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The ability to actually implement epidemic models is a crucial stake for public institutions, as they may be
overtaken by the increasing complexity of current models and sometimes tend to revert to less elaborate models
such as the susceptible-infected-recovered (SIR) model. In our work, we study a simple epidemic propagation
model, called SIR-k, which is based on a homogeneous network of degree k, where each individual has the same
number k of neighbors. This model represents a refined version of the basic SIR which assumes a completely
homogeneous population. We show that nevertheless, analytical expressions, simpler and richer than the ones
existing for the SIR model, can be derived for this SIR-k model. In particular, we obtain an exact implicit
analytical solution for any k, from which quantities such as the epidemic threshold or the total number of agents
infected during the epidemic can be obtained. We furthermore obtain simple exact explicit solutions for small
ks, and in the large k limit we find a new formulation of the analytical solution of the basic SIR model, which
comes with new insights.
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I. INTRODUCTION

Understanding the dynamics of epidemics is of primary
importance to allow public policies to mitigate their negative
impact [1,2]. Models of epidemic propagation have therefore
been introduced as early as one century ago, in 1927, in par-
ticular, the seminal paper of Kermack and McKendrick [3]. In
this paper, they introduce the susceptible-infected-recovered
(SIR) model, which, despite its simplicity, is still a basis of
work in many studies [4–6]. This model divides a population
into susceptible, infected, and recovered individuals, and two
parameters characterize the evolution: the transmission rate β

and the recovery rate γ . In the simplest version of the model, β
and γ are assumed to be constant on the epidemic time scale.
The time evolution of the fractions (S, I, R) of susceptible,
infected, and recovered agents is then given [5,7] by

Ṡ = −βSI,

İ = βSI − γ I,

Ṙ = γ I.

(1)

This system of differential equations was studied in detail
during the past century [5,7,8]; in particular, explicit solutions
describing the beginning of epidemics [3], and complete im-
plicit solutions [9–11], have been derived.

Even though the basic SIR model has been successful,
it can be considered too simplistic. This is why more accu-
rate variants [12–16] and a number of more complex models
[7,17–20] have since been introduced. Among these models,
compartment models on networks provide a good balance
between simplicity, physical understanding, and improved ac-
curacy [16,21–28]. This approach benefited both from the
wealth of activity in network theory in the past two decades
and from the increased availability of large amounts of data

[29] about contact networks (see [30,31] for a complete re-
view on the subject). This has resulted in a steady increase
of papers published on the subject of epidemics on networks
since the year 2000 [32].

Despite their success in extending the basic SIR model,
these network models so far lack one important feature,
which is the existence of analytical solutions for the models’
equations. The importance and usefulness of these analytical
results should not be underrated, as they provide a much
deeper understanding of the mechanisms at work than can
be achieved numerically. Moreover, they constitute a bench-
mark for more complex models where no analytical solution
is available. Our goal here is to provide such analytical re-
sults in the case of random homogeneous networks, which
are characterized by their constant connectivity k. For any
given value of k we obtain analytic expressions analogous
to (and in some circumstances stronger than) the ones ex-
isting for the SIR model (1); when k = 2 or 3 we obtain
simple explicit expressions, while in the limit k → ∞ we
recover the basic SIR, leading to some new physical insights
as well as some useful approximations of this well-known
model.

The article is organized as follows. In Sec. II, we present
the SIR model on a random homogeneous network with k
neighbors, called the SIR-k model, and its dynamic equa-
tions. In Sec. III, we derive the (implicit) analytical solution
of these equations. We then study the impact of our results
on the epidemic threshold, and the case of a small number
of neighbors, which provides more explicit expressions. In
Sec. IV, we focus on the limiting case k → ∞ to derive
the exact solution of the SIR model. We then derive some
significant approximations with simpler expressions and study
the consequences of our results on the epidemic’s peak time.
Finally, concluding remarks are gathered in Sec. V.
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II. SIR MODEL ON A RANDOM HOMOGENEOUS
NETWORK WITH k NEIGHBORS

We consider a population of N individuals who can be in
one of the three possible states (susceptible, infected, recov-
ered). Each agent is in contact with k fixed neighbors only.
These neighbors are chosen randomly among the population.
The standard SIR model, where everyone is in contact with
everyone, corresponds to the large-k limit of this model. The
population can be represented by a random homogeneous net-
work with fixed connectivity k, where each node corresponds
to an individual and edges connect neighboring individuals.
Associated with each of these edges is a probability λdt that
an infected individual will infect a (susceptible) neighbor dur-
ing the time interval [t, t + dt[. As in the basic SIR model,
infected individuals may also recover from the disease during
that time interval with a probability γ dt . The epidemic then
spreads through the network following a standard Markovian
process (see [33] for a detailed procedure), and dynamic quan-
tities are averaged over realizations of the network and of the
Markovian process.

The time evolution of the average fractions S(t ), I (t ), and
R(t ) of susceptible, infected, and recovered individuals re-
quires taking into account correlations between the states of
two neighbors, which are very strong in a network. For a SIR
model on a k-homogeneous network we obtain the system of
equations

Ṡ = −λkGsiS, (2a)

İ = λkGsiS − γ I, (2b)

Ṙ = γ I, (2c)

with S(t ) + I (t ) + R(t ) = 1. Here, Gsi(t ) corresponds to the
probability that a neighbor of a given susceptible individual is
itself infected; thus kGsi(t ) is the average number of infected
individuals in the neighborhood of a susceptible individual.
Introducing Gss(t ) and Gsr (t ) in a similar way, with Gss(t ) +
Gsi(t ) + Gsr (t ) = 1, the time dependence of these two-point
correlators is given by

˙[SGss] = −2SGss(k − 1)Gsiλ, (3a)
˙[SGsi] = SGss(k−1)Gsiλ,−SGsi[(k−1)Gsi + 1]λ − γ SGsi

(3b)

˙[SGsr] = γ SGsi − SGsr (k − 1)Gsiλ. (3c)

To derive (3) we made the degree pairwise approximation
[34], that is, we neglected three-point correlations (and be-
yond) which should appear in the evolution of Gsi. Within
this approximation, the derivation can be sketched as follows.
We note first that XGxy(t ) corresponds to the probability for a
given edge (here, considered oriented, with the starting vertex
being in state x and the arrival vertex being in state y) to be
in the state x—y at t . Consider first the case x = y = s and a
given edge s—s. For an agent located at one end of this edge to
be infected, it is necessary that one of its (k − 1) other neigh-
bors be infected and transmit the disease. If we neglect the
three-point correlations (between the initial node, its neighbor,
and the second neighbors), each of the other neighbors has a
probability Gsi to be infected, and in that case, a probability
λdt to transmit the disease. Thus, the time evolution of SGss

FIG. 1. Main panel: Time delay �t = t (S) − tSIR(S) with tSIR

obtained by numerically solving (1). Solid thick dark blue: analytical
expression (26), corresponding to the limit case SIR-∞, yielding 0
as expected. Purple (k = 50) and magenta (k = 20) plots: numerical
resolution of the SIR-k model (2) (solid lines) and corresponding
analytical solution (11) (dots). Right inset: proportion of susceptible
S(t ) for the same configurations. The gray horizontal dotted lines
indicate the range of S values taken for the main panel. Left inset:
proportion of infected I (t ) for k = 5. Red dotted line: numerical res-
olution of the SIR-5 model Eqs. (2) and (3); green solid line: average
over 100 realizations of the Markovian process of an epidemic on a
large homogeneous network of degree k = 5, with N = 3000 nodes
(with random initial infected nodes); black dashed line: basic SIR
model with β = λk. Parameters are μ = 0.25, S0 = 0.99.

is given, at order dt , by Eq. (3a) (the factor 2 accounts for the
two ends of edge s—s). Equation (3b) can be explained in a
similar way; SGsi corresponds now to the number of edges,
starting from a susceptible node to an infected one. See [35]
for a more detailed derivation. This approximation has been
for example used in [31] to derive equations for the SI model
on a generic network.

In the case of homogeneous networks with a large num-
ber of nodes N → ∞, as we consider here, the fraction of
loops with arbitrary finite size vanishes [36–38]. Therefore,
the correlations beyond two-point ones can be neglected and
the degree pairwise approximation becomes exact in this limit
[39]. Equations (2) and (3) form what we will call the “SIR-k
model” in the following. In Fig. 1 (left inset), we demonstrate
the accuracy of our approximation by comparing a numerical
solution of Eqs. (2) and (3) with a Markovian evolution of a
population according to the same dynamics. The parameters
of our problem are S0 the initial proportion of susceptible
agents, k the number of neighbors, β = λk the contagious-
ness and γ the recovery rate, which leads to a dimensionless
quantity μ = γ /β driving the epidemic, while β only changes
the time scale (see for example [10]).

III. ANALYTICAL SOLUTION OF THE SIR-k EQUATIONS

A. General expression

From Eqs. (2) and (3), we can obtain an ordinary differ-
ential equation involving only S(t ). Inserting Gsi = −Ṡ/(βS),
which we get from Eq. (2a), into Eq. (3a), we have

˙[SGss]

SGss
= 2

k − 1

k

Ṡ

S
. (4)
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At t = 0, S(0) = S0 = Gss(0) if we assume that there are no
correlations at time 0 (i.e., the neighborhood of infected and
susceptible individuals is the same), then Eq. (4) can be inte-

grated as Gss = S
2
k
0 S1− 2

k . Using Eq. (2a) and this expression
for Gss, Eq. (3b) yields

S̈ = λS
2
k
0 S1− 2

k (k − 1)Ṡ + k − 1

k

Ṡ

S
− (γ + λ)Ṡ. (5)

This is a second-order differential equation in S that we need
to integrate twice. A first integration is obtained by dividing
(5) by Ṡ and introducing ϕ(S) = Ṡ, which verifies

dϕ(S)

dS
= λS

2
k
0 S1− 2

k (k − 1) + k − 1

k

ϕ(S)

S
− (γ + λ). (6)

Equation (6) can be integrated as an equation in the variable S
to give

ϕ(S) = kS2/k
0 λS2(1− 1

k ) − k(λ + γ )S + C1S1− 1
k , (7)

where C1 is given by the initial conditions: C1 =
Ṡ(0)S−1+1/k

0 − λkS1+1/k
0 + k(λ + γ )S1/k

0 . Using Ṡ(0) =
−λkS0(1 − S0), this constant reduces to C1 = kγ S1/k

0 .
Changing to the variable z ≡ (S/S0)

1
k , and using μ = γ /β,

we obtain

ż = λP(z), P(z) = S0zk−1 − (kμ + 1)z + kμ. (8)

Separating the variables z and t and using the partial frac-
tion decomposition of 1/P(z) in terms of the roots z j ( j =
0, . . . , k−2) of P(z), the integral of Eq. (8) becomes∫ z

1

dz′

P(z′)
=

k−2∑
j=0

∫ z

1

Aj

z′ − z j
dz′ = λt, (9)

with

Aj = 1

P′(z j )
= 1∏

l �= j (z j − zl )
. (10)

Equation (9) readily gives an explicit expression for t as a
function of S as

t (S) = 1

λ

k−2∑
j=0

Aj ln

(
(S/S0)1/k − z j

1 − z j

)
. (11)

Note that the complex roots z j are pairwise complex conjugate
so that the whole sum is real, as it should be. One then gets
a parametric solution for the number of infected individuals
under the form (t (S), I (S)) by integrating Eq. (2b). Indeed,
since S(t ) is monotonous, Eq. (2b) can be rewritten as

dI

dS
= −1 − γ I

dt

dS
, (12)

which upon integration yields

I (S) =
(

1 − S0 −
∫ S

S0

eγ t (s′ )ds′
)

e−γ t (S). (13)

The maximum of I corresponds to the value of S where
dI/dS = 0, that is,

I (S)
dt

dS
= − 1

γ
, (14)

FIG. 2. (a) Orange squares (resp. black diamonds): location, in
the complex plane, of the roots of the polynomial P(z) Eq. (8) for
k = 50 (resp. k = 20) with S0 = 0.8 and μ = 0.25. (b) Blow-up
showing, in the complex plane, the limit as k → ∞ of the α j de-
fined by z j = 1 + α j/k. The complex z j (and thus the complex α j)
come in conjugate pairs. (c) Zoom on the complex plane close to 1
with z(t ) = (S(t )/S0)1/k traveling the green line from z1 = z(−∞)
to z0 = z(∞) and passing through z(0) = 1. (d) Blue line (resp. red
line): illustration, for k = 20, of the variation with μ of the roots
z0(μ) (resp. z1(μ)) for S0 = 0.99 (solid line) and S0 = 1 (dashed
line). The value μ∗

k such that z0(μ∗
k ) = z1(μ∗

k ) = 1 is the epidemic
threshold.

with t (S) explicitly given by (11), while the calculation of I (S)
involves a single numerical integral over S.

We checked for many different values of the parameters
(S0, μ, k) that the analytical solution (11) perfectly repro-
duces the numerical resolution of (2) and (3), and we illustrate
it for one example in Fig. 1. Note that a similar approach
allows us to address the SI model, which corresponds to the
limit μ → 0; in that case we get

S(t ) = S
− 2

k−2
0

(
1 − S0

S0
eλ(k−2)t + 1

)− k
k−2

, (15)

which in the limit k → ∞ coincides with the known solution
of the SI model [7].

B. Epidemic threshold

We now comment on the consequences of Eq. (11). Poly-
nomials such as P(z) in Eq. (8) have a long history, dating
back to Lambert [40,41] and Euler [42]. In particular, one
can explicitly express all the roots z j as an infinite series (see
[43,44]). As illustrated in Fig. 2(a), for k > 2 there are two
real positive roots, z0 ∈ [0, 1] and z1 ∈ [1,∞[. Since S/S0 ∈
[0, 1], the only possible divergence of t in (11) corresponds
to the root z0, and we thus get that S∞ ≡ limt→∞S(t ) = S0zk

0.
A useful quantity for public agencies in charge of controlling
the epidemic (see [8] for the basic SIR model) is the fraction
of the population that will be infected during the course of
the epidemic; it can be expressed as I (k)

tot = S0 − S∞ = S0(1 −
zk

0 ). The second positive real root z1 can then be interpreted as
the nonphysical limit to which S would tend if one follows the
SIR-k equations for negative times, S−∞ ≡ limt→−∞S(t ) =
S0zk

1 > 1. As illustrated in Fig. 2(c), the associated quantity
z(t ) = (S(t )/S0)1/k decreases from 1 to z0 for t ∈ [0,+∞[,
and from z1 to 1 for the non-physical part t ∈] − ∞, 0].
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Whatever the value of μ and k, P(1) = S0 − 1. Thus, as
illustrated in Fig. 2(d), z = 1 cannot be a root of P(z) for
S0 < 1, but always is for S0 = 1. In the latter case, two situa-
tions can occur. The first one would be that z1 = 1 and z0 < 1,
in which case an epidemic starting with S0 = 1 (i.e., with an
infinitesimal fraction of infected individuals) would eventu-
ally propagate into the network and infect a finite fraction of
the population. Introducing the time t0 corresponding to the
constant term in Eq. (11), namely

t0 = −1

λ

k−2∑
j=0

Aj ln |z j − 1| ∼
S0→1

ln(1 − S0)

λ(2 + k(μ − 1))
, (16)

we see that limS0→1 t0 = ∞. This expresses the fact that the
beginning of the epidemic takes an infinite amount of time
as the initial proportion of infected individuals goes to zero.
The other possibility, z0 = 1 and z1 � 1, corresponds to S∞ =
1: an epidemic starting with S0 = 1 does not propagate. The
value μ∗

k of the parameter μ corresponding to the transition
between these two regimes is the threshold beyond which, for
S0 = 1, the epidemic does not spread. At the threshold, z = 1
is a double root of P(z) and thus μ∗

k = (k − 2)/k.1 As k → ∞
we get μ∗

k → 1, which coincides with the result of Kermack
and McKendrick [3] for the original SIR model.

C. Small number of neighbors

It is possible to invert the expression (11) for k = 2 and
3. First, consider the case k = 2. A random network of size
N then corresponds to a set of disconnected loops of differ-
ent sizes. In the N → ∞ limit, however, all but a negligible
proportion of agents would belong to a large loop, and the
average quantities we consider here, for example in Eqs. (2)
and (3), behave in the same way within a random network or
within a single connected loop. Furthermore, there is only one
root z0 = 2μ/(I0 + 2μ), with I0 = 1 − S0 the initial fraction
of infected individuals. We can therefore write (11) as

t (S) = 1

λ
A0 ln

(
(S/S0)1/2 − z0

1 − z0

)
, (17)

with A0 = −1/(I0 + 2μ) < 0. Inverting Eq. (17) we get

S(t ) = S0

[
1 + I0(e−t/τ − 1)

I0 + 2μ

]2

, τ = 1

λ(2μ + I0)
. (18)

S(t ) thus follows an exponential decay with rate τ and con-
verges to S∞ = S0z2

0, as expected. We get I (2)
tot = S0(1 −

(1 − I0/(2μ))−2), which varies from S0 for strong epidemic
I0/μ 
 1 to 0 with I0/μ � 1. In particular, limS0→1 I (2)

tot = 0
for any positive value of μ, which can also be seen from the
fact that μ∗

2 = (k − 2)/k = 0. This is unique to the k = 2 case
because of its essentially 1d geometry, which implies that the
number of infected agents caused by a single patient zero is
necessarily finite.

1This expression for the threshold can be derived also from the
results in Sec. III C of [28]

For the case k = 3, we get P(z) = S0z2 − (3μ + 1)z + 3μ,
which has two (real positive) roots,

z0,1 = 1

2S0
[(3μ + 1) ±

√
(3μ + 1)2 − 12μS0], (19)

yielding

t (S) = A0

λ
ln

[
((S/S0)1/3 − z0)(1 − z1)

((S/S0)1/3 − z1)(1 − z0)

]
, (20)

where we have used that A1 = −A0 = 1/(z1 − z0). We can
invert Eq. (20) to get

S(t ) = S0

(
z0 − z1Beλ(z0−z1 )t

1 − Beλ(z0−z1 )t

)3

, B = 1 − z0

1 − z1
. (21)

As expected, this expression verifies that S(0) = S0 and
S∞ = S0z3

0. The explicit expression for I (3)
tot is S0 − 1

8S2
0
[(3μ +

1) +
√

(3μ + 1)2 − 12μS0]3. For S0 = 1, the roots simplify
to z0 = min(1, 3μ), z1 = max(1, 3μ), and we recover μ∗

3 =
1
3 ; for μ < μ∗

3, I
(3)
tot = 1 − (3μ)3, while for μ � μ∗

3 the epi-
demic does not propagate as S∞ = 1.

Finally, we consider the case k = 4, but limiting our-
selves for simplicity to the limit S0 → 1 and the regime μ <

μ∗
4 = 1/2. In that case, P(z) has three roots, which, intro-

ducing κ = √
1/4 + 4μ, can be written as z0 = κ − 1

2 , z1 =
1, z2 = −κ − 1

2 with furthermore A0 = [κ (2κ + 3)]−1, A1 =
[2 − 4μ]−1, A2 = [κ (2κ − 3)]−1. The epidemics propagate
only if z0 < 1, that is if μ < μ∗

4 = 1/2, in which case, scal-
ing out the time t0 introduced in Eq. (16), the dynamics is
described by

t − t0 = 1

κλ

∑
ε=±1

(
1

2κ + 3ε
ln

∣∣∣∣∣S1/k + εκ + 1
2

S1/k − 1

∣∣∣∣∣
)

, (22)

and I (4)
tot = (−16μ2 − 8μ + 1/2) + (1 + 8μ)

√
4μ + 1/4

(which is indeed such that I (4)
tot (μ∗

4 ) = 0).

IV. LARGE − k LIMIT OF THE SIR − k MODEL

A. Exact expression

Another interesting limit of the SIR-k model is k → ∞,
through which we recover the original SIR model, but with a
new point of view. As illustrated in Fig. 2, z0 and z1 converge
to 1 (from below and from above, respectively) and all the
other roots converge to the unit circle in the complex plane.
This can be understood from their series expansion in [43,44].
Using that z j is a root of P(z), we can write the factor Aj

defined in Eq. (10) as

Aj =
[

(k − 1)kμ
z j − 1

z j
− k(μ − 1) − 2

]−1

. (23)

For most roots of P(z), z j − 1 = O(k0) (we refer to them as
“far from one”) and thus Aj = O(k−2). It is only for the roots
close to one, and more precisely such that z j − 1 = O(k−1),
that Aj = O(k−1). In the same way, the logarithm factors are
O(k−1) for the roots far from one and O(k0) for the roots close
to one. In Eq. (11), noting that λ−1 = kβ−1, we see that the
sum over roots far from one involves O(k) terms of order
O(k−2) and has therefore a negligible O(k−1) contribution,

044307-4



ANALYTICAL SOLUTION OF SUSCEPTIBLE-INFECTED- … PHYSICAL REVIEW E 110, 044307 (2024)

whereas each root close to one has an O(k0) contribution. We
can thus write all relevant roots as z j = 1 + α j/k where α j

reaches a constant value as k → ∞. Writing that z j is a root
of P(z) thus reads

S0

(
1 + α j

k

)k−1
= kμ

[(
1 + 1

kμ

)(
1 + α j

k

)
− 1

]
, (24)

which, taking the limit k → ∞ on both sides (with α j now
corresponding to that limit), gives exp(α j ) = (μ/S0)(1/μ +
α j ). Defining now γ j = α j + 1/μ and χ = (S0/μ)e−1/μ, we
get

χ = γ j exp(−γ j ). (25)

Equation (25) can be rewritten in terms of the Euler T func-
tion (see [41] for mathematical details) as γ j = T (χ ). The T
function has two real branches T0 and T−1 which correspond
to the two positive real roots of P(z), and an infinite number of
complex branches corresponding to the complex numbers γ j .
In particular, we get for the first root limk→∞ S∞ = μT0(χ ),
which is equivalent to the well-known self-consistent equa-
tion S∞ = 1 + μ ln(S∞/S0) given, for instance, in [4]. Taking
the large-k limit in Eqs. (23) and (11), together with β = λk
and the expression of the relevant z j = 1 + α j

k , leads to

β t (S) = 1

μ

∞∑
j=−∞

1

α j + 1/μ − 1
ln

(
1 + ln(S0/S)

α j

)
,

α j = T− j (χ ) − 1/μ, (26)

where the complex quantities α j are pairwise complex conju-
gate (T−2 is conjugate with T1, T−3 with T2, etc.) so that the
whole sum is real. In Fig. 1, we check the accuracy of this
expression.

B. Approximate expression for t (S)

An implicit analytical solution t (S) for the SIR model (1)
is known in the literature and takes the form of an integral
(see, for instance, [9]). Our formula (26) is an alternative ex-
pression for t (S) and comes with interesting new insights, as it
depends on quantities α j , which have an explicit expression.
In Fig. 2, we show the first terms of the sequence. We see
that α0 < 0 and α1 > 0 are indeed the two unique real values,
while the subsequent α j are purely complex; the latter are well
approximated by α j 
 2π i j for large (possibly negative) j as
the roots z j converge to the unit circle exp( 2π i j

k−2 ). Therefore,
for m sufficiently large, the contributions of the terms j � m
of Eq. (26) can be approximated by

2

μ
�

⎡
⎣ ∞∑

j=m

ln
(
1 − 1

α j
ln(S/S0)

)
α j + 1/μ − 1

⎤
⎦


 −2 ln (S/S0)

(2π )2μ

∫ ∞

m

1

α2
j

d j 
 2 ln (S/S0)

(2π )2μ

1

m
, (27)

in which we use that α j + 1/μ − 1 
 α j which is valid as
long as 2π j 
 1/μ, and which becomes quickly negligible
as m increases if μ is not too small.

Further understanding of the qualitative behavior of the
sum Eq. (26) can be obtained, noting that the effective re-
production number Reff = S/μ has to be larger than 1 for the

FIG. 3. Comparison of exact S (solid lines) with approximation
Eq. (28) at first and second order in δμ = (1 − μ) (dotted and dashed
lines respectively). S0 = 0.99 is fixed and μ evolve from 0.1 to 0.9 :
(μ = 0.1, red), (μ = 0.3, brown), (μ = 0.5, magenta), (μ = 0.7,
green), (μ = 0.9, blue). Although Eq. (28) is formally an expansion
near μ = 1, we see that its validity extends in practice in the whole
range of μ, except in the neighborhood of 0.

epidemic to propagate. One can therefore assume μ ∈ [0, 1]
and S0 in the interval [μ, 1]. Thus, for μ not too far from
1 and using δμ = (1 − μ) as a small parameter, we can in
any case assume δS0 = (1 − S0) < δμ. In practice, however,
we think of the initial time t = 0 as a situation where most
agents are susceptible, only a very small fraction is infected,
and nobody has recovered yet. In most of the concrete cases,
and for essentially all the illustrations, we shall consider below
δS0 � δμ, and we shall assume that at worse δS0 = O(δμ2).
In that case, one can show (see Appendix A 3) that at all
times δS = (1 − S) = O(δμ), implying also that ln(S0/S) =
O(δμ).

Noting (cf. Appendix A) that at α0(μ=1) = α1(μ=1) =
0, when for j � 2 α0

j := α j (μ=1) �= 0, this means that the
contribution of the two first terms j = 0, 1 are O(δμ0), when
all the higher j contributions are O(δμ). We thus have

βt (S) = 1

μ

⎡
⎣ ∑

j=0,1

ln
(
1 + 1

α j
ln(S0/S)

)
α j + 1/μ − 1

− 2K(0) ln(S0/S) + O(δμ2)

⎤
⎦, (28)

with K(0) := �(
∑∞

j=2(α0
j )−2) 
 −0.028 a, fairly small, pure

number. As illustrated in Fig. 3, the approximation Eq. (28)
is actually very accurate on a significant portion of the range
[0, 1], and this range can be even further extended by comput-
ing the O(δμ2) correction to Eq. (28) (cf. Appendix A).

C. Epidemic peak time

As mentioned, an important quantity in the context of an
epidemic breakout is the epidemic peak time, which, using
the fact that, for SIR, the epidemic peak dI/dt = 0 implies
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S = μ, can be obtained as tpeak = t (S =μ), and for which even
a leading order approximation is presumably useful.

For μ sufficiently close to 1, this can be obtained starting
from Eq. (28), neglecting the −2K(0) ln(S0/S) correction, and
evaluating α0 and α1 to leading order in δμ. This calculation
is performed in Appendix B, leading to Eq. (B1). From this
we get

βtpeak 
 1

p

[
ln

(
1 − ln(S0/μ)

δμ − p

)
− ln

(
1 − ln(S0/μ)

δμ + p

)]
,

(29)

with p =
√

2δS0 + δμ2, valid for δμ = (1 − μ) small (δS0 =
(1 − S0) < δμ, and possibly � δμ).

For μ a bit further away from 1, where this approximation
starts to degrade, it turns out that a better approximation of
tpeak can be obtained following the same approach but using
the μ → 0 expansion of α0 and α1. We get (see Appendix B2)

βtpeak 
 1

μ

[
ln

(
1 − ln(μ/S0 )

χ+χ2−1/μ

)
χ + χ2 − 1

+
ln

(
1 − ln(μ/S0 )

(1−S0 )/(S0−μ)

)
(1 − S0)/(S0 − μ) + 1/μ − 1

]
,

χ = (S0/μ)e−1/μ. (30)

An expansion for μ � 1 can finally be obtained from
the integral form of t (S) given in [9], and leads to (cf.
Appendix B1)

βtpeak 
 ln

(
S0

1 − S0

)
− ln μ

−μ

(
1 + ln(1 − S0) − 1

2
ln2 S0

μ
− Li2(S0)

)
, (31)

with Lin the polylogarithm function.
In Fig. 4, we compare the predictions in Eqs. (29), (30),

and (31) with the exact βtpeak, demonstrating that, with
S0 � 0.999, the full range of μ ∈ [0, 1] is covered with these
three regimes.

Equations (29), (30), and (31), corresponding respectively
to large, intermediate, and small μ, provide explicit expres-
sions and physical indications of how one can delay the
epidemic peak in practice. Let us assume that the parameter
γ which characterizes the rate of recovery from the illness
is given by biological factors, and thus fixed, but that the
transmission rate β can be modified by nonpharmaceutical in-
terventions such as wearing masks or limiting contact between
people. We thus assume that μ can be modified, but that this
is done with βμ = γ constant.

First, we see in Fig. 4 that the curve βtpeak(μ) is rather
flat in the range μ ∈ [0.05, 0.5], implying that tpeak is es-
sentially proportional to 1/β for μ < 0.5. Then, different
kinds of corrections appear in the different regimes. The most
useful formula is presumably Eq. (30), which provides a
compact and explicit analytical result (with only two terms),
in a regime that corresponds to most of the practical use
(2 � R0 � 5).

As a practical example, starting with S0 = 0.99 and ap-
plying restrictive measures to change μ = 0.25 to μ = 0.5

FIG. 4. Comparison of the exact βtpeak(μ) (blue solid line) with
different approximations, for a fixed S0 = 0.999 and μ ∈ [0.05, 1].
Cyan dotted line: approx. (31) which works at small μ. Red dashed
line: approx. (30) which is rather valid for small and intermediate
μ. Orange dashed line: approx. (29) for μ close to 1 and also for
intermediate μ. Dotted green line: approximation obtained from
Eq. (28) with S = μ, which match the exact tpeak(μ) extremely well
except for very small μ’s. The regimes of validity of the different
approximations improve as S0 → 1, and would somewhat degrade
as δS0 increases.

(which means changing R0 from 4 to 2) would allow reducing
tpeak by a factor of 2.25 according to Eq. (30), while the exact
reduction factor is 2.18, with very similar absolute values. For
S0 = 0.9, this factor is only 1.61, according to Eq. (30), while
the exact value is 1.57. We therefore have a precise indication
about tpeak from a very simple expression, which does not
require any knowledge of the Lambert function and does not
involve the computation of an integral. This makes it possible
to analyze qualitatively why early detection of the epidemic
is important, as restrictive measures to delay the peak will
be significantly less efficient for an epidemic that has already
spread significantly in the population.

V. CONCLUSION

In this work, we have derived Eqs. (2) and (3) for the SIR-k
model, and obtained an exact implicit expression of t (S) (11),
valid for arbitrary k, as a finite sum over the roots z j of the
polynomial P(z) (8).

It turns out that the main qualitative properties of the epi-
demic dynamics are governed by its two positive real roots
(z0, z1). In particular, the proportion of agents infected during
the total duration of the epidemic is given by I (k)

tot = S0(1 −
zk

0 ), for which we have an explicit formula both for small
and very large k. Taking S0 = 1, i.e., assuming a negligibly
small initial proportion of infected agents (for easier read-
ing), we got I (3)

tot = 1 − (3μ)3 for k = 3, while for the SIR
model limit, we obtained I (∞)

tot = 1 − μT0(χ ) 
 1 − μχ =
1 − e−1/μ. Thus, for small μ (contagious diseases), the larger
k, the more virulent the epidemic, as I (∞)

tot will converge faster
to 0 with μ → 0 than I (k)

tot .
The values of the real roots (z0, z1) also affect the threshold

value of μ for which, even for an infinitely small initial pro-
portion of infected individuals, an epidemic starts to propagate
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and affect a finite proportion of the agents. This thresh-
old is given by the condition z0(μ∗

k ) = z1(μ∗
k ) = 1, leading

to μ∗
k = (k − 2)/k. This value is lower than its counterpart

for the basic SIR model μ∗
SIR = μ∗

∞ = 1, which indicates
that the propagation of epidemics is more difficult in the
SIR-k model than in the basic SIR one, in agreement with
the final epidemic size, which is also lower for the SIR-k
model. This is in contrast with heterogeneous networks, for
which an epidemic spreads more easily than in the SIR
model.

In the cases k = 2 and k = 3 we got exact explicit ex-
pressions for S(t ). In the limit k → ∞, we obtained new
exact expressions for the original SIR model, which pro-
vides a new point a view, together with useful approximate
results for this well-known problem. In particular, Eq. (28)
and Fig. 3 demonstrate that for all values of μ except
near 0, keeping only the contributions of the real α j’s, i.e.,
j = 0, 1, provide an excellent approximation of t (S). Fur-
ther approximation for the epidemic peak time Eqs. (29),
(30), and (31) are shown in Fig. 4 to work extremely well
numerically.

The SIR-k model on homogeneous networks presumably
provides a good balance between an increase in complexity
and an increase in effectiveness. It is characterized by only
three parameters (S0, μ, k) which, compared with the basic
SIR, only adds the parameter k corresponding to the average
number of possible contacts of individuals, a relatively acces-
sible quantity in practice. Our SIR-k model is almost as simple
as the basic SIR model. Indeed, it benefits from a simpler ex-
act solution than the SIR, while numerical resolution remains
fast and tractable (six equations instead of three). We therefore
hope that our work will encourage institutions to consider
using the SIR-k model in practice, instead of the basic SIR,
especially as the two produce significantly different results
when the number of neighbors is low, as shown in Fig. 1. Our
results pave the way for the analytical study of more realistic
social networks, such as heterogeneous networks with the
small-world property [21,45].

APPENDIX A: THE μ → 1 REGIME FOR t (S)

We start by rewriting Eq. (26) as

β t (S) = 1

μ

∑
j=0,1

1

α j + 1/μ − 1
ln

(
1 + ln(S0/S)

α j

)

+ 2�
⎡
⎣1

μ

∞∑
j=2

1

α j + 1/μ − 1
ln

(
1 + ln(S0/S)

α j

)⎤
⎦.

(A1)

1. Contribution of the j � 2 to Eq. (A1)

Noting δμ = (1 − μ) � 1 and δS0 = (1 − S0) < δμ, one
can show that for j � 2,

α j = −1 + τ j + τ j

τ j − 1
δS0 − δμ + O(δμ2), (A2)

with τ j := T− j (1/e) �= 1,∀ j � 2.

Therefore, for j � 2, ln(S0/S)/α j = O(δμ), and in
Eq. (A1), we can expand the log as

ln

[
1 + ln(S0/S)

α j

]
= ln(S0/S)

α j
− 1

2

ln(S0/S)2

α2
j

.

Together with Eq. (A2), this leads, for the contribution of the
j � 2 to Eq. (A1), to

2

μ
�

∞∑
j=2

1

α j + 1/μ − 1
ln

(
1 + ln(S0/S)

α j

)

= 2 ln(S0/S)

μ
[K0 + δμKμ − δS0KS0

− ln(S0/S)Kln + O(δμ3)], (A3)

with

K0 = �
∑
j�2

1

(τ j − 1)2

 −2.8 × 10−3, (A4)

Kμ = �
∑
j�2

[
1

(τ j − 1)2
+ 1

(τ j − 1)3

]

 −3.0 × 10−3, (A5)

KS0 = �
∑
j�2

2τ j

(τ j − 1)4

 −3.8 × 10−3, (A6)

Kln = �
∑
j�2

1

2(τ j − 1)4

 7.7 × 10−5. (A7)

These dimensionless numbers are actually rather small, which
explains the quality of the approximation (28) in a large range
of δμ. This is illustrated in Fig. 5.

2. Expansion for α0 and α1

For z → 1, we have [41]

T0(z) = 1 − p + O(p2), (A8)

T−1(z) = 1 + p + O(p2), (A9)

with p := √
2(1 − ez) and z < 1/e. With z = χ =

(S0/μ) exp(−1/μ) (implying z < 1/e since S0 < 1 and
the function 1

μ
e−1/μ increases over [0, 1] from 0 to 1/e), we

have ez 
 1 − δS0 − δμ2/2, and thus

p 

√

2δS0 + δμ2. (A10)

With α0,1 = T0,−1(χ ) − 1/μ, we eventually obtain

α0 = −p − δμ, α1 = +p − δμ. (A11)

3. Range of variation of S(t )

As t goes from O to ∞, S decreases monotonously from
S0 to S∞ = μT0(χ ), which following the same reasoning as
above, behaves for μ close to one as

S∞ 
 1 − p − δμ. (A12)

If δS0 and δμ are of similar magnitude, i.e., if δS0 = O(δμ),
this implies δS∞ = O(

√
δμ), which makes the discussion of

the size of the neglected terms in Eqs. (28) and (29) somewhat
more involved, without changing the main qualitative content
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FIG. 5. Main panel: Time delay �t = t (S) − tSIR(S) with tSIR

obtained through analytical expression (26) which has been shown to
be exact. Purple solid line: exact expression (26) as a reference. Ma-
genta (Resp. pink) dotted (Resp. dashed) lines: first (Resp. second)
order of Eq. (28). Violet solid line: expression (26) with the exact
expression of the two real roots only. The gap between this last curve
to the first (Resp. second) order curve shows the corresponding cor-
rection of these orders. Inset: proportion of susceptible S for the same
configurations. The gray horizontal dotted lines indicate the range of
S values taken for the main panel comparison (with corresponding
vertical lines). Parameters are μ = 0.5, S0 = 0.99, corresponding to
the third value of Fig. 3 which is near the standard values (R0 
 2).
The discrepancy between the exact curve and the approximation (28)
is at most of 0.5%, much lower than the uncertainty that one can
expect from μ in practice.

of these equations. On the other hand, if one assumes, as is
most of the time the case in practice, δS0 significantly smaller
than δμ, and more specifically δS0 � O(δμ2), Eq. (A12) im-
plies that δS∞ = O(δμ), and thus ln(S0/S) = O(δμ) for all
times. We have worked under this assumption in Secs. IV B
and IV C and in the Appendixes A1 and B1.

APPENDIX B: EXPLICIT EXPRESSIONS FOR t (S)

1. Expansion near μ = 1

With Eq. (A11), the leading order contribution to t (S) as
μ → 1 reads

βt (S) = 1

p

[
ln

(
1 − ln(S0/S)

δμ − p

)
− ln

(
1 − ln(S0/S)

δμ + p

)]
.

(B1)

2. Expansion for intermediate μ

From Fig. 3, and from the discussion in Appendix A1, we
see that even if this is formally justified from an expansion

near μ = 1, neglecting the contributions of the complex α js
( j � 2) is actually a rather accurate approximation in the
whole range of μ except in a small neighborhood of 0. For
reasonably small μ, the contribution of the two (remaining)
real roots is then rather well described using the Taylor ex-
pansion of T0(χ ) (valid for χ → 0, thus μ → 0) given in [41].
We obtain α0 
 χ + χ2 − 1/μ and α1 
 (1 − S0)/(S0 − μ),
from which we get an explicit approximation of t (S)

βt (S) 
 1

μ

[
ln

(
1 − ln(S/S0 )

χ+χ2−1/μ

)
χ + χ2 − 1

+
ln

(
1 − ln(S/S0 )

(1−S0 )/(S0−μ)

)
(1 − S0)/(S0 − μ) + 1/μ − 1

]
,

χ = (S0/μ)e−1/μ. (B2)

Equation (B2), which has been derived assuming μ small
(once the contribution of the α j, j � 2 are neglected), is nu-
merically accurate even for larger values of μ, as illustrated in
Fig. 4 for S0 = 0.999 and μ ∈ [0.2, 0.55].

3. Small μ expansion

For completeness, we provide here also the small μ expan-
sion of tpeak. Starting from the expression in [10], Eq. (10.22),
the time tpeak for SIR is given (see the discussion below
Eq. (10.37) and the one about time rescaling below Eq. (10.6))
by

tpeak = μ

γ

∫ ln μ/S0

0

du

S0eu − μu − 1
. (B3)

Changing variables to v = eu/μ and expanding the integral
gives

tpeak = μ

γ

∫ μ/S0

1

dv

v

1

S0v − 1 − μ ln v

= μ

γ

∫ μ/S0

1

dv

v

(
1

S0v − 1
+ μ ln v

(S0v − 1)2
+ O(μ2)

)
,

(B4)

which upon integration gives at lowest order

βtpeak =
[

ln

(
S0

1 − S0

)
− ln μ

−μ

(
1 + ln(1 − S0) − 1

2
ln2 S0

μ
− Li2(S0)

)]
,

(B5)

with Lin the polylogarithm function.
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