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Post-Ehrenfest many-body quantum interferences in ultracold atoms far out of equilibrium
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Far out-of-equilibrium many-body quantum dynamics in isolated systems necessarily generates interferences
beyond an Ehrenfest timescale, where quantum and classical expectation values diverge. Of great recent interest
is the role these interferences play in the spreading of quantum information across the many degrees of freedom,
i.e., scrambling. Ultracold atomic gases provide a promising setting to explore these phenomena. Theoretically
speaking, the heavily-relied-upon truncated Wigner approximation leaves out these interferences. We develop a
semiclassical theory which bridges classical and quantum concepts in many-body bosonic systems and properly
incorporates such missing quantum effects. For mesoscopically populated Bose-Hubbard systems, it is shown
that this theory captures post-Ehrenfest quantum interference phenomena very accurately, and contains relevant
phase information to perform many-body spectroscopy with high precision.
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The tremendous progress that has been achieved exper-
imentally with quantum gases in optical lattices is leading
to a vast exploration of new many-body physics phenomena
[1]. The pioneering works in this context mainly focused on
ground-state properties [2], whereas more recent experiments
are exploring dynamical processes in far-from-equilibrium set-
tings triggered by a sudden or continuous parameter variation
in the trapping configuration. Important examples for bosonic
atoms include features such as tunneling [3–5], transport [6],
Landau-Zener transitions [7], relaxation [8], thermalization
[9], and many-body localization [10]. The experiments pose
highly demanding challenges for numerical state-of-the-art
simulations [8,10], which underlines their possible role as
quantum simulators.

The above studies were most often concerned with either
a microscopically low or a macroscopically large number
of atoms per site [i.e., O(1) or >100, respectively]. A new
experimental regime is emerging with mesoscopic populations
of lattice sites with a few tens of atoms per site [11,12].
These mesoscopically populated lattices are expected to reveal
interesting many-body physics due to the interplay between
intrasite correlation and intersite tunneling effects [7]. More
specifically, they allow one to probe the crossover from a
classical mean-field regime, where the evolution of the Bose
gas is well described by the Gross-Pitaevskii equation [13]
optionally in combination with a Bogoliubov ansatz [14],
to a quantum correlated regime in which the mean-field
approximation breaks down.

A relevant timescale that characterizes this crossover in a
nonequilibrium context is the Ehrenfest time, which is deter-
mined by the divergence of quantum and classical dynamics as
time increases [15,16], and which marks the limit of validity
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of the mean-field ansatz. Beyond this timescale, quantum
interference effects become relevant, and give rise to significant
physical phenomena ranging from the more spectacular, e.g.,
many-body localization [17,18] or quantum revivals [19], to the
more subtle, e.g., coherent backscattering in Fock space [20].
In a related perspective, the Ehrenfest time can be regarded
as a delay time for the onset of quantum effects in quantum
chaotic (many-body) systems [21], and has recently attracted
enormous attention. The spreading of quantum information
across degrees of freedom of a many-body system, commonly
referred to as scrambling [22], is expected to be governed by
the Ehrenfest time. Of particular note are out-of-time-ordered
correlators [23], representing the sensitivity of a time-evolving
quantum observable to an initial perturbation. They quantify
scrambling and exhibit distinct deviations from the classical
exponential growth behavior post-Ehrenfest [24]. Ultracold
Bose gases within mesoscopically populated lattices therefore
provide a promising setting to explore scrambling effects under
well-controlled conditions [25].

The truncated Wigner approximation (TWA) [26,27] ap-
pears to produce good numerical simulations of Bose gas
dynamics through the scrambling time, as long as one focuses
on few-body observables. In practice, the TWA samples the
initial quantum state of a bosonic many-body system in terms
of classical fields, which are numerically propagated via a
time-dependent Gross-Pitaevskii equation and summed inco-
herently. Thus, the TWA lacks an important ingredient, namely,
the many-body interference effects, which become particularly
relevant post-Ehrenfest. Going beyond TWA without resorting
to rather involved numerical “quantum” methods based, e.g.,
on the time-dependent density matrix renormalization group
(t-DMRG) [28–30] or on matrix product states (MPS) [31]
(which would fail to reach the mesoscopic regime) requires
the implementation of a truly semiclassical technique. It
would account for the phases that are associated with the
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mean-field (MF) trajectories of the classical TWA sampling
[32–35]. Exploiting the formal similarity between the N →
∞ limit of the bosonic many-body systems and the h̄ → 0
limit of a one-body problem, a proper theory can be con-
structed for the many-body case by generalizing the time-
dependent semiclassical techniques developed in the one-body
context [36].

The goal here is to develop this method, illustrate it with a
Bose-Hubbard model, and to show that such an approach both
quantitatively accounts for quantum many-body interference
effects and qualitatively provides insight into the underly-
ing interference mechanisms. Furthermore, the time-energy
Fourier transform of the semiclassical dynamics provides
detailed spectroscopic information of the many-body system.
Ahead, comparing the semiclassical predictions with those
derived from the classical TWA clearly indicates the onset and
presence of many-body quantum interferences post-Ehrenfest.
The approach taken is based on the coherent propagation of a
Lagrangian manifold (to be defined below) of MF trajectories.
It is used to identify saddle MF trajectories whose classical
actions determine the appropriate phases, thereby lifting the
time-dependent semiclassical approximation à la Maslov [36]
to many-particle systems.

Consider Bose-Hubbard systems with tunable tunneling and
interaction terms, respectively,

Ĥ = −J

N∑
j=1

(a†
j aj+1 + H.c.) + U

2

N∑
j=1

n̂j (n̂j − 1), (1)

where N is the number of sites arranged on a ring. U denotes
the strength of the two-body interaction, which depends on the
s-wave scattering length of the atomic species considered. J

controls the tunneling amplitude, which depends on the well
depth. Instead of evaluating the evolution of single-particle
observables as typically done in methods such as t-DMRG
[28–30] or MPS [31], our focus is on a more involved
observable, i.e., the evolution of initial states corresponding
to coherent states. Indeed, because they begin maximally
localized with minimum uncertainty, they correspond to the
most classical states, and therefore provide an excellent way to
investigate the onset of genuinely quantum effects. Moreover,
they have already been shown to be experimentally relevant in
cold-atom physics [19].

A challenging initial state to consider for the theory is a
coherent-state density wave denoted

|n〉 =
N∏

j=1

e

(
−|bj |2

2 +bj â
†
j

)
|0〉 = e−N /2e

√
N α̂† |0〉, (2)

with α̂† = ∑N
j=1 (bj/

√
N )â†

j and N = ∑N
j=1 |bj |2, where

each site j is loaded with a coherent state of mean particle
number nj = |bj |2. We choose density waves of the form
|n,0,n,0, . . . ,n,0〉. It describes a perfect Bose-Einstein con-
densate (in a gauge-symmetry breaking coherent-state repre-
sentation [37]) that populates every other site of the lattice with
altogether N = nN/2 particles [38]. Its time autocorrelation
function gives a convenient measure that very strongly exhibits
the post-Ehrenfest many-body quantum interferences. It is

denoted

C(t) = |A(t)|2, A(t) = 〈n|Û (t)|n〉, (3)

where Û (t) is the unitary time translation operator. Such phase-
sensitive time autocorrelation functions may play an important
role in splitting processes in the spirit of Ref. [39], where the
subsequent recombination of the split atomic clouds depends
on their relative phase. Their explicit experimental detection
is within reach using sophisticated single-site atom-counting
techniques [9]. This is somewhat analogous to the situation
with pump-probe experiments that measured electronic wave-
packet revivals and fractional revivals in Rydberg atoms
[40,41].

The direct comparison of quantum autocorrelation func-
tions along with their time-dependent semiclassical and TWA
approximations for four-site and six-site coherent-state density
waves is illustrated in Fig. 1. Note first that there are two
relevant time scales,

τ1 = 2π

Unj

= 0.63, τ2 = 2π

U
= 4π, 2π (4-site, 6-site), (4)

that come from the Bose-Hubbard model on-site two-body
interaction terms only (J = 0): τ1 is a classical scale associated
with the first return of MF trajectories; τ2 is a quantum scale
associated with the revival of the initial quantum state [19]. The
TWA is essentially an accurate approximation to roughly τ1,
up to which there exists either zero or one saddle MF trajectory.
Shortly thereafter, multiple saddle MF trajectories signify
the start of many-body quantum interferences, and the TWA
becomes a rather poor approximation for the autocorrelation
function. On the other hand, the semiclassical approximation
remains extremely precise to times significantly larger than
τ1. The distinct peaks at τ2/3 are the remains of the 1/3
fractional revivals of the J = 0 cases, and whereas they are
completely missed by TWA, they are perfectly well reproduced
by the semiclassical approximations. In the four-site case, it
arises as the result of summing the contributions of roughly 60
saddle contributions at any fixed time in its neighborhood. The
remains of the full revival at 4π = 12.57 is a similar situation,
but requires the summation of roughly 600 saddle trajectories;
the six-site case requires an order of magnitude more.

The Fourier transform of A(τ ) (with phase information)
generates detailed spectral information,

S(E) =
∑

ν

|〈Eν |�n〉|2δ(E − Eν) ∝
∫

dτ eiEτA(τ ). (5)

The quantum and semiclassical spectra are compared in Fig. 2;
no spectrum derives from the TWA. The agreement with the
semiclassical theory is excellent.

Derivation of our semiclassical method begins with the
quadrature operators (q̂j ,p̂j ) defined as

âj = (q̂j + ip̂j )/
√

2, â
†
j = (q̂j − ip̂j )/

√
2. (6)

For large total particle numbers, the mean-field solutions of the
Bose-Hubbard model in a phase space representation follow by
a substitution of the quadrature operators (q̂j ,p̂j ) by c numbers,
which, after attention to operator ordering issues, results in a
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FIG. 1. Comparison of the square root of the quantum time autocorrelation function, Eq. (3), with the many-body semiclassical and
truncated Wigner approximations. The solid (blue), dashed (red), and dotted (black) curves represent the quantum, semiclassical, and TWA
results, respectively. The quantum curves are reflected to distinguish the curves better. The upper panel gives a four-site ring example with initial
coherent state density wave |20,0,20,0〉 (bj = √

20 or 0), and values J = 0.2 and U = 0.5. The lower panel gives a six-site ring example with
initial coherent state density wave |10,0,10,0,10,0〉, and J = 0.2 and U = 1.0. The initial decays and revivals (at τ = 4π,2π , respectively)
are cutoff to expand the scale of |A(τ )|.

classical Hamiltonian,

Hcl = −J

N∑
j=1

(qjqj+1 + pjpj+1) + U

2

N∑
j=1

(
q2

j + p2
j

2

)2

−U

N∑
j=1

q2
j + p2

j

2
. (7)

The solutions of the resulting Hamilton’s equations for various
initial conditions up to propagation time t give the mean-field
solutions.
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FIG. 2. Comparison of the quantum and semiclassical many-body
spectra for the four-site example. To reduce spurious ringing, a Gaus-
sian cutoff was applied to the Fourier transforms with σ = 40,6 for the
quantum and semiclassical A(τ ), respectively. Semiclassical theory,
good to O(h̄2), cannot reproduce the energy centroid exactly. With
a constant energy shift of E0 = 0.9, the quantum and semiclassical
spectra align perfectly, as seen on an enlarged scale in the inset.

In a q representation, coherent states appear as Gaussian
wave packets [42], and, in particular,

〈�q|n〉 = π− N
4 exp[−Swp(�q)], Swp(�q) = 1

2

N∑
j=1

(qj − √
2nj )2.

(8)
This gives rise to the corresponding density operator Wigner
transforms,

W(�q, �p) =
(

1

π

)N N∏
j=1

exp
[−(qj − √

2nj )2 − p2
j

]
.

This density is used for the TWA calculations, which formally
are given by solving the evolution equation

d

dt
W(�q, �p) = {Hcl,W(�q, �p)}, (9)

with {·,·} the Poisson bracket. Typically, a Monte Carlo
weighted sampling of initial conditions is propagated with
Hamilton’s equations.

Implementation of the semiclassical theory [36] can be
summarized as follows. First, the collection of initial condi-
tions (in classical phase space) represented in the initial state’s
Lagrangian manifold is propagated a time t , and all those
MF trajectories whose ending points lie on the final state’s
Lagrangian manifold give rise to a contribution to the quantity
of interest [here, C(t)]. The MF trajectories satisfying this
prescription are saddle MF trajectories, i.e., they are associated
with a saddle-point condition in the overlap integral. For a
given saddle MF trajectory, its contribution is then expressed
in terms of the following quantities: the time integral of the
Lagrangian along the trajectory, the Maslov phase index [36],
and the stability matrix M describing the linearized motion
near the trajectory.

Generically, the Lagrangian manifold associated with a
semiclassical wave function �sc(�q) = a(�q) exp[iSsc(�q)] is
given by �p(�q) = �∇Ssc(�q). A coherent state, Eq. (8), is indeed
in the usual semiclassical form with the peculiarity that Ssc =
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iSwp is an imaginary function. The Lagrangian manifolds of
the initial and final states, respectively, are thus given by the
relations [43]

qj − √
2nj = −ipj (initial), qj − √

2nj = +ipj (final),

for each value of j where the phase space coordinates (qj ,pj )
and Hamiltonian, Eq. (7), have been analytically continued
to complex variables, hence the font change. Note that this
approach is quite general [36]. Fock states could be treated
in roughly an analogous way as coherent states. For occupied
sites, the Lagrangian manifold of a Fock state would involve
only real trajectories. However, since for unoccupied sites the
Fock state and coherent state are identical, a hybrid method
with a Lagrangian manifold relying on real initial conditions
for occupied sites and complex initial conditions for initially
empty sites would result.

For semiclassical coherent-state propagation, the need to
work with complexified phase space variables comes with a
host of its own technical challenges [43,44]. At the most basic
level, one must find the saddle trajectories, which in a high-
dimensional complex phase space is nontrivial, and second,
one must know which saddle trajectories must be thrown away
because of the square integrability boundary condition. An
approach to the latter problem is given in Ref. [45] following
the work of Refs. [46–49]. In short, the complex set of saddles
that contribute can be put in a one-to-one correspondence
with contributions of real classical transport pathways, and a
Newton-Raphson algorithm locates the complex saddle trajec-
tory for each pathway. That leaves finding a practical solution
to locating these transport pathways. It requires understanding
the asymptotic structure and flow in phase space. Certain
directions lead to maximal exploration, whereas others lead to
none. Identifying the relevant directions allows one to reduce
greatly the dimensionality of the search space, in fact, to just
a few dimensions [50–52].

Once the relevant saddle MF trajectories γ have been
identified, the computation of the various quantities needed
[action integral S(�qγ

t ,�qγ

0 ; t), Maslov index νγ , and stability
matrix Mγ ] is essentially straightforward. Introducing the
“scaled” time variable τ ≡ t/h̄, and the corresponding scaled
action S(�qγ

τ ,�qγ

0 ; τ ) = h̄−1S(�qγ
τ ,�qγ

0 ; t), the autocorrelation func-
tion C(τ ) can be expressed as [43]

C(τ ) =
∣∣∣∣∣
∑

γ

c1/2
γ (τ ) exp

[
iφγ (τ )

]∣∣∣∣∣
2

,

iφγ (τ ) = iS(�qγ
τ ,�qγ

0 ; τ ) − iνγ

π

2
+ F

γ−
0 + Fγ,+

τ ,

cγ (τ ) = Det−1

[
1

2

(
Mγ

11 + Mγ

22 + iMγ

21 − iMγ

12

)]
, (10)

with

F
γ,−
0 = i�pR

0 · �pI

0 − 1

2
�pI

0 · �pI

0 − 1

2
�qI

0 · �qI
0 − �pR

0 · �qI
0,

F γ,+
τ = i�pR

τ · �pI

τ − 1

2
�pI

τ · �pI

τ − 1

2
�qI

τ · �qI
τ + �pR

τ · �qI
τ (11)

(where R,I refer to real and imaginary parts), and

Mγ

11 = ∂�qτ

∂�q0
, Mγ

22 = ∂�pτ

∂�p0
, Mγ

12 = ∂�qτ

∂�p0
, Mγ

21 = ∂�pτ

∂�q0
.

Interestingly, the saddle MF trajectories provide an al-
ternative way of producing the TWA. In the limit of large
particle number and an “infinitely” dense Monte Carlo, the
approximation (9) is asymptotically equivalent to the diagonal
contribution in Eq. (10), Cdiag(τ ) ≡ ∑

γ cγ (τ ).
In summary, the semiclassical approach to mesoscopic

many-body quantum dynamics produces an accurate approx-
imation with fully incorporated many-body interferences. It
is developed here as a practical technique, i.e., the technical
problems of implementation are solvable. It is best adapted to
systems with mesoscopic populations of particles or more, and
most accurate over short to intermediate time scales. The semi-
classical approximation being effectively an expansion in the
inverse of the density, the accuracy improves with increasing
particle number. Furthermore, its accuracy is capable of giving
rather detailed many-body spectroscopic information. In stark
contrast, the TWA smooths over all the post-Ehrenfest many-
body quantum interferences and cannot provide spectroscopic
information.

The relaxation dynamics of a mesoscopically populated,
coherent-state density wave in the strong interaction regime
provided both a physically interesting and stringent test of the
theory. The remnants of matter revivals occur in its quantum
dynamics, and the reconstruction of their presence is highly
nontrivial. In addition, this density wave gives rise to a
spectrum that is quite reminiscent of those found in various
cases of high-resolution molecular spectroscopy [53,54].

The semiclassical method is extremely general, and leads
naturally to many possible lines of future research. For exam-
ple, it can be adapted to the dynamics of a variety of different
initial states. It can also be adapted to other measures besides
autocorrelation functions, such as fidelities and out-of-time-
ordered correlators, which are so important in quantum infor-
mation studies. The method also applies equally well to the
study of all interaction regimes, i.e., the saddle trajectories can
be found for any dynamical regime, chaotic or not. However,
for chaotic dynamical systems, the exponential proliferation
of saddles may shorten the time scale of practical application.
Our semiclassical calculations have also been performed for
eight-site rings with up to 160 particles, presumably beyond
the possibility of full quantum calculations. With a bit more
effort, they could be extended to greater numbers of sites, and
other configurations besides the rings considered here. Finally,
we mention that with the help of a semiclassical propagator
in fermionic Fock space (such as proposed in Ref. [32]), the
present method can be extended to the case of fermionic atoms.
This opens various perspectives for studying the interplay
of scrambling and localization phenomena in the context of
ultracold (bosonic or fermionic) gases.
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and the UR International Presidential Visiting Fellowship
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