particularly simple picture.
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FIG. 8. (Color online) Reflection probability R (top) and trans-
mission probability T (bottom) as a function of the length of the
interface W (in units of the magnetic length lB ). The electrostatic
potentials are V2 = −V1 = 3.57 (in units of εB = h̄vF / lB ), which
correspond to filling ratios ν1 = ν2 = (V2/εB )2/2 = 6.37, and thus
13 channels (7 states). The mean value of these functions (dotted,
black online) differs from the classical limit (dashed, red online). The
reflection and transmission probabilities of each channel behave in a
similar fashion, oscillating strongly as a function of W . The variance
of these oscillations is not expected to diminish asymptotically as
W → +∞ (see text).

Indeed, if the filling factor is an integer, i.e., ν = nmax,54 we
have

n =

⎛
⎜⎝

0

− sin θn,α

cos θn,α

⎞
⎟⎠ ω = π [integer ν]. (31)

In that case the axis of rotation depends on θn,α , being close to
ẑ for the smallest (0,1, . . . ) and the largest (nmax,nmax−1, . . . )
channel numbers, and near the equator for n  nmax/2. On the
other hand, the angle of rotation is π for everybody, implying
in particular that there is total reflection for an even number
of bounces. This is illustrated in Fig. 10, where we observe
that for the integer-ν case considered here, the mean value
of the transmission and reflection differ significantly from the
classical 1/2 value.
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FIG. 9. (Color online) Semiclassical (solid, black online) and
classical (dashed, red online) reflection probabilities, as a function
of W (in units of lB ), for the channel (n,α) = (2,+) (which has Klein
transmission probability T (θ2,+) = 0.87). The characteristics of the
ribbon are the same as in Fig. 8. Note that the semiclassical curves are
locally straight lines due to the piecewise linear form of the reflection
and transmission probabilities in Eq. (26).

If, on the other hand, ν = nmax + 1/2 lies midway between
two integers, we have

n =

⎛
⎜⎝

−1

0

0

⎞
⎟⎠ ω = 2θn,α [half-integer ν]. (32)

The axis of rotation is then n = −x̂, and is thus within
the equator and independent on θn,α . As a consequence, the
mean value of of the transmission and reflection coefficients
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FIG. 10. (Color online) Semiclassical (solid, black online) and
classical (dashed, red online) reflection probabilities for the individual
channels (n,α) = (0,−), (2,+), and (5,−). The ribbon considered
has a filling factor ν = 6. The filling factor ν being an integer, this
configuration is characterized by total reflection of each channel every
even bounce and by mean values significantly different from the
classical limit, especially for small or large angles θn,α , as is illustrated
in top and bottom charts. For intermediate angles (middle chart), the
deviation is less pronounced but still noticeable (compare this chart
with Fig. 9).
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FIG. 11. (Color online) Semiclassical (solid, black online) and
classical (dashed, red online) reflection probabilities of the lowest
channel for a half integer filling factor ν = 6.5. This case is
characterized by an axis of rotation n of Rn(ω) lying in the equatorial
plane and therefore the mean value of the reflection probability
coincides with the classical limit (to be compared with the upper
chart of Fig. 10). Also note the estimated wavelength of the oscillation
between reflection and transmission λν = π

√
2ν  11 (in units of lB )

is observable on this plot.

will correspond in that case (and in that case only) to the
classical value 1/2. The angle of rotation is now, however,
(θn,α)-dependent and [modulo (2π )] is close to zero for the
smallest and the largest channel numbers, and close to π for
n  nmax/2. One should bear in mind, however, that L1 =
2R1 sin(θn,α). The total rotation ωtot = Nω, where N  W/L1

is the number of excursions necessary to cross the junction, is
thus such that

ωtot  1√
2ν

W

lB

θn,α

sin(θn,α)
. (33)

For small or large channel numbers, the last factor is of order
1 and thus, if the width of the junction is measured in units
of lB , the wavelength of the oscillation between transmission
and reflection as a function of W/lB is λν = π

√
2ν, which is

indeed what is observed in Fig. 11. This wavelength is reduced
by a factor  π/2 for intermediate values n  ν/2.

Finally Fig. 12 illustrates an intermediate situation (ν =
nmax + 1/4) for which both n and ω are (θn,α) dependent. We
find a semiclassical reflection, which is in this case lower than
in the integer case, but still noticeably larger than the classical
1/2 value, as well as a wavelength for the oscillation between
consecutive reflections, which scales as 2π

√
2ν.

In summary, the classical transmission through a symmetric
n-p junction in the electric regime β � 1 coincides with that
of Eq. (1). Coherent transport through the n-p interface gives
rise to interference effects that are characterized by quantum
fluctuations that depend on W/lB and ν. Those fluctuations
are different than the UCFs predicted by RMT.

The symmetric case corresponds to the special situation
where the doping is the same at both n and p regions. There is
no a priori reason to expect the transmission to be the same for
both V2 = −V1 and V2 �= −V1. Hence, to make contact with
experiments, we need a theory for the general case where the
gate voltages are not symmetric. This is what we do next.
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FIG. 12. (Color online) Semiclassical (solid, black online) and
classical (dashed, red online) reflection probabilities of the lowest
channel for a “generic” filling factor (i.e., neither integer nor half
integer) ν = 6.25. Comparing this plot with Fig. 11 and with the
upper chart of Fig. 10, we see that this case is an intermediate situation
in terms of deviation of the mean value from the classical limit.

V. ELECTRIC REGIME: GENERAL CASE

This section is devoted to the calculation of the transmission
through a n-p junction for the general case, where V1 �= −V2,
in the electric regime. For that purpose, it is no longer possible
to use the intuitive scattering matrix approach discussed in the
previous section, which is valid for the symmetric case only. In
what follows we develop a semiclassical theory that allows the
calculation of the Landauer transmission for the general case.
We start discussing how to apply the Fisher-Lee formula37 for
a graphene n-p junction. Then we address the dynamics at
the interface, which provides the elements required by the
semiclassical calculation. We proceed presenting the main
technical details of the derivation, complemented by some
additional material presented in the appendixes. We conclude
this section discussing the classical limit and summarizing the
main features of the transmission in the general case.

A. Fisher-Lee/Baranger-Stone formalism

We now consider the electric regime of a steplike junction
for arbitrary values of V1 and V2 (V2V1 < 0), for which we
obtain a semiclassical evaluation of the Landauer conductance,
Eq. (2). This is achieved with the help of a formalism which
was first introduced by Fisher and Lee,37 and later generalized
to account for a magnetic field by Baranger and Stone.38 This
formalism is based on the use of Green’s functions for which
we derived in a previous work39 a semiclassical approximation
in graphene. As was discussed in that paper, the distinguishing
feature of this Green’s function as compared with the standard
2DEG Schrödinger expression is the appearance of a semiclas-
sical phase, which can be understood as the topological part
of the usual Berry phase occurring in the context of systems
depending adiabatically on an external parameter. However, in
the absence of a mass term in the graphene Hamiltonian (as
will be the case in this work), both phases are equal and can be
expressed as ξsc = −(θ ′′ − θ ′)/2, with θ ′ and θ ′′ the angle of
the initial and final pseudomomentum � of the corresponding

trajectory. We shall thus refer to it in the following as the Berry
phase.

Turning back to the Fisher-Lee/Baranger-Stone formalism,
the formulas obtained in Refs. 37 and 38 were derived for
Schrödinger (scalar) electrons and should be somewhat modi-
fied to describe charge carriers in graphene. Special attention
must be paid to the pseudospin degree of freedom, which
shows up in the spinor structure of the modes χn,α and the
matrix structure of the Green’s function and which generates
noncommutative operations. With this in mind, calculations
are rather straightforward and the following expressions can
be obtained for a general mesoscopic graphene sample with
an arbitrary number of leads (μ,ν,. . .): the conductance from
lead ν to lead μ (with μ �= ν) is

gμν = −e2h̄

2π

∫
Cμ

dyμ

∫
Cν

dy ′
νT r[(∇p̂H · eμ)

×G(rμ,r′
ν)(∇p̂H · eν)G†(rμ,r′

ν)] (34)

and the transmission probability amplitude of going from
channel n in lead ν to channel m in lead μ is

tμν,mn = −ih̄

∫
Cμ

dyμ

∫
Cν

dy ′
νχ

+†
m (rμ)(∇p̂H · eμ)

×G(rμ,r′
ν)(∇p̂H · eν)χ−

n (r′
ν). (35)

With these notations, the Landauer-Büttiker formula reads
gμν = G0

∑
n

∑
m |tμν,mn|2. Cμ and Cν are transverse sections

of the leads, while eμ and eν stand for the unit normal (outward
pointing) vectors to the corresponding sections. H is the
graphene Hamiltonian, G is the (retarded) Green’s function
and χ±

n is the quantized mode (with ± labeling its direction of
propagation with respect to the central region separating the
leads). Dependence on the valley index α in the modes has
been temporarily dropped for convenience.

Expressions (34) and (35) can be slightly lightened when
the two valleys K and K ′ are uncoupled and can be treated in-
dependently. Starting from the valley isotropic representation
� = (ψA,ψB, − ψ ′

B,ψ ′
A)T introduced in Sec. III, the effective

Hamiltonian within the valley α can be written

H = vF �̂ · 	σ + U (r)11 + αm(r)v2
F σz, (36)

with the convention that

	 =
(

ψ1

ψ2

)
=
∣∣∣∣∣
(ψA,ψB )T if α = 1,

(−ψ ′
B,ψ ′

A)T if α = −1.
(37)

With this choice of representation, expressions (34) and (35)
read

gμ �=ν
μν = −G0

(h̄vF )2

2

∫
Cμ

dyμ

∫
Cν

dy ′
νTr[(	σ · eμ)

×G(rμ,r′
ν)(	σ · eν)G†(rμ,r′

ν)], (38)

tμν,mn = −ih̄v2
F

∫
Cμ

dyμ

∫
Cν

dy ′
νχ

+†
m (rμ)(	σ · eμ)

×G(rμ,r′
ν)(	σ · eν)χ−

n (r′
ν). (39)

Focusing now on the specific geometry under consideration
(cf. Fig. 6), we can drop the lead indices, assume the sections
from which the conductance is computed to be located at the
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extremities of the junction (at abscissa x ′ on the incoming side
and x ′′ = x ′ + W on the outgoing one), and use the coordinate
y inside the section. The transmission coefficients can then be
written as

tmn = ih̄v2
F

∫
dy ′′

∫
dy ′χ+†

m (r′′)σxG(r′′,r′)σxχ
−
n (r′). (40)

Note that since we are working in the quantum Hall regime
W � lB , integrals in Eq. (40) are effectively restricted to one
of the edges.

As we are interested in the total conductance rather than
the individual transmission coefficients, we do not need to
compute all the tmn but only the sum

∑
m |tmn|2. Using that∫

dyχ±†
m (r)vF σxχ

±
n (r) = δmn (41)

as is proven in Ref. 38, one can easily show that

Tn,α
def=

∑
m

|tmn|2 =
∫

y ′′>0
dy ′′T †

n,α(r′′)vF σxTn,α(r′′) (42)

with

Tn,α(r′′) = ih̄

∫
dy ′G(r′′,r′)vF σxχ

−
n,α(r′). (43)

The same expressions apply for Rn,α = 1 − Tn,α , except that
in Eq. (42) the integral should be taken in the electron side
of the junction, i.e., on y ′′ < 0. The prescription of directly
computing Tn,α instead of the individual tmn additionally by-
passes the need to project the incoming modes χ−

n propagated
along the interface on the outgoing ones χ+

m in Eq. (40). This
is particularly useful on the p side of the junction where angle
θ2 has no reason to coincide with a quantized value and where
transmitted charge carriers are therefore no longer in a properly
quantized state but in a superposition of outgoing modes.

Our main task is now to evaluate semiclassically Eq. (43).
This requires obtaining semiclassical approximations of the
incoming mode χ−

n,α(r′) and of the Green’s function G(r′′,r′).
The mode χ−

n,α(r′) is built semiclassically on the manifold
obtained from the one-parameter family of trajectories bounc-
ing with an angle θn,α on the edge of the lead. Within the
representation (37) and sticking with an infinite mass edge
confinement, one gets

χ−
n,α(r) = Cn,αeikn,α

x x√| sin θn,α(y)|
∑
ν=±1

e(i/h̄)νSn,α (y)+i(π/2)μ(ν)

×
(

e−i(ν/2)θn,α (y)

ei(ν/2)θn,α (y)

)
+ O(h̄), (44)

with ν = ± an index (not to be confused with the filling
factors νi) labeling the sheets of the manifold on which
the mode is constructed (py > 0 for ν = +1, py < 0 for
ν = −1). The caustic in phase space at the junction of
the two sheets is taken into account by the phase jump
μ(ν) = �(−ν) (with � the Heaviside step function). In
Eq. (44) θn,α(y) = cos−1 (cos θn,α − y/R1) is the angle of the
tangent to the trajectory when at a distance y from the edge,
kn,α
x = kF cos θn,α is the constant of motion associated with

the mode, Sn,α(y) = h̄ν1f (θn,α(y)) the action, and Cn,α =
(4vF R1 sin θn,α)−1/2 is a normalization constant, which is
determined from Eq. (41).

Turning now to the Green’s function, a semiclassical
approximation valid in either the electron or hole region
was derived in Ref. 39. Including Klein tunneling, i.e., the
transitions from electron to hole regions to this formalism, is
a priori a nontrivial (although feasible) task in a completely
general setup. The limit β � 1 that we consider here and
the fact that we assume a perfectly straight potential step
considerably simplify, however, the problem. Indeed one can in
this case, for the Klein tunneling, treat the semiclassical wave
functions as plane waves, and therefore use the transmission
and reflection coefficients Eqs. (18) and (19) as in Ref. 55. This
leads to the straightforward generalization of the semiclassical
Green’s-function expression

Gsc(r′′,r′; εF )=
∑

j

(
2∏

i=1

∏
γi ,ηi

r
(γi )
i t

(ηi )
i

)
e(i/h̄)Sj (r′′,r′)−i(π/2)μj +iξj

ih̄
√

2πih̄|Jj (r′′,r′)|
×V

ε(r′′)
j (r′′)V ε(r′)†

j (r′) , (45)

with γi,ηi labeling scattering events on the n-p junction,
respectively associated to reflections and transmissions in
region i. As usual, the sum is over all classical trajectories
joining points r′ and r′′ at the Fermi energy εF . The phases
accumulated along the way include the action Sj , the Maslov
index μj counting the number of caustics traversed, and the
Berry phase ξj = −(θ ′′

j − θ ′
j )/2, with θ ′

j and θ ′′
j the direction

of the initial and final pseudomomentum � of the trajectory
j . Note that as the total Berry phase is accounted for in ξj , the
reduced reflection and transmission coefficients (without the
Berry phases) ri and ti given by Eqs. (18) and (19) should be
used in Eq. (45). The determinant

Jj (r′′,r′) = −ẋ ′′
j ẋ ′

j

(
∂2Sj

∂y ′′∂y ′

)−1

(46)

implements the conservation of classical probability. Finally,
V

ε(r)
j (r) is the eigenstate along the j th trajectory of the classical

Hamiltonian Hε(r) = V (x) + ε(r)vF |�|, with ε(r) = ±1 (+1
on the electron side and −1 on the hole side). In the absence
of any mass term in the bulk of the sample and choosing
the representation (37), these eigenstates depend solely on the
angle of the pseudomomentum: V +

j (r) = (1/
√

2)(1,eiθj )T and

V −
j (r) = (1/

√
2)(e−iθj , − 1)T .

Determining the specific Green’s function for the problem
under consideration can essentially be reduced to the task
of making a complete list of the trajectories connecting the
Poincaré sections on both sides of the interface and computing
the probability amplitudes associated to each one of them. This
issue will now be addressed.

B. Dynamics at the interface

Depending on the relative size of the potentials |V1| and
V2, Eq. (15) defines a critical angle for either θ1 or θ2 above
which reflection on the n-p junction is total. Without loss of
generality, we will take |V1| < V2 which constrains incident
holes on the interface to the angular domain [θcrit,π − θcrit],
with θcrit = cos−1 (|V1|/V2). This allows us to not worry about
possible total reflection on the electron side, and additionally
sets the excursion length scales L2 > L1.
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FIG. 13. (Color online) Trajectory characterized by n2 = 3 ex-
cursions on the hole side and k = 4 traversals of the interface.

Consider a typical trajectory going from r′ = (x ′,y ′) in the
initial x = x ′ Poincaré section to r′′ = (x ′′,y ′′) in the final x =
x ′′ = x ′ + W Poincaré section. The trajectory can be labeled
by an index j specifying whether the trajectory is transmitted
or reflected for each of its successive encounters with the
junction. For a given j , the initial and final angles θ ′ and θ ′′
are fixed once the coordinates y ′ and y ′′ are. The trajectory j ,
that is, the successive list of transmissions and reflections, can
be characterized by two integers: the number of excursions n2

in region 2 (which then fixes the remaining number n1(n2) of
excursions in region 1) and the number of traversals k of the
interface. A typical example is shown in Fig. 13.

These two integers do not specify uniquely the trajectory j

since it is possible to permute the order of the excursions in the
hole and electron regions while preserving the couple (n2,k).
They, however, define a class of trajectories which, as we will
see, give the same contribution to the semiclassical Green’s
function Eq. (45). Indeed, the mapping (y ′,θ ′) �→ (y ′′,θ ′′)
depends only on n2, which fixes the number of excursions
in regions 1 and 2, and on the parity of k, which determines
whether the trajectory j exits the junction in region 1 (k even,
reflection) or 2 (k odd, transmission). This mapping remains,
however, unchanged if the order of the excursions in regions 1
and 2 is modified. As a consequence the determinant Eq. (46),
which can be expressed in terms of this mapping, or the Berry
phase ξj = −(θ ′′ − θ ′)/2, which is only a function of the initial
and final angles of the trajectory, are also independent of the
ordering of the excursions.

In the same way, the action Sj and the Maslov index μj

in the phase of the semiclassical Green’s function Eq. (45)
are functions of n2 and the parity of k only. The action, for
instance, can be expressed as Sj (n2) = h̄kxW + n1(n2)S1 +
n2S2 + �S, with S1 = 2h̄ν1f (θ1) and S2 = −2h̄ν2f (π − θ2)
the actions accumulated along an excursion in regions 1 and
2, respectively (note that S2 < 0 since, in region 2, p · ṙ < 0),
and

�S = h̄ν1[f (θ1) − f (θ ′)]

+
∣∣∣∣h̄ν1[f (θ ′′) − f (−θ1)] (k even, reflection)

h̄ν2[f (θ ′′) − f (π − θ2)] (k odd, transmission)

(47)

[f : θ → θ − (sin 2θ )/2 is the same function as in Sec. III].
The angles θ1 and θ2 are the ones introduced in Fig. 6 and
at this point should be understood as being functions of θ ′
and θ ′′. Explicit computation of the Maslov index μj (n2)
(see Appendix A) shows also that, quite naturally, it does not
depend either on the ordering of the excursions.

We now turn our attention to the factors associated with
scattering at the interface. Let us first consider the case where

the trajectory exits the junction in region 1, i.e., of an even
number of traversals k = 2k′. In that case, the number of
traversals from 1 to 2 as well as from 2 to 1 are equal to k′,
and there are n2 − k′ reflections on side 2 and n1(n2) + 1 − k′
reflections on side 1 (the additional term 1 coming from the
fact that the trajectory initially leaves the Poincaré section in
that region). The probability amplitude associated with the
reflections and transmissions at the junction interface for the
class of trajectories (n2,k′) is thus given by

AR(n2,k
′) = r

n1(n2)+1
1 r

n2
2

(
t1t2

r1r2

)k′

. (48)

The case of an odd number of traversals k = 2k′′ + 1, i.e.,
when the trajectory j is eventually transmitted in region 2,
is completely equivalent. There are then k′′ + 1 transmissions
from region 1 to region 2, k′′ transmissions from region 2 to
region 1, n2 − k′′ reflections in region 2 and n1(n2) − k′′ in
region 1. The probability amplitude for the class (n2,k′′) thus
reads

AT (n2,k
′′) = t1r

n1(n2)
1 r

n2
2

(
t1t2

r1r2

)k′′

. (49)

All permutations in the order of the excursions along the
interface that preserve numbers n2 and k correspond to the
same probability amplitude. We must therefore determine
the degeneracy factor � that gives the number of distinct
trajectories belonging to the class characterized by integers
(n2,k). Starting again with k = 2k′ even (reflection), let us ma-
terialize each uninterrupted succession of excursions in region
1 or 2 by a rectangle (see Fig. 14). If we include excursion
portions respectively leaving from the initial Poincaré section
and arriving at the final Poincaré section, there are k′ rectangles
in region 2 and k′ + 1 rectangles in region 1, when the total
number of excursions in region 2 is n2, and that in region 1
is n1(n2) + 2. Then, using the combinatorial result that there
are ( n − 1

k − 1 ) ways of writing an integer n as a sum of k nonzero
integers (or equivalently of distributing n excursions into k

nonempty intervals), the degeneracy factor is straightforwardly
given by

�R(n2,k
′) =

(
n2 − 1

k′ − 1

)(
n1(n2) + 1

k′

)
(50)

with ( n
k

) = n!
k!(n−k)! the binomial coefficient.

For an odd number k = 2k′′ + 1 of traversals (transmis-
sion), there should now be an equal number k′′ + 1 of
rectangles in regions 1 and 2, while the total number of

FIG. 14. (Color online) Class of trajectories characterized by
k′ = 3 (and an arbitrary n2). Filled (blue online) rectangles symbolize
a succession of excursions in region 1 and hatched (red online)
rectangles a succession of excursions in region 2. Although these
rectangles are represented as if they had the same size, each one of
them may contain a different number of excursions.
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excursions are respectively n1(n2) + 1 in region 1 and n2 + 1
in region 2, once more including here “partial” excursions
leaving from the initial Poincaré section and arriving at the
final Poincaré section. Using the same combinatorial result as
before, this yields for the degeneracy factor

�T (n2,k
′′) =

(
n2

k′′

)(
n1(n2)

k′′

)
. (51)

Combining all of the results obtained in this subsection,
the semiclassical Green’s function for our problem can be
expressed as

Gsc(r′′,r′) =
N2∑

n2=0

V ε(r′′)
n2

(r′′)V +†
n2 (r′)

ih̄
√

2πih̄|Jn2 (r′′,r′)|
×�(n2)e(i/h̄)S(n2)−i(π/2)μ(n2)+iξn2 (52)

with

�(n2)

=
{∑

k′ AR(n2,k
′)�R(n2,k

′) if y ′′ < 0 (reflection),∑
k′′ AT (n2,k

′′)�T (n2,k
′′) if y ′′ > 0 (transmission)

(53)

and N2 the upper bound of the number of excursions in region 2
(bounds for the number of traversals are given by min(1,n2) �
k′ � min(n2,n1(n2) + 1) and 0 � k′′ � min(n2,n1(n2)).

C. Semiclassical expression for the conductance

Let us first discuss the case of reflected trajectories [y ′′ <

0,ε(r′′) > 0]. Using the semiclassical expressions (44) and
(52), the matrix structure in integral (43) reads

V +
j (r′′)V +†

j (r′)σx

(
e−i(ν ′/2)θn,α (y ′)

ei(ν ′/2)θn,α (y ′)

)

= e−iθ ′
j /2 cos

(
ν ′θn,α(y ′) + θ ′

j

2

)(
1

eiθ ′′
j

)
. (54)

Computing the integral (43) in the semiclassical limit
h̄ → 0 can be done using the stationary phase
approximation

∫
A(x)e(i/h̄)S(x)dx  ∑

xs
A(xs)e(i/h̄)S(xs )[2πih̄

/|∂2
xS(xs)|]1/2e−i(π/2)μS , with xs the points where S(x) is

stationary and μS = �[−∂2S/∂x2(xs)]. The stationary phase
condition

∂(ν ′Sn,α + Sj )

∂y ′

∣∣∣∣
y ′′,n2

= 0 ⇒ ν ′θn,α(y ′
s) = θ ′

j (y ′
s) (55)

expresses that for a given final position y ′′ (and a given
number of excursions in region 2), the stationary phase
point y ′

s is the one where the initial angle matches with
that of the quantized mode. This implies the additional
identifications θ1 = θn,α , k

j
x = kn,α

x , and θ ′′
j = ν ′′θn,α(y ′′) with

ν ′′ the sheet index in the final Poincaré section. The action of
the Green’s function thus becomes Sj (y ′

s) = h̄kn,α
x (x ′′ − x ′) +

(n1 + 1)Sn,α
1 + n2S2 + ν ′′Sn,α(y ′′) − ν ′Sn,α(y ′

s), with S
n,α
1 =

2h̄ν1f (θn,α) quantized as in Eq. (8). Inserting these results

in the integral (43), and bearing in mind that the stationary
phase point y ′

s depends on the integer n2, we obtain

Tn,α(r′′) = vF Cn,αeikn,α
x x ′′ ∑

ν ′′=±1

×
N2∑

n2=0

e(i/h̄)ν ′′Sn,α (y ′′)ei(π/2)[μ(ν ′)−μJ,S ] cos θn,α(y ′
s)√∣∣∂2

y ′ (Sj + Sn,α)
∣∣
y ′′ (y ′

s)Jj (y ′
s) sin θn,α(y ′

s)
∣∣

×
(

e−i(ν ′′/2)θn,α (y ′′)

ei(ν ′′/2)θn,α(y ′′)

)
e(i/h̄)(n1+1)Sn,α

1 e(i/h̄)n2S2

×
∑
k′

AR(n2,k
′)�R(n2,k

′). (56)

In Eq. (56), μJ,S is the sum of the Maslov index μJ in
the Green’s function and of the index μS coming from the
stationary phase integral. The latter is 0 if ∂2

y ′ (Sj + Sn,α) > 0
and 1 if ∂2

y ′ (Sj + Sn,α) < 0, while the former requires some
care to be computed precisely. The technical calculation of μJ

is detailed in Appendix A. For our current purposes, one can
actually show that μJ,S = μ(ν ′) − μ(ν ′′) + n1 + 1 − n2 with
μ(ν ′′) = �(−ν ′′) the phase jump at the caustic between the
sheets in the final Poincaré section.

The final step of this calculation involves computing
the prefactor [∂2

y ′(Sj + Sn,α)|y ′′Jj ]−1/2, which we do in Ap-
pendix B. Inserting the result in Eq. (56), one finds that all
trace of the stationary phase point y ′

s has vanished and that
expression (56) can be simply written as

Tn,α(r′′) = χ+
n,α(r′′)

N2∑
n2=0

( − ie(i/h̄)Sn,α
1
)n1+1

(ie(i/h̄)S2 )n2

×
∑
k′

AR(n2,k
′)�R(n2,k

′). (57)

Comparing this with the original integral (43) makes it possible
to give a rather transparent interpretation for the role played
by the Green’s function. It basically amounts to propagating
the original mode from r′ to r′′ with a certain probability
weight corresponding to the various trajectories fulfilling the
stationary phase condition (55) and connecting these points.
The reflection probability for channel n polarized in valley α is
obtained by inserting Eq. (57) in Eq. (42), which immediately
gives

Rn,α = vF |Cn,α|2
∫

dy ′′ 2 cos θ ′′

sin θ ′′

×
∣∣∣∣∣

N2∑
n2=0

( − ie(i/h̄)Sn,α
1
)n1+1(

ie(i/h̄)S2
)n2

×
∑
k′

AR(n2,k
′)�R(n2,k

′)

∣∣∣∣∣
2

(58)

with the shorthand θ ′′ = θn,α(y ′′). A change of variables dy ′′ =
R1 sin θ ′′dθ ′′ leads to the final result,

Rn,α =
∫ θR

−θR

dθ ′′ cos θ ′′

2 sin θn,α

∣∣∣∣∣∣
N2(θ ′′)∑
n2=0

( − ie(i/h̄)Sn,α
1
)n1(n2,θ

′′)+1

× (ie(i/h̄)S2 )n2
∑
k′

AR(n2,k
′)�R(n2,k

′)

∣∣∣∣∣
2

(59)
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<
π
2

> π
2

π θn,

θn,θ θθ− n,α

α−

θn, α θn,α

−

πθn,

α n,α

−

n,α

α

FIG. 15. (Color online) Portion of cyclotronic orbit illustrating
that, when θn,α > π

2 , accessible values for θ ′′ do not any more
correspond to the range [−θn,α,θn,α].

with the integer-valued functions N2 and n1 given by

N2(θ ′′) =
[
W − R1 sin θn,α − R1 sin θ ′′

2R2 sin θ2

]
, (60)

n1(n2,θ
′′)=

[
W − R1 sin θn,α − R1 sin θ ′′

2R1 sin θn,α

− n2
R2 sin θ2

R1 sin θn,α

]
.

(61)

Note the bound in the integral (59) is θR = min(θn,α,π − θn,α)
rather than simply θn,α . This is because as the edge angle
θn,α exceeds π/2, trajectories with a final angle θ ′′ larger than
π − θn,α traverse the Poincaré section twice and scatter once
more on the interface (see Fig. 15). The limiting angle in
Eq. (59) is then the one for which no further scattering on the
potential step can take place. The integral in Eq. (59) can be
estimated numerically as a function of the interface length W

and the tunable field strengths V1, V2, and B.
The transmission Tn,α can be calculated following similar

steps. For the reader interested in the technical details, a
summary of the derivation is presented in Appendix C. The
result reads

Tn,α =
∫ θT

−θT

dθ ′′ R2 cos θ ′′

2R1 sin θn,α

∣∣∣∣∣∣
N2(θ ′′)∑
n2=0

( − ie(i/h̄)Sn,α
1
)n1(n2,θ

′′)

× (ie(i/h̄)S2 )n2
∑
k′′

AT (n2,k
′′)�T (n2,k

′′)

∣∣∣∣∣
2

(62)

with θT = min (θ2,π − θ2). The integer valued functions N2

and n1 are given by the formulas

N2(θ ′′) =
[
W − R2 sin θ2 + R2 sin θ ′′

2R2 sin θ2

]
, (63)

n1(n2,θ
′′) =

[
W − R2 sin θ2 + R2 sin θ ′′

2R1 sin θn,α

− n2
R2 sin θ2

R1 sin θn,α

]
.

(64)

Bounds in the integral (62) depend on the sign of θ2 − π/2 for
the same reason as for reflected trajectories.

Equations (59) and (62) readily give the total reflection and
transmission coefficients, namely, R = ∑

n,α Rn,α and T =∑
n,α Tn,α . Alternatively, these results can be inserted into the

Landauer formula, Eq. (2), giving the conductance. These are,
from the technical point of view, the main results of this paper.

50 100 150
W/l

B
 (interface length)

5

10 Reflection
Transmission

50 100
W/l

B
 (interface length)

2

4

6

Reflection
Transmission

FIG. 16. (Color online) Total reflection and transmission proba-
bilities as a function of W/lB . Top: for filling factors ν1 = 6.37 and
ν2 = 12.15 in the electron and hole regions, respectively. Bottom: for
filling factors ν1 = 3.70 and ν2 = 6.99. The qualitative behavior of
individual channel reflection and transmission probabilities is very
similar.

In Fig. 16, we show R and T for a couple of values
of the electrostatic potentials V1 and V2. The reflection and
transmission coefficients show an oscillating behavior as a
function of the interface length W .

The overall behavior of R and T is qualitatively similar,
but not identical, to the one observed in the symmetric case
studied in the previous section. In particular, no saturation of
the conductance is observed or predicted. Before discussing
these results with greater depth, let us first gain some insight on
what is expected classically in the general situation |V1| �= V2.

D. Comparison of classical/semiclassical
predictions and summary

Contrary to the semiclassical probabilities derived in the
previous subsection, their classical counterparts converge to an
asymptotic value in the limit of a long enough interface. This
can be easily shown using the following line of reasoning. Let
us call P1(x) and P2(x) the classical probabilities for a charge
carrier to be found in region 1 and region 2 at a longitudinal
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distance x from the initial Poincaré section. These probabilities
obey equations{P1(x) = (1 − T )P1(x − L1) + TP2(x − L2)

P2(x) = (1 − T )P2(x − L2) + TP1(x − L1)
(65)

whose only asymptotically constant solution as x � L1,2 is
P1 = P2 = 1/2. Noticing additionally that charge carriers
emerging in region 1 (respectively region 2) must do so at
a distance smaller than L1 (respectively smaller than L2) from
the final Poincaré section, one gets, in the asymptotic limit,
the classical reflection and transmission probabilities{

Rcl
n,α → L1/(L1 + L2)

T cl
n,α → L2/(L1 + L2)

as W → +∞. (66)

These values are indeed those observed if one plots the
classical counterparts of the Fisher-Lee formulas (59) and (62),
which can be obtained by considering electrons and holes as
noninterfering classical particles. This essentially amounts to
replacing probability amplitudes by probabilities and neglect-
ing all phase factors accumulated along the trajectories, giving

Rcl
n,α =

∫ θR

−θR

dθ ′′ cos θ ′′

2 sin θn,α

N2(θ ′′)∑
n2=0

(1 − T )n1(n2,θ
′′)+n2+1

×
∑
k′

(
T

1 − T

)2k′

�R(n2,k
′), (67)

T cl
n,α =

∫ θT

−θT

dθ ′′ R2 cos θ ′′

2R1 sin θn,α

T

N2(θ ′′)∑
n2=0

(1 − T )n1(n2,θ
′′)+n2

×
∑
k′′

(
T

1 − T

)2k′′

�T (n2,k
′′) (68)

with T = T (θn,α) = sin θn,α sin θ2/ cos2 [(θn,α − θ2)/2] the
Klein transmission probability. These classical formulas are
plotted numerically as a function of the interface length W

in Fig. 17. As can be seen, some of the probabilities converge
rather quickly to the asymptotic values mentioned above, while
others show slow convergence, sometimes barely visible on the
scale (value of W ) used. This is of course simply due to the fact
that the convergence speed depends on the value of the Klein
transmission probability. When the latter approaches unity,
the potential barrier becomes transparent for charge carriers,
which are thus alternatively reflected or transmitted.

Quasiunit Klein transmission probabilities are obtained for
angles close to π/2 which, as illustrated in Fig. 18, are more
densely sampled when quantizing the dispersion relation (12).
This behavior is, however, mainly due to the assumption we
made of considering an extremely abrupt potential step on the
scale of the magnetic length. Restoring a finite steepness to
the n-p junction would have the dashed (green online) curve
in Fig. 18 look much more like a sharp peak and considerably
reduce the likeliness of having quantized angles with a close
to unit Klein transmission probability.56

Coming back to the semiclassical formulas (59) and (62)
plotted in Fig. 16 and as we already pointed out, their behavior
is qualitatively very similar to what was observed in the
symmetric case plotted in Fig. 8. We lack here the equivalent
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FIG. 17. (Color online) Classical reflection probabilities of indi-
vidual channels for a filling factor ν1 = 6.37 in the electron region
and ν2 = 12.15 in the hole region. Each channel is characterized by
a Klein transmission probability T (θn,α): T (θ0,−) = 0.45, T (θ2,+) =
0.90, T (θ3,+) = 0.991, T (θ5,−) = 0.78. When T  1, classical con-
vergence is masked by large oscillations on the scale of the considered
interface length W .

of the Bloch sphere picture valid in the symmetric case, but we
believe nothing fundamentally different is going on here and
the physics is hence essentially the same. The presence of large
oscillations in the semiclassical transmissions, as opposed
to the classical ones, once again indicates that interferences
between trajectories at the potential interface are strong.
Concerning the mean values of the probabilities plotted in
Fig. 16, we found that (i) they still differ from the classical limit
(as in the symmetric case), and (ii) they compare poorly with
the full mode mixing hypothesis prediction, given by Eq. (1).
These discrepancies clearly invalidate the possibility of full

0 0.2 0.4 0.6 0.8 1
θ/π (angle of incidence)

0

0.2

0.4

0.6

0.8

1

f(θ)/π
T(θ)

FIG. 18. (Color online) Functions f (θ )/π (solid, black online)
and T (θ ) (dashed, green online). Squares (red online) mark the
values of the quantized angles for the filling factor ν1 = 6.37. As
can be clearly seen, most quantized angles sit in the central region
θ ∈ [π/3,2π/3], bounded by the vertical dot-dashed lines, and three
of them are sufficiently near π/2 that the semiclassical behavior and
the classical one are almost indistinguishable for the interface lengths
considered.
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chaotic mixing in our model, which can be straightforwardly
understood by observing that the accessible region of phase
space on the hole-doped side of the junction is restricted by
Eq. (15). A better approximation to the mean semiclassical
value can actually be obtained using a mode mixing hypothesis
with an effective number of modes in region 2 corresponding to
the accessible region of phase space (angles θ2 in [−θcrit,θcrit]),
i.e.,

N2 → N ′
2

def= 1

h̄

∫ θcrit−π

π−θcrit

pydy  N2

(
1 − f (θcrit)

π

)
. (69)

Partitioning the current with equal probability in the available
edge channels yields a reasonable approximation (about 10%)
to the mean conductance: 〈G/G0〉W  N1N

′
2/(N1 + N ′

2).
Summarizing, in this section we show that, in the semi-

classical limit, the general (nonsymmetric) case shows large
transmission/reflection fluctuations. Furthermore, suppressing
these fluctuations by averaging over W would not recover the
full mode mixing prediction. A reasonably good approxima-
tion of the mean transmission or reflection values can, however,
be obtained from a modified mode mixing hypothesis where
only the number of modes corresponding to the accessible
phase space is taken into account.

As in the symmetric case, mesoscopic corrections lead
unavoidably to quantum fluctuations. Those are clearly
nonuniversal: for certain values of V1 and V2 the magnitude
of the fluctuations decreases with increasing W/lB , while for
other combinations of V1 and V2 the fluctuations do not seem
to depend on W/lB and no systematic behavior is observed.
Notice that we investigate W/lB values that are comparable
with the experimental ones. The variety of fluctuation patterns
we observe can be semiclassically explained by means of the
quantum interference between different snakelike trajectories.

VI. MODEL ASSUMPTIONS, LIMITATIONS,
AND EXTENSIONS

The purpose of this section is to discuss the most impor-
tant assumptions made in our model. Some of them were
introduced for the sake of simplicity and do not introduce
limitations to our analysis. Others were necessary to proceed
analytically and need further justification.

We begin addressing the geometry of our transport con-
figuration. Recall that instead of the experimental setup of a
perpendicular junction, we have settled for the analytically
simpler setup of a “parallel” junction (see the discussion at the
beginning of Sec. IV). This issue is addressed in Ref. 53 where
we demonstrate that, aside for possible diffraction effects at
the edge-junction corner, and despite a notable difference
in complexity when it comes to exhaustively identifying all
trajectories connecting the initial and final Poincaré sections,
the conductance is very similar in both configurations.

Let us now discuss the effect of different boundary
conditions on the conductance. For the magnetic regime, this
has already been discussed at the end of Sec. III, so we
shall limit the discussion here to the electric regime. The
main effect of choosing zigzag or armchair edges instead of
an infinite mass confinement is to modify the quantization
condition (8) and thereby the values of the quantized angles
for the edge channels. The EBK semiclassical quantization

procedure was recently applied to the zigzag and armchair
cases47 and yields quantization conditions that can be obtained
very simply from the infinite mass case by computing the new
phase shift φz (or φa) acquired by a plane-wave scattering on
a zigzag (or armchair) edge in graphene. As we have seen,
however, the conductance of individual channels did not show
any special feature dependent on the value of the quantized
edge angles θn,α . All edge channels had a qualitatively similar
behavior, their conductance oscillating as a function of W .
We therefore do not expect that taking zigzag or armchair
boundary conditions (which basically amounts to changing
the quantized values of the edge angles) will qualitatively alter
our predictions.

We now address the effect of replacing our steplike interface
by one with a finite steepness L � lB . As long as electrons can
locally still be approximated as plane waves near the interface,
a finite steepness in the potential step essentially sharpens
significantly the angular profile of the Klein transmission
probability (the dashed green curve in Fig. 18) around the
angle of perfect transmission. An analytical expression for
the Klein transmission probability in this context was derived
by Shytov and collaborators.40 It is found that the Klein
transmission probability is perfect for the incident angle θβ =
π − cos−1 β,57 and decreases exponentially with L as the angle
of incidence is brought away from θβ . A slight asymmetry
between Klein transmission probabilities on both sides of the
junction is additionally created when −V1 �= V2. Nevertheless,
the results presented in this paper should qualitatively hold true
as long as L � lB (or equivalently β � 1).

Let us end our “tour d’horizon” by discussing the effect
of disorder in the system. Decreasing further the steepness
of the barrier favors the charge carriers to dwell longer at
the vicinity of the Dirac point, which, in most experimental
setups, is characterized by the existence of electron-hole
puddles58 combined with a weak screening of electrostatic
charges (due to the vanishing density of states). These effects
tend to enhance the influence of impurities on the electrons
at the interface region,59,60 and possibly drive the system
out of the fully coherent ballistic regime that we consider
in this paper. Evidently, the inclusion of disorder in our
model favors a transition to the regime described by RMT.
Indeed, the presence of impurities at the junction interface
would randomize the scattering angles and suppress the
restriction on the available phase space in region 2 imposed
by Eq. (15), bringing the average conductance closer to the
full mode mixing value, Eq. (1). We, however, expect a rather
smooth transition from the ballistic nonuniversal fluctuations
we calculate here to the universal ones, ubiquitous in chaotic
and disordered systems.

VII. CONCLUSION

We have studied electronic transport in a graphene n-p
junction subjected to a strong perpendicular magnetic field.
Our main interest in this problem was twofold. Our first
goal was to shed some light on the experimentally observed
conductance plateaus in this configuration, which still lack a
full theoretical explanation. Second, we wanted to confront the
full mode mixing hypothesis with a full analysis of a model
as consistent as possible with the most physically relevant
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parameters. The latter was further motivated by the fact that an
elementary classical calculation predicts equal reflection and
transmission probabilities through a symmetric graphene n-p
junction in the Hall regime, which raised the question of how
much this property would remain true within a semiclassical
description.

Concerning our first goal, in distinction to the UCFs
observed in numerical simulations of disordered n-p
junctions,26,27 we obtain large nonuniversal transmission
fluctuations in ballistic junctions. The combination of these
results essentially rules out the possibility of explaining
the observations of fractional conductance plateaus within
a fully coherent description of the junction. To reconcile
experimental and theoretical results, we believe that a de-
coherence mechanism suppressing the interference effects
is necessary.20 Among the various possibilities, such as
interactions with electron-hole puddles and electron-phonon
and electron-electron interactions, one should find one that
is particularly effective in the vicinity of the junction. For
instance, it is plausible that experimental n-p junctions are
not as abrupt as the ones considered in our model, belonging
to an intermediate regime of β  1 where a random network
of electron-hole puddles61 could provide both random current
partitioning and decoherence. With the recent advent of hBN
substrates,62–64 which, when intercalated between graphene
and SiO2, were shown to significantly increase electrical
mobilities and equally reduce charge-density inhomogeneities,
we hope new experiments can shed more light on the nature
of the dephasing mechanism taking place at the junction
interface. The effect of inelastic-scattering events near the
Dirac point certainly also deserves future investigation.65

Concerning our second goal, as already stated, we observe
that interference effects play a dramatic role for the transport
in ballistic n-p junctions irrespective of the ratio W/lB . Our
expectation of a self-averaging mechanism in the summation
over a large number of semiclassical contributing terms was
not fulfilled. Surprisingly, in the general case of V1 �= −V2,
the mean transport quantities (reflection and transmission
probabilities) expected from the classical dynamics of the
junction differ considerably from their semiclassical (and thus
quantum) counterparts. In the case of symmetric junctions, for
which a simple and transparent scattering matrix approach
can be used, these interference effects can furthermore be
described within a Bloch sphere picture, which makes it
possible to give a natural interpretation of the discrepancies
between classical and semiclassical behaviors.

Our results suggest the need of further experimental
insight to understand the absence of transmission fluctuations
in n-p junctions at the quantum Hall regime. We believe
that the conductance fluctuations predicted here should be
observable in junctions for which the decoherence processes
are suppressed, particularly for suspended graphene.
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APPENDIX A: CALCULATION OF THE MASLOV
INDEX μJ

In this appendix we compute the Maslov indices that appear
in Eqs. (57) and (C2). Recall the Green’s-function Maslov
index μJ counts the number of caustics on the trajectory
j , a caustic being a point where j and the neighboring
trajectories obtained by an infinitesimal change of the initial
momentum intersect each other. Here, however, it should be
noted that, since in the hole region momentum and velocity
have an opposite direction, the caustics there should be counted
negatively.

Caustics can be found in three different parts of the
trajectory: before the first encounter of the trajectory with
the interface of the junction; after the last encounter with
the interface; and in-between these two points. We shall
call, respectively, μ′

J , μ′′
J , and μc

J the three corresponding
contributions to the Maslov index, with μJ = μ′

J + μc
J + μ′′

J .
We further note L′ = R1(sin θ1 − sin θ ′), the distance between
the first encounter and the initial Poincaré section, and
L′′ = Ri(sin θ ′′ + sin θi) (i = 1 for reflected trajectories, i = 2
for transmitted trajectories), the distance between the last
encounter and the final Poincaré section. Reflected trajectories
and transmitted ones will be addressed separately.

1. Reflected trajectories

Let us introduce the following indices:

σ1 = sgn

(
∂L′

∂θ ′

∣∣∣∣
y ′

∂L′′

∂θ ′

∣∣∣∣
y ′

)
, (A1)

σ2 = sgn

(
∂L′′

∂θ ′

∣∣∣∣
y ′

∂y ′′

∂θ ′

∣∣∣∣
y ′

)
. (A2)

Noting that keeping y ′ = R1 cos θ1 − R1 cos θ ′ constant leads
to sin θ ′dθ ′ = sin θ1dθ1, σ1 and σ2 can be computed from

∂L′

∂θ ′

∣∣∣∣
y ′

= R1
sin (θ ′ − θ1)

sin θ1
, (A3)

R−1
1

∂L′′

∂θ ′

∣∣∣∣
y ′

= cos θ ′ − (2n1 + 1) cos θ1
sin θ ′

sin θ1

− 2n2 cos θ2
sin θ ′

sin θ2
, (A4)

(
R−1

1

∂y ′′

∂θ ′

∣∣∣∣
y ′

+ sin θ ′
)

(tan θ ′′)−1

= cos θ ′ − 2(n1 + 1) cos θ1
sin θ ′

sin θ1
− 2n2 cos θ2

sin θ ′

sin θ2
.

(A5)

Looking at Fig. 19 it is clear that if σ1 < 0 each excursion
contains exactly one caustic, and the contribution μc

J from
the central part of the trajectory is exactly n1 − n2. If σ1 > 0,
however, one of the excursions will be in the configuration
schematized on the lower part of Fig. 19, and will contain
either two or zero caustics. This transitional excursion can
take place either in region 1 or in region 2. In the former case
the number of caustics in the transitional excursion is 0 if
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FIG. 19. (Color online) Top: Caustics along a reflected trajectory
with σ1 < 0. The rightmost caustic concerns the final portion L′′ and
originates from the fact that σ2 > 0. Bottom: Variation of the number
of caustics μc

J as σ1 becomes positive. If θ1 < π/2, the transitional
excursion contains no caustic, while if θ1 > π/2 the transitional
excursion contains two caustics.

θ1 < π/2 and 2 if θ1 > π/2, and vice versa in the latter case.
Since, however, caustics are counted with an opposite sign in
regions 1 and 2, this leaves the contribution μc

J unaffected.
In the same way the number of caustics in the last excursion

is 1 if σ2 > 0, and 0 otherwise. Finally, a caustic can be found in
the first excursion if θ1 − θ ′ > π . All this can be summarized
by ⎧⎪⎨

⎪⎩
μ′′

J = �(σ2)

μc
J = n1 − n2 + sgn(θ1 − π/2)�(σ1)

μ′
J = �(θ1 − θ ′ − π )

(A6)

with � the Heaviside step function.

2. Transmitted trajectories

This time, the final position is y ′′ = R2 cos θ ′′ − R2 cos θ2.
Still working with y ′ fixed leads to the same expressions as
above for (∂L′/∂θ ′)y ′ and (∂L′′/∂θ ′)y ′ , while the variation of
the final position can be shown to read(

R−1
1

∂y ′′

∂θ ′

∣∣∣∣
y ′

+ sin θ ′
)

(tan θ ′′)−1

= cos θ ′−(2n1+1) cos θ1
sin θ ′

sin θ1
−(2n2+1) cos θ2

sin θ ′

sin θ2
.

(A7)

Defining the same indices as for the reflected trajectories, the
same expression is obtained for the number of caustics in the
central part of the trajectory. Concerning the extremal portions,
a caustic can be found in L′ if θ1 − θ ′ − π > 0 (as before) and
one in L′′ this time if σ2 < 0.

3. Total Maslov index

For semiclassical expressions such as Eq. (56), it is the sum
μJ + μS , which is relevant rather than μJ alone. Although we
will not provide a formal proof of this, it can be seen (and it is
easily checked numerically) that

μJ + μS = μ(ν ′) − μ(ν ′′) + n1 − n2 + 1. (A8)

We make use of this equality in Sec. V.

APPENDIX B: CALCULATION OF THE PREFACTOR J ∂2
y′ S

In this appendix, we compute the prefactor obtained in
Eq. (56) once integral (43) has been evaluated in the stationary
phase approximation. It reads

Jj (y ′
s)

∂2(Sj + Sn,α)

∂y ′2

∣∣∣∣
y ′′

(y ′
s). (B1)

Recall that Sj is the action of the Green’s function, Sn,α is that
of the mode, Jj is the Green’s-function prefactor and y ′

s the
stationary phase point. Using basic properties of the action we
have

Jj (y ′
s) = ẋ ′ẋ ′′

(
− ∂2Sj

∂y ′′∂y ′

)−1

(y ′
s) = ẋ ′ẋ ′′ ∂y ′′

∂p′
y

∣∣∣∣∣
y ′

(y ′
s) (B2)

with ẋ ′ = vF cos θn,α(y ′
s) and ẋ ′′ = vF cos θn,α(y ′′), and

∂2(Sn,α + Sj )

∂y ′2

∣∣∣∣
y ′′

= ∂
(
p

n,α
y ′ − p′

y

)
∂y ′

∣∣∣∣∣
y ′′

. (B3)

Now, for a variation within the manifold on which the mode
(n,α) is built, y ′′ = y ′′(y ′,p′

y(y ′,(n,α))), and thus

dy ′′ =
⎛
⎝ ∂y ′′

∂y ′

∣∣∣∣
p′

y

+ ∂y ′′

∂p′
y

∣∣∣∣∣
y ′

∂p′
y

∂y ′

∣∣∣∣
n,α

⎞
⎠ dy ′. (B4)

Using then that (∂y ′′/∂y ′)|p′
y
= −(∂p′

y/∂y
′)|y ′′ (∂y ′′/∂p′

y)|y ′ we
obtain

(
− ∂2Sj

∂y ′′∂y ′

)−1
∂2(Sj + Sn,α)

∂y ′2

∣∣∣∣
y ′′

= dy ′′

dy ′ , (B5)

which expresses the usual ratio between measures dy ′′ and
dy ′ on the corresponding Poincaré sections. Making use of the
identity W = (n1 + 1)L1 + n2L2 + R1(sin θ ′′ − sin θ ′), it can
be easily evaluated as

dy ′′

dy ′ = ∂y ′′

∂θ ′′

∣∣∣∣
n,α

∂θ ′′

∂θ ′

∣∣∣∣
n,α

∂θ ′

∂y ′

∣∣∣∣
n,α

= R1 sin θn,α(y ′′)
(

cos θn,α(y ′)
cos θn,α(y ′′)

)
[R1 sin θn,α(y ′)]−1

(B6)

and expression (B1) hence takes the final form,

Jj (y ′
s)

∂2(Sj + Sn,α)

∂y ′2

∣∣∣∣
y ′′

(y ′
s) = (vF cos θn,α(y ′

s))
2 sin θn,α(y ′′)

sin θn,α(y ′
s)

.

(B7)
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APPENDIX C: MAIN STEPS FOR THE
DERIVATION OF Tn,α

Here we describe how to deal with the case of transmitted
trajectories [for which ε(r′′) < 0] and obtain the transmission
Tn,α . We discuss only the few main steps of the calculation that
differ from the derivation of Rn,α , presented in the main text.

This time, the matrix structure of the integral that appears
in Eq. (43) reads

V −
j (r′′)V +†

j (r′)σx

(
e−i ν′

2 θn,α(y ′)

ei ν′
2 θn,α (y ′)

)

= e−iθ ′
j /2 cos

(
ν ′θn,α(y ′) + θ ′

j

2

)(
e−iθ ′′

j

−1

)
. (C1)

The Green’s-function projector V −
j (r′′)V +

j (r′) selects those
trajectories which connect the initial Poincaré section in the
positive (electron) eigenspace and the final Poincaré section in
the negative (hole) eigenspace. Applying the stationary phase
approximation to integral (43) yields the same condition as
the one obtained in the main text for the reflection, and the
action of the Green’s function reads Sj (y ′

s) = h̄kn,α
x (x ′′ − x ′) +

(n1 + 1/2)Sn,α
1 + (n2 + 1/2)S2 + ν ′′S(y ′′) − ν ′Sn,α(y ′

s). The

Maslov index is computed as in the case of reflected trajectories
(details can be found in Appendix A).

By putting together these elements, the integral (43) can be
evaluated as

Tn,α(r′′) = Cn,αeikn,α
x x ′′

√| sin θ ′′|
∑

ν ′′=±1

e(i/h̄)ν ′′S(y ′′)+i(π/2)μ(ν ′′)e−iν ′′θ ′′

×
(

e−iνθ ′′/2

−eiνθ ′′/2

)
e(i/h̄)(Sn,α

1 +S2)/2

× (− it1)
N2∑

n2=0

( − ie(i/h̄)Sn,α
1
)n1 (ie(i/h̄)S2 )n2

×
∑
k′′

AT (n2,k
′′)�T (n2,k

′′). (C2)

As expected (and contrary to the case of reflected trajectories),
the incident mode once propagated to the point r′′ is no
longer quantized. This, however, turns out to be irrelevant
when it comes to computing the conductance making use of
Eq. (42). Switching from position to angular coordinates, the
transmission probability of channel n polarized in valley α

gives Eq. (62).
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